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Abstract 

Basic methods and techniques involved in the determination of minimum sample size at the use of Structural 

Equation Modeling (SEM) in a research project, is one of the crucial problems faced by researchers since there 

were some controversy among scholars regarding methods and rule-of-thumbs involved in the determination 

of minimum sample size when applying Structural Equation Modeling (SEM). Therefore, this paper attempts to 

make a review of the methods and rule-of-thumbs involved in the determination of sample size at the use of 

SEM in order to identify more suitable methods. The paper collected research articles related to the sample size 

determination for SEM and review the methods and rules-of-thumb employed by different scholars. The study 

found that a large number of methods and rule-of-thumbs have been employed by different scholars. The paper 

evaluated the surface mechanism and rules-of-thumb of more than twelve previous methods that contained 

their own advantages and limitations. Finally, the study identified two methods that are more suitable in 

methodologically and technically which have identified by non-robust scholars who deeply addressed all the 

aspects of the techniques in the determination of minimum sample size for SEM analysis and thus, the prepare 

recommends these two methods to rectify the issue of the determination of minimum sample size when using 

SEM in a research project. 

Keywords: Minimum Sample Size Determination, Structural Equation Modelling. 

Introduction  

The Structural Equation Model (SEM) is one of the most extensively used quantitative multivariate data analysis 

technique which is currently employing to examine the relationship between observed and latent variables of 

the exploratory, and confirmatory hypothesis testing approaches as well as various types of predictive analysis 

models. This modeling technique is particularly suitable in the social sciences where mostly the key concepts  

are not openly observable and are inherently latent generally defined as latent variables (Kline, 1998; Kock & 

Lynn, 2012). The SEM is the prominent approach to analysing the path models with such latent variables to 

produce the final conclusions about the nature of combining the theories. SEM has its roots in path analysis, 

which was invented by the geneticist Sewall Wright in 1921 (as cited by Hox & Bechger, 1999). As mentioned by 

Westland (2010), this modeling technique has been developed in three different streams, such as equation 

regression methods, iterative maximum likelihood algorithms for path analysis , and iterative least-squares fit 

algorithms for path analysis.   

SEM has greater flexibility on its nature because it can be used to examine very complex relationships among a 

variety of data types such as dimensional, categorical censored or count as well can be used to compare among 

the alternative models (Schreiber, Nora, Stage, Barlow, & King, 2006; Wolf, Harrington, Clark, & Miller, 2013).  

Conversely, inside of this flexibility of the SEM, it has been identified an anomaly, which is the unavailability of 

comprehensive guidelines regarding the sample size requirements  by the past researchers.  However, different 
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researchers suggested and implemented different procedures as a rule-of-thumb for deciding sample size for 

their SEM-based researches (MacCallum & Austin, 2000; Westland, 2010).  Therefore, this paper aims to make a 

review of the basic concepts involved in the determination of the minimum sample size for SEM and identifies  

more suitable methods for the determination of the minimum sample size for SEM. 

The paper organized as follows; first introduction with research problem and objectives, second briefly explained 

the theoretical background of the study. Used methodology has been mentioned thirdly, and results and 

discussion represent forth based on the review of the past literature. Finally, a summary and the conclusions are 

been included. 

Theoretical Background 

The researcher uses sampling because of the inability to study the population as required. Inadequate, or 

unnecessary sample sizes impact the quality and accuracy of research. Hence, it is very important to represent 

the characteristics of the population within the studied sample. One of the most important factors is the 

selection of the number of different cases from the population, which will represent all the population 

characteristics. Three criteria need to be specified to determine the appropriate sample size , such as the level of 

precision, the level of confidence, and the degree of variability in the attributes being measured (Miaoulis & 

Michener, 1976). There are three bases to choose a sample size, such as cost base, variance base, and statistical 

power base (Singh & Masuku, 2014). The statistical power base sample size determination is using a target for 

the power of a statistical test to be applied once the sample is collected where the quality of the resulting 

estimates and assessed based on the power of a hypothesis test are been used to judge the sample size (Singh 

& Masuku, 2014). 

The difference between the calculated sample parameters and the actual population parameters denoted by 

the error. According to Muthén & Muthén, (2002), the precision depicts this nature, and the sample parameters 

should close to the population parameters with the narrow margin of errors , which means high precision. The 

power of statistics refers to the type II error or 1- β, which means the probability of rejecting the false null 

hypothesis (Cohen, 1988). Mostly, the power measured as 0.8 or 80% of the probability of rejecting the null 

hypothesis is used by social science researches (Cohen, 1988; Goodhue, Lewis, & Thompson, 2012). In the 

context of SEM, the power has been used to test the model mostly, the powerbase sample size determination 

is been utilized ((Goodhue et al., 2012; Kock & Hadaya, 2018; Westland, 2010). 

The decision taken by the researcher directly affects the validation of the study, suitability of parametric or 

nonparametric methods to use, as well as the precision and power of the model’s parameter estimates.  The 

American Psychological Association, (2009) mentioned that “how this intended sample size was determined 

(e.g., analysis of power or precision). If interim analysis and stopping rules were used to modify the desired 

sample size, describe the methodology and results”. Wilkinson (1999) mentioned that the researchers should 

provide the process of sampling and the size as well as should document the effect size and the analytic 

procedure of the power calculation. 

Methodology 

The minimum sample size determination problem is not clearly defined, and still, it is being defined by the 

researchers. Thus, this study uses the exploratory study based on secondary information, where this method can 

be used to understand the existing problem more preciously.  The study started with the general idea and 

employed it as a medium to identify issues that can be the focus of future researches. The research 

fundamentally used the grounded theory approach, and it based on more than fifty articles published in journals 

relevant to the determination of minimum sample size for SEM analysis.  
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Review Minimum Sample Size Determination 

Although the minimum sample size determination of SEM is more problematic various rules-of-thumb have 

been suggested in the SEM literature. Nunnally, (1967) mentioned that the sampling error in a 𝛽 weight is a 

function of all the variables used in the regression analysis. And he mentioned two facts. The former was a 

sampling error that is a function of sample size and their intercorrelation, as well as the latter, was systematic 

differences between the characteristics of the two samples.  According to his idea even though the Regression 

weights may be robust across samples that have quite different means and variances, but this should not be 

taken for granted. Further, he noted that “as a rule of thumb, but not a magical number, you should have 10 

subjects per predictor in order to even hope for a stable prediction equation” (Nunnally, 1967); Wolf et al., 2013).  

With this proposal, the debate of minimum sample size determination in the SEM has significantly evolved.   

The method of minimum sample size 100 or 400 has been suggested by Boomsma (1982) and (1985). They 

further study suggested a ratio of indicators to latent variables as r =  p ⁄ k.  According to this rule, r = 4 requires 

sample size at least 100 and r = 2 requires 400 sample size. Further enhancement with 35000 Monte Carlo 

simulations has done by Marsh, Balla, & McDonald (1988) of this rule and suggested if r = 3 requires at least 

200 sample size and r = 2 needs at least 400 sample size as well as if it is r = 12 then the sample size is small 

and at least 50. According to the findings of these two studies, researchers attempted to use fewer indicators 

per latent variables for controlling the cost. Kline, (2005) mentioned this rule as N ≥ 100 rule. A similar 

explanation has been presented by Ding, Velicer, & Harlow (1995) concerned that most of the studies which 

evaluated the sample size on different fit indices of SEM found that most of the fit indices were biased under 

the small sample size. Anderson & Gerbing, (1984) also mentioned a similar result and said it is more serious on 

the small sample size combined with other factors such as low loading size and a large ratio of indicators to 

factor. Similar studies such as Bearden, Sharma & Teel (1982); Bentler, (1990); Bentler & Bonett, (1980); Curran, 

West & Finch (1996); Marsh, Balla & McDonald (1988); and Mulaik, James, Alstine, Bennett, Lind, & Stilwell (1989) 

implies the same results with different fit indices. Finally, Ding et al., (1995) recommended 100 to 150 minimum 

sample size for conducting the SEM according to these evaluations.  

The number of free parameters in the model also considered determining the sample size (Raykov, 2006).  

According to this rule, the minimum sample size should be ten times the number of free parameters of the 

model. If the model has 20 free parameters then the number of observations should be 200. Bentler, (1990) 

suggested that a 5 : 1 ratio of a sample size to the number of free parameters. Further, Velicer & Fava, (1998) 

reviewed the recommendations of past literature in the minimum sample determination and concluded 

minimum sample size is not a function of indicators. According to them the goodness of fit and obtain the 

proper solution achieved by two things such as a greater number of indicators per latent variable and higher 

factor lodgings in the given sample size. Consequently, MacCallum et al., (1999) argued and demonstrated that 

model characteristics such as the level of commonality across the variables, sample size,  and degree of factor 

determinacy may influence to the parameter estimates and model fit statistics and hence, it makes some doubts 

on the above sample size rules-of-thumb to particular SEM analysis.  

If the model is complex the PLS-SEM works efficiently in a smaller sample size (Fornell & Bookstein, 1982).   

Goodhue, Lewis, & Thompson (2006, 2007) tried to examine the rule of ten subjects by using the Monte Carlo 

simulation and made the comparison with sample sizes 40, 90, 150, and 200 under the effect size such as ‘large’, 

‘medium’, ‘small’ and ‘no effect’. According to their conclusions they mentioned “for simple SEM models with 

normally distributed data and relatively reliable measures, none of the techniques have adequate power to 

detect small or medium effects at small sample size” (Goodhue et al., 2006).  Tanaka, (1987) suggested the 

sample size of the SEM model should depend on the number of estimated parameters rather than the to tal 

number of indicators. However, Westland, (2010) claimed that since the present SEM models are typically 

estimated in their entirety, and number of unique entries in the covariance matrix is (p(p+1))/2 when p is the 

number of indicators and it should be accepted as sample size is proportional to (p(p+1))/2  rather than p. 

Further, he mentioned this minimum sample size determination problem is more complex than the above and 

it has been shown by the Monte Carlo simulation studies done in the 1980s and 1990s.  
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According to Ringle, Sarstedt, & Straub (2012), it should be approximately eight constructs for a smaller sample. 

However, identification of the required minimum sample size for the PLS-SEM analysis is one of the fundamental 

and important issues which should be deeply considered by the researchers (Goodhue et al., 2012; Kock & 

Hadaya, 2018). Hair, Ringle, & Sarstedt (2011) introduced the “10-times rule” and it is the method that 

extensively used in the past literature (Kock & Hadaya, 2018). This rule assumed that the sample size should be 

greater than 10 times the maximum number of inner or outer model links pointing at any latent variable in the 

entire model and consequently, this is the very simple method to estimate the sample size compared to the 

other methods. Thus, this is more popular among researchers . (Hair et al., 2011; Kock & Hadaya, 2018; Westland, 

2010). However, according to Goodhue et al., (2012) and Kock & Hadaya, (2018) “10-times rule” method for 

estimation of minimum sample size lead to inaccurate estimates most of the time.   

Monte Carlo simulation also has been employed as a method of determining the minimum sample size of the 

PLS-SME (Kock, 2016; Paxton et al., 2001; Robert & Casella, 1999; Wolf et al., 2013). Knowledge of the sampling 

distribution is the key to the evaluation of the behaviour of a statistic and thus the Monte Carlo simulations  

provide facilities to the researchers for evaluating the fixed sampling performance of estimators by creating 

controlled conditions from which sampling distributions of parameter estimates are produced. Therefore, the 

researcher can artificially create and use the sampling distribution to decide the properties of the statis tics as 

well as its efficiency (Paxton et al., 2001).  According to Kock & Hadaya, (2018)“minimum sample size estimation 

in PLS-SEM requires the researcher to set a number of sample size points (e.g., 15, 20, 30 and 40), generate a 

number of samples (e.g., 1000) for each sample size point, calculate the percentages of samples in which 

significant effects (e.g., for which P < .05) were found for each sample size point (the power associated with each 

sample size), and estimate via interpolation the minimum sample size at which power reaches the desired 

threshold (i.e., .8)” and they further mentioned that though the Monte Carlo simulation method is a prominent 

method for determining the minimum sample size it is a difficult way and for which both technical and 

methodological expertise with good computer programming skills is required as well as it is time-consuming 

(Kock & Hadaya, 2018). Wolf et al., (2013) also concluded that “the final lesson learned is that determining 

sample size requirements for SEM necessitates careful, deliberate evaluation of the specific model at hand”. 

Hair et al., (2014) have discussed another alternative method instead of “10 times rule” for minimum sample size 

estimation and Kock & Hadaya, (2018) referred it as the “minimum R-squared method” since it uses minimum 

R2 in the model for estimating the minimum sample size. This method particularly has been built on Cohen, 

(1988) power table for least squares regression and three elements require for determining the sample size. The 

first element of the minimum R-squared method is the maximum number of arrows pointing at a latent variable 

in a model, used significance level is the second and third is the minimum R2 in the model. Table 01 illustrates  

the reduced version of the table presented by Hair et al., (2014) and it depends on the significance level of 0.05, 

which is the most commonly used significance level and assumes that the power is set at 0.8. This method 

appears to be an improvement over the 10-times rule method, as it takes as an input at least one additional 

element beyond the network of links in the model. 

Maximum number of arrows 

pointing at a construct 

Minimum 𝑹𝟐 in the model 

0.1 0.25 0.50 0.75 

2 110 52 33 26 

3 124 59 38 30 

4 137 65 42 33 

5 147 70 45 36 

6 157 75 48 39 

7 166 80 51 41 

8 174 84 54 44 

9 181 88 67 46 

10 189 91 59 48 
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Table 01 - Reduced version of the table presented by Hair et al., (2014) for estimating minimum sample size on 

“Minimum R-Squared Method”.  

Although the 10-times rule method is a simple application for the researchers, it has been depicted that 

inaccurate estimates (Goodhue et al., 2012). A smaller sample can be used with PLS-SEM when other methods 

are failed to make the analysis. However, the nature of the population directly affects the legitimacy of such 

analysis which depends on the heterogeneity of the population (Sarstedt, Ringle, & Hair, 2017). Hence, a badly 

designed sample will be given wrong analysis by the PLS-SEM (Sarstedt et al., 2017). As mentioned by 

Marcoulides & Chin, (2013) a power analysis that includes model structure expected effect sizes and the 

significance level should be applied to determine the necessary sample size.  

Kock & Hadaya, (2018) suggest two related new methods for determining the minimum sample size in PLS-SEM 

applications which based on mathematical equations neither methods do not employ the disadvantages of the 

above mentioned Monte Carlo simulations or on elements that make up the 10 times rule or the  minimum R-

squared methods. The first method is called the “Inverse Square Root Method”, which uses the inverse square 

root of a sample’s size for standard error estimation. The second is called “Gamma -Exponential Method” which 

has been implemented the gamma and exponential smoothing function corrections for calculating the standard 

error estimation employed in the first method. 

Inverse Square Root Method:  

While the researchers are analysing the samples from the population in PLS_SEM it generates the path 

coefficients called β. Each of these path coefficients may have a standard error called S. As mentioned by Kock, 

(2015) and Weakliem, (2016) if it has been plotted the distribution of the ratio of β/S, it indicates the critical T 

ratio for a specific significance level.  Cohen, (1988), Goodhue et al., (2012) and (Kock, 2015) explained the power 

of the test and it depicts the probability that the ratio of |𝛽|/𝑆 lies in greater than the critical T ratio for a given 

specific significance level chosen. |𝛽| is the absolute value which denotes the strength of the path coefficient 

influencing the power. The significance level normally used as in the researches is 0.05 or (P < .05). Hence, the 

critical T ratio can be denoted as T.05. As well as generally in the researches, it is assumed that if the path 

coefficients are normally distributed, the power will be greater than 0.8. By using these properties Kock & 

Hadaya, (2018) have presented the equation for calculating the minimum sample size as the positive integer  

which satisfies the following formula (1) under the inverse square root method 

N  ̂>(2.486/|β|min)^2 (1) 

However, the true standard error S has been calculated using S   ̂ and according to Kock & Hadaya, (2018), it 

underestimates the corresponding true value at very small samples (i.e., 1 < 𝑁 ≤ 10), and overestimates it at 

greater sample sizes (i.e., 𝑁 > 10). Therefore, they have suggested the Gamma Exponential Method which has 

been introduced as a refinement of the inverse square root method which has explained by the following 

formula (2). 

|𝛽|min (Ne) _̂^ (((e|β|min)/√(N ̂ )))>2.486 (2) 

As with the gamma function correction equation, this equation can be solved with a computer program that 

starts with N ̂ = 1 and progressive increments its value to 2, 3, etc. until the smallest positive integer that satisfies 

the equation is obtained. 

Summary and Conclusions 

The sample size determination of the SEM analysis is one of the most fundamental and crucial problems. The 

above review of the selection of minimum sample size determination in the prior literature has provided more 

than twelve methods that have been employed by the past researchers. At the beginning of 10 subjects per 

predictor rule mentioned by Nunnally, (1967) the debate started and various rules-of-thumbs have been 

https://cirworld.com/index.php/jssr


Journal of Social Science Research Vol 15 (2020) ISSN: 2321-1091                     https://rajpub.com/index.php/jssr 

107 

introduced including ratio of indicators to latent variables by Boomsma, (1985) and Marsh et al., (1988), selecting 

sample size on various goodness of fit indices of SEM by Bearden, Sharma & Teel (1982), Bentler, (1990), Bentler 

& Bonett, (1980), Curran, West & Finch (1996), Marsh et al., (1988), and Mulaik et al., (1989), N > 100 rule by 

Kline, (2005), 100 to 150 sample size by Ding et al., (1995), 10 times of the free number of parameters by Raykov, 

(2006). Ringle et al., (2012), mentioned it should be approximately eight constructs for a smaller sample. Monte 

Carlo simulation also has been employed as a method of determining the minimum sample size of the SME 

(Kock, 2016; Paxton et al., 2001; Robert & Casella, 1999). A simple application such as “10 times the maximum 

number of inner or outer links pointing at any latent variable” used by the “10-times rule” (Hair et al., 2011) and 

it has been the method of more favourite in more researchers. Again the minimum R2 method also has been 

employed by Hair et al., (2014) it also more popular and has later been criticized in the literature. Finally, Kock 

& Hadaya, (2018) introduced the inverse square root method, and the gamma-exponential method and they 

proved those two appliances are fairly accurate than ever which the experiments has based on three Monte 

Carlo experiments.  

According to past literature greater number of methods and rules-of-thumb have been employed to solve the 

fundamental issue of the minimum sample size determination of the SEM analysis. However, each of these 

methods contained its own limitations while applying the different models and hence, it’s have been criticized 

in the literature. Basically, the foundation used to address the problem was the issue in most methods when the 

sample size determination is more critical on several factors that make influences to the final goodness -of-fit of 

the SEM analysis. Kock & Hadaya, (2018) have addressed deeper on this nature of the problem and 

demonstrated more accurate and practical solutions to the problem. The first method is simpler and more 

attractive in its nature and the second method is much more complex than the first. The researcher who is not 

methodically rich can use these two methods more simply with small computer applications on both normal 

and non-normal data. 

This paper provides more than twelve sample size determination methods and their contributions to the 

problem, lessons learned and their advantages and disadvantages in the past literature as a more nontechnical 

review. It is one of the contributions of this review. Most of the researchers who do not have the methodological 

and technical knowledge, use SEM as their analysis method face this fundamental and critical problem and this  

review provides the avenue to come up to the solution which they can find out how they should determine the 

sample size for their analysis based on SEM. 
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