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ABSTRACT 

XML Parallel parsing based upon multicore is a very efficient technique. It will also increase the performance 
of the system while xml parsing .The idea is to increase the number of threads based upon the CPU cores. By 
doing this  the throughput & the performance of  the CPU is increased as making the use of multiple threads 
on every CPU core. Hence it improves the overall CPU Utilaization & Speed-Up the Data read/write 
operations. 
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INTRODUCTION  

Introduction to XML 

XML stands for Extensible Markup Language. It is markup languages much like HTML and designed to carry data, not to 
display data.XML tags are not predefined. You must define your own tags. It is designed to be self-descriptive. By 
definition, an XML document is a string of characters. Almost every legal Unicode character may appear in an XML 
document. XML, a formal recommendation from the World Wide Web Consortium (W3C) is similar to the language of 
today's Web pages, the Hypertext Markup Language (HTML). Both XML and HTML contain markup symbols to describe 
the contents of a page or file. HTML, however, describes the content of a Web page (mainly text and graphic images) only 
in terms of how it is to be displayed and interacted with. For example, the letter "p" placed within markup tags starts a new 
paragraph. XML describes the content in terms of what data is being described. This means that an XML file can be 
processed purely as data by a program or it can be stored with similar data on another computer or like an HTML file that 
it can be displayed. For example, depending on how the application in the receiving computer wanted to handle the phone 
number, it could be stored, displayed or dialed. XML is "extensible" because unlike HTML the markup symbols are 
unlimited and self-defining. Early application is Chart Ware which uses XML as a way to describe medical charts so that 
they can be shared by doctors. Applications related to banking, e-commerce ordering, personal preference profiles, 
purchase orders, litigation documents, part lists and many others are anticipated. 

 

Processor and Application 

The processor analyzes the markup and passes structured information to an application. The specification places 
requirements on what an XML processor must do and not do, but the application is outside its scope. The processor (as 
the specification calls it) is often referred to colloquially as an XML parser. 

 

Markup and content 

The characters making up an XML document are divided into markup and content, which may be distinguished by the 
application of simple syntactic rules. Generally, strings that constitute markup either begin with the character < and end 
with a >, or they begin with the character & and end with a;.  

Strings of characters that are not markup are content. However, in a CDATA section, the delimiters <![CDATA[ and ]]> are 
classified as markup, while the text between them is classified as content. In addition, the whitespace before and after the 
outermost element is classified as markup. 

 

Tag 

A markup construct that begins with < and ends with >. Tags come in three flavors: 

 start-tags; for example: <section> 

 end-tags; for example: </section> 

 empty-element tags; for example: <line-break /> 

 

Element 

A logical document component which either begins with a start-tag and ends with a matching end-tag or consists only of 
an empty-element tag. The characters between the start- and end-tags, if any, are the element's content and may contain 
markup, including other elements, which are called child elements. An example of an element is <Greeting> Hello World. 

</Greeting>. In this example “Hello World” is the content of “Greeting” tag. 

 

Attribute 

A markup construct consisting of a name/value pair that exists within a start-tag or empty-element tag. In the example 
(below) the element img has two attributes, src and alt: 

<img src="madonna.jpg" alt='Foligno Madonna, by Raphael' /> 

 

Another example would be 

<step number="3">Connect A to B.</step> 

where the name of the attribute is "number" and the value is "3". 

http://en.wikipedia.org/wiki/Unicode
http://searchsoa.techtarget.com/definition/W3C
http://searchsoa.techtarget.com/definition/HTML
http://searchsoa.techtarget.com/definition/markup
http://en.wikipedia.org/wiki/CDATA
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An XML attribute can only have a single value and each attribute can appear at most once on each element. In the 
common situation where a list of multiple values is desired, this must be done by encoding the list into a well-formed XML 
attribute with some format beyond what XML defines itself. Usually this is either a comma or semi-colon delimited list or, if 
the individual values are known not to contain spaces, a space-delimited list can be used. 

 

 

Fig 1: Syntax of XML Code  

XML Parsing 

Parsing means "reading" the XML file/string and getting its content according to the structure usually to use them in a 
program. An XML parser is the piece of software that reads XML files and makes the information from those files available 
to applications and programming languages, usually through a known interface like the DOM. 

For example if you have this XML fragment: 

 

<root> 

    <node1>value1</node1> 

    <node2>value2</node2> 

</root> 

You may want to use these values in a data structure: 

Class Root 

    node1: string 

    node2: string 

so that, in the end: 

Object obj = ClassRoot.new 

parse(xml, obj) 

puts(obj) 

Yields would be something like: 

obj[node1='value1'; node2='value2'] 

 

There are various ways of XML parsing. The most generic ways is to traverse the root tag and child nodes/tags 
underneath and store the data in some data structure with proper hierarchy of the input XML documents. There are 
number of ways to improve XML parsing performance. One approach would be to use job pool for XML segments. In this 
approach, XML can be split 1nto a number of segments at the second level of XML hierarchy. To execute each segment, 
the threads would be created based upon the system’s processor to use the CPU efficiently, parse XML effectively without 
any data lose and without decreasing any system performance. 
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Types of XML parser  

 

1. Whole document parsers: These read in a whole XML document in one go and provide the software which 

uses it a way to traverse the XML "tree" to examine the content. The DOM language-independent model is often 
used by "whole document" parsers, but other models do exist and there are several APIs for accessing such a 
model, even only considering Java. It’s worth noting that just because a parser reads a whole XML document in 
one go, doesn't mean that it necessarily provides all possible tree-traversal options. For example, I often use an 
XML micro-parser (less than 10K of Java class files) to read application configurations and present the same 
interface as if they had come from a standard Java "properties" file. 

 

2. Sequential parsers: These are typified by the SAX API, but there are many others available. To use a parser of 

this type, you initialize it and then add "callbacks" for some or all of the possible XML tags and content 
data."Sequential" parsers are especially useful if your application only needs to extract specific, information from 
a potentially large XML document. Unlike "whole document" parsers, a "sequential" parser never has to hold the 
whole document in memory, just the bits it’s interested in. 

 

 

3. Query Based: This is the modern and fasted technique of parsing. This feature is provided by .Net frame work is 

known as LINQ.   LINQ to XML was developed with Language-Integrated Query over XML in mind from the 
beginning. It takes advantage of standard query operators and adds query extensions specific to XML. From an 
XML perspective, LINQ to XML provides the query and transformation power of XQuery and XPath integrated 
into .NET Framework languages that implement the LINQ pattern (for example, C#, Visual Basic and so on.). 
This provides a consistent query experience across LINQ enabled APIs and allows you to combine XML queries 
and transforms with queries from other data sources.  

 

RELATED WORK 

 

Yinfei Pan et. al [1] proposed that a number of techniques to improve the parsing performance of XML has been 

developed. Generally however these techniques have limited impact on the construction of a DOM tree which can be a 

significant bottleneck. Meanwhile the trend in hardware technology is toward an increasing number of cores per CPU. As 

shown in the previous work these cores can be used to parse XML in parallel resulting in significant speedups. They 

introduced a new static partitioning and load-balancing mechanism. By using a static, global approach they reduced 

synchronization and load-balancing overhead. Thus improving performance over dynamic schemes for a large class of 

XML documents. Their proposed work approached leverages libxml2 without modification which reduces development 

effort and shows that their approach is applicable to real-world, production parsers. 

 

Zacharia Fadika et. Al [2] described an about the use of XML as the data format for many distributed scientific 

applications, with the size of these documents ranging from tens of megabytes to hundreds of megabytes. Their earlier 

benchmarking results revealed that most of the widely available XML processing toolkits do not scale well for large sized 

XML data. A significant transformation is necessary in the design of XML processing for scientific applications so that the 

overall application turn-around time is not negatively affected. They presented both a parallel and distributed approach to 

analyze how the scalability and performance requirements of large-scale XML-based data processing can be achieved. 

They adapted the Hadoop implementation to determine the threshold data sizes and computation work required per node, 

for a distributed solution to be effective. They also presented an analysis of parallelism using our PIXIMAL toolkit for 

processing large-scale XML datasets that utilizes the capabilities for parallelism that are available in the emerging multi-

core architectures. Multi-core processors are expected to be widely available in research clusters and scientific desktops 

and it is critical to harness the opportunities for parallelism in the middleware instead of passing on the task to application 

programmers. Their parallelization approach for a multi-core node is to employ a DFA-based parser that recognizes a 

useful subset of the XML specification and convert the DFA into an NFA that can be applied to an arbitrary subset of the 

input. Speculative NFAs are scheduled on available cores in a node to effectively utilize the processing capabilities and 

achieve overall performance gains. They evaluate the efficacy of this approach in terms of potential speedup that can be 

achieved for representative XML data sets. 

 

Wei Lu et. Al [3] described a language for semi-structured documents XML has emerged as the core of the web services 

architecture and is playing crucial roles in messaging systems, databases and document processing. However the 

processing of XML documents has a reputation for poor performance and a number of optimizations have been developed 
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to address this performance problem from different perspectives none of which have been entirely satisfactory. In this 

paper they presented a seemingly quixotic but novel approach: parallel XML parsing. Parallel XML parsing leverages the 

growing prevalence of multicore architectures in all sectors of the computer market and yields significant performance 

improvements. This paper presented the design and implementation of parallel XML parsing. Their design consists of an 

initial preparsing phase to determine the structure of the XML document followed by a full parallel parse. The results of the 

preparsing phase are used to help partition the XML document for data parallel processing. The parallel parsing phase is a 

modification of the libxml2. XML parser shows that their approach applies to real-world, production quality parsers. Their 

empirical study shows the parallel XML parsing algorithm can improved the XML parsing performance significantly and 

scales well. 

 

V.M. Deshmukh and G.R. Bamnote [4] described that extensible markup language XML has become the de facto 

standard for information representation and interchange on the Internet. As XML becomes widespread it is critical for 

application developers to understand the operational and performance characteristics of XML processing. The processing 

of XML documents has been regarded as the performance bottleneck in most systems and applications. XML parsing is a 

core operation performed on an XML document for it to be accessed and manipulated. XML processing occurs in four 

stages: parsing, access, modification and serialization. Parsing is an expensive operation that can degrade XML 

processing performance.  

 

Adriana Georgieva and Bozhidar Georgiev [5] presented some development problems and solutions concerning the 

parallel implementation of an algebraic method for XML data processing. The proposed parallel algorithm first partitions 

the XML document into chunks and then apply the parallel model to process each chunk of XML tree. The authors 

suggested a different point of view about XML parsers with the creation of advanced algebraic processor (including all 

necessary software tools, search techniques and programming modules). The possibilities of this linear algebraic model 

combined with principles of parallel programming allow efficient solutions for parsing, search and manipulation over semi-

structured data with hierarchical structures. Thus presented paper combines the building of an algebraic formalism for 

navigation over XML hierarchy with concepts of modern XML parser and their mutual work in parallel. The presented tests 

show higher rapidity and low consumption of resources in comparison with some existing commercial XML parsers. 

 

Ms. V.M.Deshmukh, Dr. G.R.Bamnote [6] described XML has become a defacto standard for data representation and 

exchange. XML data processing becomes more and more important for server workloads like web servers and database 

servers. One of the most time consuming part is XML document parsing. Parsing is a core operation performed before an 

XML document can be navigated, queried or manipulated. Recently high performance XML parsing has become a topic of 

considerable interest. In this paper, they presented a performance study of XML data parsing by evaluating these parsers 

using time as a parameter. The proposed design uses four different data structures linked list, stack, array and queue. All 

these data structures are linear in nature. They evaluate the data parsing behavior and study architectural characteristics. 

They proposed design analyses the performance of XML parsing techniques using various data structures. Based on 

observed analysis and graphical results it shows that the data structure based parser is efficient than SAX & DOM 

parsers. 

 

CONCLUSIONS  

In Generic methodologies of XML parsing the whole XML is read at once. Then the top root tag of the XML is looked, 

parse the attribute and element values for tags available underneath of root tag. This technique is quite expensive when 

there is large and huge number of XML files to parse and process. There are researches going on to speed-up the XML 

parsing by using the fixed number of threads to parse the different stages of the XML. In that approach XML parsing could 

be divided into a number of stages. Each stage would be executed by a different thread. This approach may provide 

speedup, but software pipelining is often hard to implement well, due to synchronization, load-balance and memory 

access costs. More promising is a data-parallel approach. Here, the XML document would be divided into some number of 

chunks and each thread would work on the chunks independently. As the chunks are parsed, the results are merged. This 

approach has also many limitations; as if the XML is too big then the chunk count will be very big. So there is a need to 

create so many threads for those. Overall it will slow down the system performance. Also if we will fix the thread count 

then CPU may not be used properly.  

Example let’s say there are 4 threads run in parallel then: 

1. In case of single core, it may reduce the performance. 

2. In case of multi-core, CPU may not be utilized properly. 

 

So from the above literature it has been observed to create the threads based upon the CPU’s cores. The numbers 
for threads creation per CPU core are set and multiply it with the number of cores to run the threads parallel. By doing 
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this XML parsing directly depend upon CPU performance. It will be much faster than the existing techniques and will 
not reduce the throughput. XML Parallel parsing based upon multicore is the very efficient technique. It will also 
increase the performance of the system by improving the throughput & CPU utilization while xml parsing. It also 
Speed-Up Data read/write operations 
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