
ISSN 2321-1091                                                           

1265 | P a g e                                                          A p r i l  1 3 ,  2 0 1 5  

ELEMENTARY FUNCTIONS OF A QUATERNION VARIABLE AND SOME 
APPLICATIONS 

Bimurat Sagindykov, Nassibeli Jumagulova 
Candidate (PhD) of Physical and Mathematical sciences, KazNTU, Almaty, Kazakhstan 

bimurat55@gmail.com 
Senior Lecturer, KazNTU, Almaty, Kazakhstan 

nassibeli@mail.ru 
ABSTRACT 

In this paper, an effective formula for the calculation of the elementary functions of a quaternion variable obtained using 

the methods of differential equations. Also the elementary functions are obtained from the quaternion matrices. 

Indexing terms/Keywords 

Quaternion algebra, an analogue of the Euler formula, matrix exponential. 

Academic Discipline And Sub-Disciplines 

Mathematics 

SUBJECT  CLASSIFICATION 

Mathematics Subject Classification 

TYPE (METHOD/APPROACH) 

Mathematical logic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Council for Innovative Research 

Peer Review Research Publishing System 

Journal: Journal of Social Sciences Research 
Vol .7, No.2 

jssreditor.cir@gmail.com 

www.jssronline.com 

 

http://member.cirworld.com/


ISSN 2321-1091                                                           

1266 | P a g e                                                          A p r i l  1 3 ,  2 0 1 5  

1. QUATERNION ALGEBRA 

According to Hamilton, quaternion is a mathematical object which we can write in the form [1]  

𝑞 ≡ 𝑞0 + 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3,                                                                      (1) 

where 𝑞0 ,𝑞1 , 𝑞2 , 𝑞3 are real numbers, 𝑞 is called quaternion’s components, the basis element «1» is the identity element 

of 𝑞0, and i, j, k are three imaginary units. Quaternion product is denoted by «○» sign; and defined by the following rules 

for quaternion units multiplication given by Hamilton’s definition:  

𝑖 ○ 𝑖 = 𝑗 ○ 𝑗 = 𝑘 ○ 𝑘 = −1, 𝑖 ○ 𝑗 = 𝑘, 𝑗 ○ 𝑘 = 𝑖, 𝑘 ○ 𝑖 = 𝑗.                                       (2) 

We may also recognize 𝑖, 𝑗, 𝑘 as unit vectors 𝑒1    , 𝑒2    ,𝑒3     of Cartesian basis, and then by analogy with complex numbers, 

quaternion 𝑞 ∈ 𝐻 can be represented as a formal sum of the scalar part 𝑞0 and the vector part 𝑞 : 

𝑞 = 𝑞0 + 𝑞1𝑒1    + 𝑞2𝑒2    + 𝑞3𝑒3    = 𝑞0 + 𝑞 ,                                                          (3) 

and the multiplication rules of basis vectors (2) can be expressed in the form of scalar and vector products:   

𝑒𝑖   ○ 𝑒𝑗   = − 𝑒𝑖   ∙ 𝑒𝑗    + 𝑒𝑖   × 𝑒𝑗    or 

𝑒𝑖   ○ 𝑒𝑗   = − 𝑒𝑖   ∙ 𝑒𝑗    + 𝜀𝑖𝑗𝑘 𝑒𝑘    , 

where 𝜀𝑖𝑗𝑘  – Levi-Civita symbols, and 𝑖, 𝑗, 𝑘 = 1,2,3. 

These relationships allow us to interpret quaternions multiplication 𝛬 = 𝜆0 + 𝜆 , 𝛭 = 𝜇0 + 𝜇  via scalar and vector 

products 

 𝛬 ○ 𝛭 = 𝜆0𝜇0 −  𝜆 ∙ 𝜇  + 𝜆0𝜇 + 𝜇0𝜆 + 𝜆 × 𝜇 .                                                   (4) 

It follows from multiplication rules for quaternion imaginary units that 𝑞 multiplication is non-commutative 

𝑞1 ○ 𝑞2 ≠ 𝑞2 ○ 𝑞1, 

so, there is a concept of the left and right multiplication although 𝑞 multiplication is still associative   

 𝑞1 ○ 𝑞2 𝑞3 = 𝑞1 𝑞2 ○ 𝑞3 . 

Following the procedure of obtaining conjunction we introduce the operation of quaternion conjunction 

𝑞∗ ≡ 𝑞0 − 𝑖𝑞1 − 𝑗𝑞2 − 𝑘𝑞3 

and define the modulus of 𝑞 - number  

 𝑞 =  𝑞 ○ 𝑞∗ =  𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2. 

2. ANALOGUE OF EULER’S FORMULA 

We present an analogue of Euler’s formula as an example of quaternion’s operations. For this, let us consider quaternion’s 

exponential function in the form: 

𝑒𝑞𝜑 = 𝑒 𝑞0+𝑖𝑞1+𝑗 𝑞2+𝑘𝑞3 𝜑
,                                                               (5)  

where 𝜑 is a variable of the quaternion’s variable.  

By virtue of the fact that 𝑞0  is a real number, it commutes with its basis unit as well as with other imaginary units: 

𝑒 𝑞0+𝑖𝑞1+𝑗 𝑞2+𝑘𝑞3 𝜑 = 𝑒𝑞0𝜑 ∙ 𝑒 𝑖𝑞1+𝑗 𝑞2+𝑘𝑞3 .                                                      (6) 

Assume that the exponential function is given in the next form:  

𝑒 𝑖𝑞1+𝑗𝑞2+𝑘𝑞3 𝜑 = 𝐴0 𝜑 + 𝑖𝐴1 𝜑 + 𝑗𝐴2 𝜑 + 𝑘𝐴3 𝜑 . 

Taking derivative in (6) with respect to 𝜑 we obtain the following equation: 

 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3 𝑒
 𝑖𝑞1+𝑗𝑞2+𝑘𝑞3 𝜑 = 𝐴0

′  𝜑 + 𝑖𝐴1
′  𝜑 + 𝑗𝐴2

′  𝜑 + 𝑘𝐴3
′  𝜑  or 
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 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3  𝐴0 𝜑 + 𝑖𝐴1 𝜑 + 𝑗𝐴2 𝜑 + 𝑘𝐴3 𝜑  = 𝐴0
′  𝜑 + 𝑖𝐴1

′  𝜑 + 𝑗𝐴2
′  𝜑 + 𝑘𝐴3

′  𝜑 . 

Hence it follows from quaternion’s equality that  

𝐴0
′  𝜑 = −𝑎1𝐴1 𝜑 − 𝑎2𝐴2 𝜑 − 𝑎3𝐴3 𝜑 ,

𝐴1
′  𝜑 = −𝑎1𝐴0 𝜑 − 𝑎3𝐴2 𝜑 + 𝑎2𝐴3 𝜑 ,

𝐴2
′  𝜑 = 𝑎2𝐴0 𝜑 + 𝑎3𝐴1 𝜑 − 𝑎1𝐴3 𝜑 ,

𝐴3
′  𝜑 = 𝑎3𝐴0 𝜑 + 𝑎1𝐴2 𝜑 − 𝑎2𝐴1 𝜑 .

                                                       (7) 

Having differentiated the first equation with respect to 𝜑 variable we get 

𝐴0
"  𝜑 = −𝑎1𝐴1

′  𝜑 − 𝑎2𝐴2
′  𝜑 − 𝑎3𝐴3

′  𝜑 = −𝑎1 −𝑎1𝐴0 𝜑 − 𝑎3𝐴2 𝜑 + 𝑎2𝐴3 𝜑  − 𝑎2 𝑎2𝐴0 𝜑 + 𝑎3𝐴1 𝜑 −

𝑎1𝐴3𝜑−𝑎3𝑎3𝐴0𝜑+𝑎1𝐴2𝜑−𝑎2𝐴1𝜑=−𝑎12−𝑎22−𝑎32𝐴0𝜑, i.e. 

𝐴0
"  𝜑 +  𝑎1

2 + 𝑎2
2 + 𝑎3

2 𝐴0 𝜑 = 0.                                                              (8) 

We apply initial conditions for equation (8), i.e. at 𝜑 = 0: 

𝐴0 𝜑 = 1, 𝛢0
′  𝜑 = 0. 

After differentiating second, third and forth equations in (7) with respect to 𝜑 variable we obtain similar equations of the 

type (8) for 𝐴1 𝜑 , 𝐴2 𝜑  and 𝛢3 𝜑  under appropriate initial conditions: 

𝐴1
"  𝜑 +  𝑎1

2 + 𝑎2
2 + 𝑎3

2 𝐴1 𝜑 = 0, here at 𝜑 = 0, 𝐴1 𝜑 = 0, 𝛢1
′  𝜑 = 𝑞1; 

𝐴2
"  𝜑 +  𝑎1

2 + 𝑎2
2 + 𝑎3

2 𝐴2 𝜑 = 0, here at 𝜑 = 0, 𝐴2 𝜑 = 0, 𝛢2
′  𝜑 = 𝑞2; 

𝐴3
"  𝜑 +  𝑎1

2 + 𝑎2
2 + 𝑎3

2 𝐴3 𝜑 = 0, here at 𝜑 = 0, 𝐴3 𝜑 = 0, 𝛢3
′  𝜑 = 𝑞3. 

Solving these equations under corresponding initial conditions we have: 

𝐴0 𝜑 = cos 𝑞1
2 + 𝑞2

2 + 𝑞3
2 𝜑, 

 𝐴1 𝜑 =
𝑞1

 𝑞1
2 +𝑞2

2+𝑞3
2

sin  𝑞1
2 + 𝑞2

2 + 𝑞3
2𝜑, 

 𝛢2 𝜑 =
𝑞2

 𝑞1
2 +𝑞2

2+𝑞3
2

sin  𝑞1
2 + 𝑞2

2 + 𝑞3
2𝜑, 

𝛢3 𝜑 =
𝑞3

 𝑞1
2+𝑞2

2+𝑞3
2

sin 𝑞1
2 + 𝑞2

2 + 𝑞3
2𝜑. 

In turn, an analogue of Euler's formula for quaternion can be written as 

𝑒 𝑖𝑞1+𝑗𝑞2+𝑘𝑞3 𝜑 = cos 𝑞1
2 + 𝑞2

2 + 𝑞3
2 𝜑 +

𝑖𝑞1+𝑗𝑞2+𝑘𝑞3

 𝑞1
2 +𝑞2

2+𝑞3
2

sin  𝑞1
2 + 𝑞2

2 + 𝑞3
2𝜑.                              (9) 

Hence if the quaternion is used as an argument of elementary function, it can be represented as a conditional complex 

number with a conditional imaginary unit: 

𝑞 = 𝑞0 +
𝑖𝑞1+𝑗 𝑞2+𝑘𝑞3

 𝑞1
2+𝑞2

2+𝑞3
2

 𝑞1
2 + 𝑞2

2 + 𝑞3
2, 

𝑞 = 𝑄0 + 𝐼𝑄1, где 𝑄0 = 𝑞0, 

𝐼 =
𝑖𝑞1+𝑗 𝑞2+𝑘𝑞3

 𝑞1
2+𝑞2

2 +𝑞3
2

, 𝑄1 =  𝑞1
2 + 𝑞2

2 + 𝑞3
2. 

Here the conditioned imaginary unit has a vector meaning in which it is a unit vector directed along 𝐼 = Im𝑞 vector. In 

such notation the quaternion retains complex number’s properties: 

𝑞2 = 𝑄0
2 + 𝑄1

2 = 𝑞0 + 𝑞1
2 + 𝑞2

2 + 𝑞3
2. 

𝑞2 = 𝑞 ○ 𝑞 = 𝑞0
2 −  𝑞1

2 + 𝑞2
2 + 𝑞3

2 + 2𝑞0 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3 = 𝑄0
2 − 𝑄1

2 + 2𝐼𝑄0𝑄1, 𝐼2 = −1. 

Using these properties, we can find the elementary functions of a quaternion variable. For this, we 
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1) replace the quaternion with a conditional complex number 𝑞 ⟹ 𝑄0 + 𝐼𝑄1; 

2) expand an elementary function as a function of a complex variable 𝑄0 + 𝐼𝑄1; 

3) and after that proceed to a converse replacement 𝑄0 ⟹ 𝑞0, 

𝐼 ⟹
𝑖𝑞1+𝑗 𝑞2+𝑘𝑞3

 𝑞1
2+𝑞2

2 +𝑞3
2

, 

𝑄1 ⟹  𝑞1
2 + 𝑞2

2 + 𝑞3
2. 

Some elementary functions of quaternion are written below for illustrative purposes.  

sin 𝑞 = sin 𝑄0 + 𝐼𝑄1 = sin 𝑄0 cos 𝐼𝑄1 + cos 𝑄0 sin 𝐼𝑄1 = sin𝑄0 ch𝑄1 + 𝐼 cos 𝑄0 sh 𝑄1 = sin𝑞0 ch 𝑞1
2 + 𝑞2

2 + 𝑞3
2 +

𝑖𝑞1+𝑗𝑞2+𝑘𝑞3

 𝑞1
2 +𝑞2

2+𝑞3
2

cos𝑞0 sh 𝑞1
2 + 𝑞2

2 + 𝑞3
2, 

cos𝑞 = cos 𝑄0 + 𝐼𝑄1 = cos 𝑄0 cos 𝐼𝑄1 − sin𝑄0 sin 𝐼𝑄1 = cos 𝑄0 ch𝑄1 − 𝐼 sin𝑄0 sin𝑄1 =

cos𝑞0 ch 𝑞1
2 + 𝑞2

2 + 𝑞3
2 −

𝑖𝑞1+𝑗 𝑞2+𝑘𝑞3

 𝑞1
2+𝑞2

2 +𝑞3
2

sin𝑞0 sh 𝑞1
2 + 𝑞2

2 + 𝑞3
2. 

3. MATRIX FORM OF QUATERNION ALGEBRA  

It is interesting to present quaternion multiplication in matrix form [2]. Let 

𝐴 = 𝑎0 + 𝑖𝑎1 + 𝑗𝑎2 + 𝑘𝑎3, 

𝐵 = 𝑏0 + 𝑖𝑏1 + 𝑗𝑏2 + 𝑘𝑏3. 

Then the product of two quaternions gives third quaternion 𝐶 = 𝐴 ○ 𝐵 and the resulting quaternion components are 

defined by the formula (4): 

𝐶0 = 𝑎0𝑏0 − 𝑎1𝑏1 − 𝑎2𝑏2 − 𝑎3𝑏3, 

𝐶1 = 𝑎1𝑏0 + 𝑎0𝑏1 − 𝑎3𝑏2 + 𝑎2𝑏3, 

𝐶2 = 𝑎2𝑏0 + 𝑎2𝑏1 + 𝑎0𝑏2 − 𝑎1𝑏3, 

𝐶3 = 𝑎3𝑏0 − 𝑎2𝑏1 + 𝑎1𝑏2 + 𝑎0𝑏3. 

Next we assign four-dimensional 𝑉𝐴
     =  𝑎0 , 𝑎1 , 𝑎2 , 𝑎3 

T vector to 𝐴 quaternion and four-dimensional 

𝑉𝐵
     =  𝑏0 , 𝑏1, 𝑏2 ,𝑏3 

T vector to 𝐵 quaternion, respectively. 

Then 𝐶 quaternion can be associated with its own four-dimensional vector defined by as follows: 

𝑉𝐶
     = 𝑉𝐴○𝐵

         = 𝐺1 𝐴 ∙ 𝑉𝐵
     = 𝐺2 𝐵 ∙ 𝑉𝐴

     .                                                            (10) 

Matrix 𝐺1 𝐴  and matrix 𝐺2 𝐵  in the expression (10) equal to 

𝐺1 𝐴 =  

𝑎0 −𝑎1 −𝑎2 −𝑎3

𝑎1 𝑎0 −𝑎3 𝑎2

𝑎2 𝑎3 𝑎0 −𝑎1

𝑎3 −𝑎2 𝑎1 𝑎0

 , 𝐺2 𝐵 =  

𝑏0 −𝑏1 −𝑏2 −𝑏3

𝑏1 𝑏0 𝑏3 −𝑏2

𝑏2 −𝑏3 𝑏0 𝑏1

𝑏3 𝑏2 −𝑏1 𝑏0

 . 

For an arbitrary quaternion 𝑄 matrices 𝐺1 𝐴  and 𝐺2 𝐵  can be represented as    

𝐺1 𝑄 =  
𝑞0 −𝑞 T

𝑞 𝑞0𝐸3 + 𝐾 𝑞  
 ,   𝐺2 𝑄 =  

𝑞0 −𝑞 T

𝑞 𝑞0𝐸3 − 𝐾 𝑞  
  

where 𝐸3 is 3-by-3 unity matrix,   

𝐾 𝑞  =  
0 −𝑞3 𝑞2

𝑞3 0 −𝑞1

−𝑞2 𝑞1 0
 . 

Some properties of 𝐾 𝑎   matrix: 
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𝐾 𝑎  ∙ 𝑟 = 𝑎 × 𝑟 ,     

 𝐾 𝑎  ∙ 𝑎 = 𝑎 × 𝑎 = 0, 

𝐾T 𝑎  = −𝐾 𝑎  ,      

 𝐾 𝑎  𝐾 𝑏   = 𝑏  × 𝑎 − 𝑎 T ∙ 𝑏  ∙ 𝐸3. 

Some properties of 𝐺1  and 𝐺2  matrices: 

𝐺𝑚  𝐴∗ = 𝐺𝑚
T  𝐴 , 𝐺𝑚  𝐴 + 𝐵 = 𝐺𝑚  𝐴 + 𝐺𝑚  𝐵 , 𝑚 = 1, 2;

𝐺1 𝐴 ○ 𝐵 = 𝐺1 𝐴 𝐺2 𝐵 , 𝐺2 𝐴 ○ 𝐵 = 𝐺2 𝐵 𝐺1 𝐴 ,

𝐺1 𝐴 𝐺2 𝐵 = 𝐺2 𝐵 𝐺1 𝐴 , det 𝐺𝑚  𝐴 =  𝐴 4 , 𝑚 = 1, 2.

 

Lemma. For any 𝐴 ≠ 0 quaternion the following equations are valid: 𝐺1 𝐴
−1 = 𝐺1

−1 𝐴 , 𝐺2 𝐴
−1 = 𝐺2

−1 𝐴 .  

Using 𝐺1  and 𝐺2  matrices we can easily replace equations written in quaternions to equations in matrices. In particular, for 

𝐴 = 𝐵 ○ 𝐶 ○ 𝐷 quaternion the matrix form will be as follows: 

𝐴 = 𝐺1 𝐵 ∙ 𝐺2 𝐷 ∙ 𝐶 , 

where 𝐶 =  𝑐0 , 𝑐1 , 𝑐2 , 𝑐3 
T  is a four-dimensional vector related to 𝐶 quaternion.  

4. MATRIX EXPONENTIAL 

We apply spectral decomposition of matrix function so that to find matrix exponential. 

There is an isomorphism between quaternions 𝑞 = 𝑞0 + 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3 and special form 4-by-4 matrix in terms of 

quaternion and matrix operations. 

𝑄 =  

𝑞0 −𝑞1 −𝑞2 −𝑞3

𝑞1 𝑞0 −𝑞3 𝑞2

𝑞2 𝑞3 𝑞0 −𝑞1

𝑞3 −𝑞2 𝑞1 𝑞0

 . 

Let find characteristic polynomial of 𝑄 quaternion matrix  

det 𝑄 − 𝜆𝐸 =   𝑞0 − 𝜆 2 + 𝑞1
2 + 𝑞2

2 + 𝑞3
2 2. 

Then the complex values 𝜆 = 𝑞0 + 𝑖 𝑞1
2 + 𝑞2

2 + 𝑞3
2, 𝜆 = 𝑞0 − 𝑖 𝑞1

2 + 𝑞2
2 + 𝑞3

2 are the eigenvalues of the quaternion 

𝑞 = 𝑞0 + 𝑖𝑞1 + 𝑗𝑞2 + 𝑘𝑞3.  

The minimal polynomial of Q quaternion matrix is given by  

𝜇𝑄 𝜆 =
 −1 𝑛 det  𝑄−𝜆𝐸 

𝐷𝑛−1 𝜆 
, 

where 𝐷𝑛−1 𝜆  is  𝑄 − 𝜆𝐸  characteristic matrix’s the greatest common divisor of subdeterminant of order   𝑛 − 1 . 

In our case 𝑛 = 4, 𝐷𝑛−1 =  𝑞0 − 𝜆 2 + 𝑞1
2 + 𝑞2

2 + 𝑞3
2. Then 

𝜇𝑄 𝜆 =  𝑞0 − 𝜆 2 + 𝑞1
2 + 𝑞2

2 + 𝑞3
2 =  𝜆 − 𝑞0 − 𝑖 𝑞  ∙  𝜆 − 𝑞0 + 𝑖 𝑞  , 

where  𝑞 =  𝑞1
2 + 𝑞2

2 + 𝑞3
2. 

Or  

𝜇𝑄 𝜆 =  𝜆 −  𝑞0 + 𝑖 𝑞 − 𝑞0   ∙  𝜆 −  𝑞0 − 𝑖 𝑞 − 𝑞0   , 

where  𝑞 =  𝑞 − 𝑞0 . Here 𝑖2 = −1. 

Then the basic formula for 𝑓 𝑄  is as follows: 

𝑓 𝑄 = 𝑓 𝜆1 𝑧11 + 𝑓 𝜆2 𝑧21, 

where 𝑧11 , 𝑧21  𝑄 matrix components, and  

𝜆1 = 𝑞0 + 𝑖 𝑞 − 𝑞0 , 
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𝜆2 = 𝑞0 − 𝑖 𝑞 − 𝑞0 . 

Substituting 𝜆 − 𝜆1, 𝜆 − 𝜆2 consistently in place of 𝑓 𝜆  we obtain  

−2𝑖 𝑞 − 𝑞0 𝑧21 = 𝑄 − 𝜆1𝐸, 

2𝑖 𝑞 − 𝑞0 𝑧11 = 𝑄 − 𝜆2𝐸, 

where E is a unity matrix. 

Hence 

2𝑖 𝑞 − 𝑞0 𝑓 𝑄 =  𝑄 − 𝜆2𝐸 𝑓 𝜆1 −  𝑄 − 𝜆1𝐸 𝑓 𝜆2 .                                             (11) 

Let us consider some applications of this formula. 

If 𝑓 𝜆 =
1

𝜆
, then 

1

𝜆1
, 

1

𝜆2
 numbers are formula’s value on 𝑄 matrix spectrum. Therefore, thus function is defined on 𝑄 matrix 

spectrum.   

For this reason the basic formula (11) can be used to find 𝑄−1 inverse matrix. 

Substituting the values of 𝑓 𝜆1 =
1

𝜆1
=

𝜆2

∆
, 𝑓 𝜆2 =

1

𝜆2
=

𝜆1

∆
 into the basic formula  𝑓 𝑄  we have 𝑄−1 =

1

∆
 −𝑄 + 2𝑞0𝐸 . 

Here  

∆= 𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2. 

Validity of the obtained formula can be verified by direct calculation. 

Now we find the exponent of quaternion matrix. For this, consider 𝑓 𝜆 = 𝑒𝜆  function, which is also defined 𝑄 matrix 

spectrum 

exp 𝑄 = 𝑒𝑞0  
sin  𝑞−𝑞0 

 𝑞−𝑞0 
𝑄 +  cos 𝑞 − 𝑞0 −

𝑞0 sin  𝑞−𝑞0 

 𝑞−𝑞0 
𝐸  . 

By proceeding this process we can get entire spectrum of elementary matrix of  𝑄 quaternion matrix.  
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