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ABSTRACT

In this paper, an effective formula for the calculation of the elementary functions of a quaternion variable obtained using
the methods of differential equations. Also the elementary functions are obtained from the quaternion matrices.
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1. QUATERNION ALGEBRA
According to Hamilton, quaternion is a mathematical object which we can write in the form [1]
q=4qo+iq +jqz +kqs, @

where qq,q1, 9>, q3 are real numbers, g is called quaternion’s components, the basis element «1» is the identity element
of qq, and i,j, k are three imaginary units. Quaternion product is denoted by «o» sign; and defined by the following rules
for quaternion units multiplication given by Hamilton’s definition:

ici=joj=kok=-1,i0j=k jok=ikoi=j] @)

We may also recognize i, j, k as unit vectors ey, 6_2),6_3) of Cartesian basis, and then by analogy with complex numbers,
quaternion q € H can be represented as a formal sum of the scalar part g, and the vector part ¢:

q=qo+ q1e +q.8;+ 3835 =qo + 4, ®3)
and the multiplication rules of basis vectors (2) can be expressed in the form of scalar and vector products:
g oe = —(e ]-)+?{><E]'or
gog=—(¢"¢)+eue
where ¢; ik~ Levi-Civita symbols, and i, j, k = 1,2,3.

These relationships allow us to interpret quaternions multiplication A = A, +): M = py + [i via scalar and vector
products

Ao M = Aoug = (A @) + Aofi + oA + A X fi. @
It follows from multiplication rules for quaternion imaginary units that g multiplication is non-commutative
41 °q2 *F q2 © q1,

so, there is a concept of the left and right multiplication although g multiplication is still associative

(g1 ©92)q3 = q1(q; © q3).

Following the procedure of obtaining conjunction we introduce the operation of quaternion conjunction
q" =dqo —iq1 —jqz — kqs

and define the modulus of g - number

lql =\qoq =+a5+ai + a5 +4j.
2. ANALOGUE OF EULER’S FORMULA

We present an analogue of Euler’s formula as an example of quaternion’s operations. For this, let us consider quaternion’s
exponential function in the form:

e19 = e(@otiqitjqatkas)e ®)

where () is a variable of the quaternion’s variable.

By virtue of the fact that () is a real number, it commutes with its basis unit as well as with other imaginary units:
e(@0+iq1+iq2+kq3)e — o900 . o(iq1+jqa2+kqs) (6)
Assume that the exponential function is given in the next form:
ell01+/02tkas)e = A, () + 141 () +jA,(p) + kA3 (@).
Taking derivative in (6) with respect to ¢ we obtain the following equation:

(iqy + ja, + kqz)ei 1t 02tkasde = A (@) + iA1(9) + jA5 (@) + kA3 (@) or
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(iqy + jqz + kq3)[Ay (@) + iA; (@) + jA; (@) + kA3(9)] = Ay (@) + (A1 (@) + jA; (@) + kA3(9).

Hence it follows from quaternion’s equality that

A:O(go) = —a;4,(9) — a, A (p) — azA3(p),
A1(p) = —a; A0 (@) — az A, (@) + a, A3 (@),

, 7
A; (p) = axAo(@) + azA; (@) — a;A3(¢), )
A3 (@) = azAo(@) + a;4, () — ay A ().
Having differentiated the first equation with respect to ¢ variable we get
Ap(@) = —a;1A1(9) — aA5(9) — a3A5(9) = —a;[—a, 4o () — a3 A, (@) + a,A3(p)] — ay[a, A () + azA; () —
alA3p—a3a34A0p+aldA2p—alAlp=—alZ2—a22—a3240y, i.e.
Ag(@) + (af + a5 + af)Ay(p) = 0. ®)

We apply initial conditions for equation (8), i.e. at ¢ = 0:
Ao(p) = 1,4(p) = 0.

After differentiating second, third and forth equations in (7) with respect to ¢ variable we obtain similar equations of the
type (8) for A;(¢), A, (¢) and A;(¢) under appropriate initial conditions:

A1(9) + (af + a3 + a3)A;(p) = 0, hereat = 0, A;(p) = 0, A1 () = q;;

A3() + (af + a3 + a3)Az(p) = 0, here at ¢ = 0, A, () = 0, A, () = qa;

A3(9) + (a? + a3 + a3)A3(p) = 0, here at p = 0, A3(p) = 0, A3(p) = gs.
Solving these equations under corresponding initial conditions we have:

Ay(9) = cos+/qi +q% + q5 @,

q1

A (p) = ————=—=sin+/qi + ¢ + 450,
1 Jm 1, 2 3

a2

Ay () = —=—="==sin\/qi + q + q3 o,
2 Jm 1 2 3

A3 (p) = —E—rsin\/q? + ¢ + ¢2¢.
3 \/m 1 2 3

In turn, an analogue of Euler's formula for quaternion can be written as

e(iq1+ffI2+k‘Y3)‘P = cos qlz + q% + q% @+ L _AALLF sin Chz + CI% + CI32'(P 9)

af+a}+d3

Hence if the quaternion is used as an argument of elementary function, it can be represented as a conditional complex
number with a conditional imaginary unit:

_ iq1+jqz2+kqs i i i
q=qo+-——Va +a;+as
/q1+qZ+Q3

q = Qo t+10;, rae Q, = qo,

_iq1tjqa+kqs _ 2 ) 2
1——2 - 2aQ1 =4qi +q; tq;3.
/Q1+QZ+Q3

Here the conditioned imaginary unit has a vector meaning in which it is a unit vector directed along I= Im g vector. In
such notation the quaternion retains complex number’s properties:

q* = Q5 +Qf = qo+qf +qi +45.
> =qoq=q5— (qf +q3 +q3) +2q,(iq, +jq, + kqs) = Q — Qf + 21Q,Qy, I* = —1.

Using these properties, we can find the elementary functions of a quaternion variable. For this, we
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1) replace the quaternion with a conditional complex number ¢ = Q, + 1Q4;
2) expand an elementary function as a function of a complex variable Qy + 1Q+;
3) and after that proceed to a converse replacement @y = qo,

iq1+jq2+kqs
Jat+a3+a3
7 7 7
Q1 =+aqi +4q; +q3.

Some elementary functions of quaternion are written below for illustrative purposes.

I =

sing = sin(Qy + 1Q;) = sin Qy cosIQ; + cos Qo sinIQ; = sinQ, chQ; + I cos Qo shQ; = singy chy/q? + g% + q3 +

iq1+jqa+k
Mt o g, [T F 47 + 5,
q1+q5+q3

cosq = cos(Qy +1Q;) = cosQ,cosIQ; —sinQ,sinlQ; = cosQychQ; —IsinQ,sinQ, =

iq1tjqatkqs

cosqo chy/qf + q5 + q5 — singg shy/qf +q5 + 43.

qt+a5+q3
3. MATRIX FORM OF QUATERNION ALGEBRA
It is interesting to present quaternion multiplication in matrix form [2]. Let
A=ay+ia +ja, + kas,
B = by +ib, + jb, + kbs.

Then the product of two quaternions gives third quaternion € = A © B and the resulting quaternion components are

defined by the formula (4):
Co = agby — a;b; — ayb, — asbs,
C, = a;by + agby — azb, + a,bs,
C, = ayby + a,b; + ayb, — a, b3,

C3 = a3b0 - a2b1 + albz + aobg.

Next we assign four-dimensional ﬁ = (ay,ay,a,,a3)T vector to A quaternion and
V, = (bg, by, by, b3)" vector to B quaternion, respectively.
Then C quaternion can be associated with its own four-dimensional vector defined by as follows:
Vc)'_—m: G1(4) 'VB): G,(B) '_V:-
Matrix G; (A) and matrix G, (B) in the expression (10) equal to
a() _a1 _az _a3 bo _b1 _bz _b3
_ a; ay —dasz a, _ b1 bO b3 _bz
Gi(4) = @, a a -o|® (B) = b, —bs3 by by |
a3 _az al aO b3 bz _bl bO
For an arbitrary quaternion Q matrices G, (A) and G, (B) can be represented as
_AT _aT
ao=(* 1) a@=(% 1 )
(@ qd qoEs+K(q) 2@ qd qoEs—K(q)
where Ej; is 3-by-3 unity matrix,
0 -g35 1
K@=\ a3 0 —q1)
—q; 41 0
Some properties of K (d@) matrix:
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K@) -7=dx*,
K@-a=dxa=0,
K'(@) = —K(d),
K(@K()=bxd—d"b-Es.

Some properties of G; and G, matrices:

G (A7) = G, (A), Gn(A+B)=G,(A)+G6,(B), m=12;
G (Ao B) =G,(A)G,(B), G2(A°B) = G,(B)G,(4),
G (A)G2(B) = G,(B)G, (A), det G, (4) = [lAll*, m=1,2.

Lemma. For any A # 0 quaternion the following equations are valid: G;(4™1) = G{ 1 (4), G,(A™") = G5 (4).
Using G; and G, matrices we can easily replace equations written in quaternions to equations in matrices. In particular, for
A = B o C o D quaternion the matrix form will be as follows:
A=G(B):G,(D)-C,
where C = (cg, €1, €2, c3)T is a four-dimensional vector related to C quaternion.

4. MATRIX EXPONENTIAL

We apply spectral decomposition of matrix function so that to find matrix exponential.

There is an isomorphism between quaternions q = q, + iq; + jq, + kq3 and special form 4-by-4 matrix in terms of
guaternion and matrix operations.

Qo —%1 —492 —q3

@1 90 93 92

q; g3 Q ~f
43 —q2 41 9o

Q:

Let find characteristic polynomial of Q quaternion matrix

det(Q — 2E) = [(qo — M)? + qf + g5 + 431°.
Then the complex values 1 = qo +iy/q7 + g5 +q3, 1 = qo — i\/q? + q5 + g% are the eigenvalues of the quaternion
q=4qo+iq +jq; +kqs.

The minimal polynomial of Q quaternion matrix is given by

(=1)" det (Q—-1E)
o) = S LD

Dp-1@) '
where D,,_; (1) is (Q — AE) characteristic matrix's the greatest common divisor of subdeterminant of order (n — 1).
Inourcasen = 4, D,_; = (qo —A)? + q? + ¢% + q5. Then
o) = (qo—MD*+qf +q5+q5 =A—qo—i{g) - (A —qo + iq)),
where (q) = \/m
Or
o) = [A—=(qo + ilg — qoD] - [A = (qo — ilg — qo D],
where (q) = |q — qq|. Here i? = —1.
Then the basic formula for f(Q) is as follows:
f@Q) =fAz11 + f(A2)zy1,

where z;1, z,; Q matrix components, and

A = qo +ilqg —qol,
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Az = qo —ilg — qol.

Substituting A — 4,4, 4 — A, consistently in place of f(4) we obtain

—2ilg = qolzo; = Q — L4E,

2ilq — qolz1y = Q — A;E,
where E is a unity matrix.
Hence

2ilg = qolf(Q) = (@ = 1E)f(A1) — (Q — LLE)f (4y). (11)

Let us consider some applications of this formula.

1 1

7 numbers are formula’s value on Q matrix spectrum. Therefore, thus function is defined on Q matrix
1 2

If f(1) = % then
spectrum.

For this reason the basic formula (11) can be used to find Q! inverse matrix.

Substituting the values of f(4;) = % . %2, f(1) = ai = %1 into the basic formula f(Q) we have Q71 = %(—Q +2qE).
1 2

Here
A= qf +qf +ai + 5.
Validity of the obtained formula can be verified by direct calculation.

Now we find the exponent of quaternion matrix. For this, consider f(1) = e’ function, which is also defined Q matrix
spectrum

— ,qo |sinla—qol _ | _ 4osinlg—qol
exp(Q) =e |q__qO|Q+(COSIq ol == E)]

By proceeding this process we can get entire spectrum of elementary matrix of @ quaternion matrix.
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