Performance Analysis of Random Forests with SVM and KNN in Classification of Ancient Kannada Scripts

Authors

  • Soumya A R V College of Engineering, India
  • G Hemantha Kumar University of Mysore, India

DOI:

https://doi.org/10.24297/ijct.v13i9.2392

Keywords:

Classifier, Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (k-NN), Classification Rate, Optical Character Recognition(OCR).

Abstract

Ancient inscriptions which reveal the details of yester years are difficult to interpret by modern readers and efforts are being made in automating such tasks of deciphering historical records. The Kannada script which is used to write in Kannada language has gradually evolved from the ancient script known as Brahmi. Kannada script has traveled a long way from the earlier Brahmi model and has undergone a number of changes during the regimes of Ashoka, Shatavahana, Kadamba, Ganga, Rashtrakuta, Chalukya, Hoysala , Vijayanagara and  Wodeyar dynasties.  In this paper we discuss on Classification of ancient Kannada Scripts during three different periods Ashoka, Kadamba and Satavahana. A reconstructed grayscale ancient Kannada epigraph image is input, which is binarized using Otsu’s method. Normalized Central and Zernike Moment features are extracted for classification. The RF Classifier designed is tested on handwritten base characters belonging to Ashoka, Satavahana and Kadamba dynasties. For each dynasty, 105 handwritten samples with 35 base characters are considered. The classification rates for the training and testing base characters from Satavahana period, for varying number of trees and thresholds of RF are determined. Finally a Comparative analysis of the Classification rates is made for the designed RF with SVM and k-NN classifiers, for the ancient Kannada base characters from 3 different eras Ashoka, Kadamba and Satavahana period.

Downloads

Download data is not yet available.

Author Biographies

Soumya A, R V College of Engineering, India

Department of Computer Science & Engineering

G Hemantha Kumar, University of Mysore, India

Department of Studies in Computer Science

Downloads

Published

2014-09-30

How to Cite

A, S., & Kumar, G. H. (2014). Performance Analysis of Random Forests with SVM and KNN in Classification of Ancient Kannada Scripts. INTERNATIONAL JOURNAL OF COMPUTERS &Amp; TECHNOLOGY, 13(9), 4907–4921. https://doi.org/10.24297/ijct.v13i9.2392

Issue

Section

Research Articles