University Course Timetabling using Multi-population Genetic Algorithm Guided with Local Search and Fuzzy Logic
DOI:
https://doi.org/10.24297/ijct.v11i10.2972Keywords:
Genetic algorithm, Local search, Fuzzy logic, Multi-populationAbstract
Problem of courses timetabling is a time consuming and demanding issues in any education environment that they are involved in every semester. The main aim of timetabling problem is the allocation of a number of courses to a limited set of resources such as classrooms, time slots, professors and students so that some predefined hard and soft constraints are satisfied. Furthermore, the available resources are used to the best.
   In fact course timetabling is one of optimization problems. It has been proved computational complexity of this problem is NP, so there is no optimal solution for that. Therefore, approximation and heuristic techniques are used to find near optimal solutions. Genetic algorithm for its multidirectional feature has been one of the most widely used approaches in recent years. Hence, in this paper an improved genetics algorithm for timetabling problem has been proposed. In proposed algorithm, the fitness of solutions to satisfy soft constraints due to ambiguous nature of those has been specified using fuzzy logic. Also, local search methods have been applied to avoid the genetic algorithm to be trapped in a local optimum. As well as, the multi-population property is intended to reduce the time to reach the optimum solution.  Evaluation results show that the proposed solutions are able to produce promising results for the university courses timetabling.