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ABSTRACT 

Classical financial theory is based on Efficient Market Hypothesis (EMH). Several researchers like „Schiller (1981) (1990), 
Le Roy and Porter (1980) have extensively argued for the invalidity of EMH.   

Volatility excess has been detected and highlighted by many researchers; however it has not been explained very well by 
EMH.  

For this reason, we conducted an empirical study to identify the variable characteristics of volatility by comparing three 
GARCH models (GARCH, E-GARCH and GRJ-GARCH) over five different market indexes to examine prediction of 
returns volatility.  

This comparison led us to detect several volatility characteristics like volatility clustering and leverage effect. This change 
in volatility regime is an irrefutable proof of the presence of volatility excess.  

Given the inability of classical financial theory in explaining volatility excess, researchers started to focus on behavioural 
finance (Barret and Saphister (1996)).  
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INTRODUCTION  

Since the 1987 stock market crash, modeling and forecasting the financial markets volatility has received a significant 
attention from academics and practitioners because of its central position in many financial applications: assets valuation, 
allocation of wealth and hedging against risk. 

In addition, the financial world has witnessed the bankruptcy or pre-bankruptcy of several institutions that have incurred 
great losses because of their exposure to impromptu market movements for over a decade. These financial disasters 
highlighted more the significance of predicting volatility in risk management. Given these facts, the quest for accurate 
forecasts still appear in progress. 

While it is admitted that volatility is often marked by a number of stylized facts, such as persistence, volatility clustering, 
time-varying volatility and leptokurtic data behaviour, the introduction of the GARCH model developed by Engle (1982)

 
and 

Bollerslev (1986), has created a new approach useful to recommend  these time dependencies to financial 
econometricians. It has become a popular tool for modeling and forecasting volatility. 

However, despite success of the GARCH model, it has been marked by a failure to capture asymmetric volatility
1
. This 

limitation has been overcome by introducing more flexible treatment of volatility through recommending asymmetric 
responses of volatility to positive and negative shocks. 

This new class of asymmetric GARCH models include exponential GARCH (EGARCH) of Nelson (1991) and threshold 
GARCH 

2
 (GJR-GARCH) of Glosten, Jagannathan and Runkle (1993). In this section, we compare the predictive power of 

volatility for these three models over 5 markets. 

1 - PRESENTATION OF THE THREE GARCH MODELS:  

Let 𝑟𝑡 = 100 × (𝑙𝑛𝑃𝑡 − 𝑙𝑛𝑃𝑡−1) which denotes the continuous composite returns rate in period 𝑡 − 1 to t, where 𝑃𝑡   is the 

level of asset prices at date 𝑡. 𝛺𝑡−1 denotes the set of all information of observed returns up to 𝑡 − 1. 

1-1 – GARCH-type Predictive Models of Volatility:  

A symmetric GARCH (1,1) model with a basic mean can be formulated as follows: 

𝑟𝑡 = 𝜇 + 𝜀𝑡 ,   𝜀𝑡 = 𝜍𝑡𝑧𝑡 ,   𝑧𝑡|𝛺𝑡−1
~𝐹 0,1 𝑒𝑡 𝑖. 𝑖. 𝑑                                                                                                          (1) 

𝜍𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜍𝑡−1
2                                                                                                                                            (2) 

Where μ and 𝜇 and 𝜍𝑡
2denote respectively conditional mean and variance of returns. 𝜀𝑡  is the innovation process, while 

𝐹 0,1 is the density function with a zero mean and variance equal to unity. In addition, 𝜔, 𝛼 𝑎𝑛𝑑 𝛽 are non-negative 

parameters with an 𝛼 +  𝛽 < 1 restriction to ensure positivity of conditional variance and stationarity. 

Two simple classes of models, which may cope with asymmetric volatility in response to asymmetric shocks, are the GJR-
GARCH model proposed by Glosten et al. (1993) and the exponential GARCH (EGARCH) model advocated by Nelson 
(1991). The GJR-GARCH model differs from the (2) model as follows: 

𝜍𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛿𝐼𝑡−1𝜀𝑡−1
2 + 𝛽𝜍𝑡−1

2                                                                                                                         (3) 

Where the 𝐼𝑡−1 dummy function takes the value of unity if 𝜀𝑡 < 0  and zero otherwise. The dummy variable distinguishes 

between positive and negative shocks, in a way that asymmetric effects in data will be captured by δ. 

Thus, in GJR-GARCH, positive information has an impact α and negative information has an impact α + δ, with the fact 
that negative (positive) information has a greater effect on volatility if 𝛿 > 0  𝛿 < 0 .. In addition, 𝜔, 𝛼 𝑒𝑡 𝛽 are non-negative 

parameters with a 𝛼 +  𝛽 + 0,5 𝛿 < 1 restriction, therefore estimating the sum 𝛼 + 0,5 𝛿 should still be positive (Ling and 

McAleer (2002)).  

The EGARCH model of Nelson (1991) provides an alternative asymmetric model in the following lines: 

log 𝜍𝑡
2 = 𝜔 + 𝛼  𝛾

𝜀𝑡−1

𝜍𝑡−1
+  

𝜀𝑡−1

𝜍𝑡−1
 −  2

𝜋  + 𝛽log⁡(𝜍𝑡−1
2 )                                                                                              (4) 

Where the coefficient γ captures the asymmetric impact of information with the fact that negative shocks have a greater 
impact than similar positive shocks if 𝛾 < 0.. The effect of clustering is captured by a significant α coefficient. Finally, the 

use of the logarithmic form allows parameters to be negative without conditional variance becoming so. 

 

 

                                                           
1
 For assets prices, negative shocks (bad news) have generally a higher impact on volatility than positive shocks (good 

news). This phenomenon is also known as leverage effect.  
  
2
 Threshold GARCH. 
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1-2 - Distribution Hypotheses:  

Another finding in the GARCH literature is the abnormal characteristics of distribution of financial returns. To model such a 
phenomenon when estimating a GARCH model, Theodossiou (1998) forewarned a SGT

3
 distribution that constitutes a 

flexible tool for modeling distribution of financial data which exhibits fat tails, leptokurtic shapes and asymmetry 
(skewness). 

Probability density function of SGT (pdf
4
) for standardized residuals (z_t) of returns can be defined as follows: 

𝐹 𝑧𝑡 ; 𝑁, 𝑘, 𝜆 = 𝐶(1 +
 𝑧𝑡+𝛿 𝑘

 
 𝑁+1 

𝑘   1+𝑠𝑖𝑔𝑛  𝑧𝑡+𝛿 𝜆 𝑘𝑂𝑘
)
−(𝑁+1)

𝑘
 

                                                                                          (5) 

Where : 

𝐶 = 0,5 𝑘 × (
𝑁+1

𝑘
)−1

𝑘 × 𝐵(
𝑁

𝐾
,

1

𝐾
)−1 × 𝑂−1                                                                                                                  (6) 

𝑂 = (𝑔 − 𝜌2)−1
2                                                                                                                                                       (7) 

𝜌 = 2𝜆 × 𝐵(
𝑁

𝐾
,

1

𝐾
)−1 × (

𝑁+1

𝑘
)−1

𝑘 × 𝐵(
𝑁−1

𝑘
,

2

𝑘
)                                                                                                             (8) 

𝑔 = (1 + 3𝜆2) × 𝐵(
𝑁

𝐾
,

1

𝐾
)−1 × (

𝑁+1

𝑘
)−1

𝑘 × 𝐵(
𝑁−2

𝑘
,

3

𝑘
)                                                                                                  (9) 

𝛿 = 𝜌 × 𝑂                                                                                                                                                               (10) 

Where 𝑧𝑡  is standardized residual with a zero mean and a variance equal to unity, N is the tail thickness parameter
5
 with a 

𝑁 > 2 constraint, k is a leptokurtic parameter with 𝑘 > 0 ; λ governs density skewness under the  𝜆 < 1 constraint, sign is 

the sign function and 𝐵(. ) denotes the beta function. (.) In particular, the SGT distribution characterizes several well-

known distributions. More specifically, for 𝑘 = 2 𝑒𝑡 𝜆 = 0 it gives a t-student distribution and for 𝑁 = ∞, 𝑘 = 2 𝑒𝑡 𝜆 = 0 it 

gives the normal distribution. 

 

However, several recent papers have reported more new findings for heavy-tailed distributions (HT)
 6

, like Politis (2004) 
and Hung et al. (2008). With a HT distribution, probability density function of innovations becomes: 

𝐹 𝑧𝑡 , 𝑎0, 1 =
(1+𝑎0𝑧𝑡

2)−1,5exp ⁡(−
𝑧𝑡

2

2 1+𝑎0𝑧𝑡
2 

)

 2𝜋(𝜙 𝑎0
−0,5

 −𝜙 −𝑎0
−0,5

 )
                                                                                                                      (11) 

Where 1 denotes the standard deviation of 𝑧𝑡  and 𝜙 denotes the cumulative probability density function of the standard 

normal distribution. The Sharpe parameter, 𝑎0, reflects the degree of heavy tails with the 𝑂 < 𝑎0 < 1. constraint. When 

𝑎0 → 0,, HT will be reduced to a standard normal distribution, while the distribution have denser tails than the normal 

distribution when 𝑎0 → 1 (or Politis (2004)).  

In our study, we make recourse to three model specifications to model GARCH, GJR-GARCH and EGARCH volatility.  

 

2 - HYPOTHESES AND DATA:  

 

Our empirical specification will aim at testing the following hypotheses:  

• Hypothesis 1: Volatility of markets index returns has different regimes; therefore there is volatility excess;  

• Hypothesis 2: Volatility of markets index returns follows a single regime; therefore there is no volatility excess. 

To test our hypotheses, we will compare the predictive power of the three asymmetric volatility models of GARCH, GJR-
GARCH and EGARCH. This procedure is done on 5 markets, notably BVSP (Brazil), MERV (Argentina), MXX (Mexico), 
HSI (China) and GDAXI (Germany). 

We will use daily prices of these indexes over the period stretching from 18
th

 January 2002 to 31
st
 December 2012, a total 

of 2709 days. The prices were taken from the Yahoo Finance database.  

3- THE RESULTS AND THEIR INTERPRETATIONS: 

3-1- Descriptive Statistics of Time-series 

                                                           
3
 Skewed Generalized t.: biased generalized t statistic. 

4
 Probability density function  

5
 Tail-thickness parameter 

6
 Heavy-tailed distribution  
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Table 1 reports the characteristics of the returns of the chosen five market indexes: 

Table 1. Descriptive statistics of the five markets returns  

Statistics BVSP GDAXI HSI MERV MXX 

Mean 0,0225205 0,000371 0,004473 0,0297005 0,0267008 

Maximum 5,939677 4,68928 5,822503 6,999315 4,534343 

Minimum -5,253248 -3,228312 -5,898598 -5,624822 -3,590464 

Skewness -0,08614 0,0648492 -0,0454581 -0,0771208 0,0450354 

Kurtosis 6,551229 7,213832 10,76151 7,851749 7,124008 

Median 0,0524867 0,031519 0,139656 0,0475758 0,0528936 

Stand. Dev 0,8575317 0,7091557 0,7221079 0,9557759 0,6507112 

Normality test
7
(W)  

0,96829 

 

0,94828 

 

0,92495 

 

0,93922 

 

0,94959 

ADF Test -51,753 -54,079 -53,418 -49,700 -47,119 

KPSS Test 
8
 0,229 0,107 0,0727 0,114 0,116 

LM
9
 Test 0,00615 0,40295 0,89698     0 0,00001 

 

This table shows us that the returns of the five markets are differently distributed. We notice divergent means. 
They vary between 0,000371 (GDAXI) and 0,0297005 (MERV). However, maximum values range between 4,534343 
(MXX) and 6,999315 (MERV). The minimum values are all negative and vary between -5,898598 (HSI) and -3,228312 
(GDAXI). 

We found two types of distributions; GDAXI and MXX have tails skewed to the right and distributions skewed to the left. 
The other indexes have distributions skewed to the right and tails skewed to the left. Kurtosis coefficients are superior to 3, 
therefore the 5 markets returns distributions are leptokurtic.  

Shapiro-Wilk normality test reported null p-values and consequently, daily returns of the five markets are not normally 
distributed. Dickey-Fuller Augmented test reported negative values inferior to the critical values corresponding to the 
number of observations, then the null hypothesis which assumes presence of a unit root is rejected.  

However, the KPSS test indicates that the null hypothesis of the presence of stationarity is rejected for all markets except 
for BVSP for which stationarity hypothesis is accepted even at the 1% level. Finally, Lagrange-Multiplier test indicates that 
only GDAXI and HSI present errors autocorrelations. 

Ces analyses préliminaires des données encouragent l‟adoption, d‟une part, des distributions sophistiquées 
ayant des queues épaisses, et d‟autre part, des modèles conditionnels qui permettent des volatilités qui varient dans le 
temps.            

3-2- The Results and Their Interpretations:  

To compare the three GARCH models, first we should look into their overall significance. Table 2 reports the results of the 
Wald Chi

2
 test: 

Table 2. the overall significance of the three models through the Wald Chi
2
 test  

 

Indexes 

GARCH EGARCH GJR-GARCH 

Statistic  P-value Statistic P-value Statistic P-value 

BVSP 10,63 0,0011 10,24 0,0014 10,46 0,0012 

GDAXI 4,46 0,0347 8,51 0,0035 5,55 0,0184 

HSI 22,36 0 17,90 0 27,42 0 

MERV 18,85 0 18,38 0 22,59 0 

                                                           
7
 Shapiro-Wilk normality test, if p–value<0, then the null hypothesis is rejected. Therefore, data is not normally 

distributed.  
8
 Stationarity test of Kwiatkowski-Phillips-Schmidt-Shin. 

9
 Lagrange-Multiplier test of auto-correlation of returns.   
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MXX 15,15 0,0001 16,05 0,0001 18,13 0 

 

The Wald Chi
2
 test indicates that the three models are overall significant at the 5% level. Nevertheless, accepting the 

overall significance hypothesis may done at the 1% level for the three models and only for four markets (BVSP, HSI, 
MERV and MXX), and only for the EGARCH model for GDAXI. Indeed, the p-values are inferior to 1% for 16 of the 18 
conducted regressions.  

Overall significance may be better tested by the log-likelihood ratio test. This latter is articulated around one hypothesis, 
i.e. the distribution takes a Chi

2
 distribution. The Wald Chi

2
 test has an additional hypothesis, which knowing in advance 

standard error. Table 3 reports the results of the log-likelihood test.  

Table 3. overall significance through the log-likelihood ratio test 

Indexes GARCH EGARCH GJR-GARCH 

BVSP -3430,314 -3427,400 -3428,453 

GDAXI -2819,362 -2845,994 -2818,297 

HSI -2806,589 -2842,037 -2801,311 

MERV -3591,131 -3621,846 -3589,307 

MXX -2551,024 -2572,759 -2549,473 

 

The log-likelihood statistics are negative and low, and therefore we may conclude that the three models are overall 
significant for the five markets.  

As a second step, we will examine individual significance of each model‟s parameters for each market. Table 4 reports the 
results: 

Table 4. Individual significance of regressions parameters 

 

Model  

 

Parameter
s 

BVSP GDAX HSI MERV MXX 

Statisti
c  

P-
valu

e 

Statisti
c 

P-
valu

e 

Statisti
c 

P-
valu

e 

Statisti
c 

P-
valu

e 

Statistiqu
e 

P-
valu

e 

GARCH MC
10

 3,26 0,00
1 

2,11 0,03
5 

4,73 0,00
0 

4,34 0,00
0 

3,89 0,00
0 

L1
11

 ARCH -0,68 0,49
7 

12,23 0,00
0 

14,67 0,00
0 

12,27 0,00
0 

12,68 0,00
0 

Cons
12

 
ARCH 

59,75 0,00
0 

55,06 0,00
0 

50,40 0,00
0 

48,36 0,00
0 

50,20 0,00
0 

EGARC
H 

MC 3,20 0,00
1 

2,92 0,00
4 

4,23 0,00
0 

4,29 0,00
0 

4,01 0,00
0 

L1 
EARCH

13
 

1,41 0,15
9 

2,10 0,03
6 

4,40 0,00
0 

1,45 0,14
6 

0,89 0,37
3 

L1 
EARCH-
A

14
 

-3,45 0,00
1 

10,01 0,00
0 

13,77 0,00
0 

15,29 0,00
0 

13,81 0,00
0 

Con 
EARCH-
A

15
 

-19,27 0,00
0 

-37,94 0,00
0 

-44,27 0,00
0 

-7,02 0,00
0 

-47,04 0,00
0 

GJR-
GARCH 

MC 3,23 0,00
1 

2,36 0,01
8 

5,24 0,00
0 

4,75 0,00
0 

4,26 0,00
0 

                                                           
10

 Conditional mean  
11

 First lag of GARCH. 
12

 Constant of GARCH. 
13

 First lag of EARCH. 
14

 First lag of EARCH-A. 
15

 Constant of EARCH-A. 
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L1 ARCH -2,19 0,02
8 

7,12 0,00
0 

11,00 0,00
0 

9,85 0,00
0 

7,69 0,00
0 

L1 
TARCH

16
 

1,79 0,07
4 

2,10 0,03
6 

5,42 0,00
0 

2,87 0,00
4 

2,61 0,00
9 

Con 
TARCH

17
 

58,43 0,00
0 

55,36 0,00
0 

45,67 0,00
0 

47,88 0,00
0 

49,53 0,00
0 

 

The table above first indicates that the components of GARCH are significant at the 1% level for all markets except for 
BVSP. The L1 parameter is non-significant for Brazil (p-value>5%). Conditional mean is significant at the 1% level for the 
four markets: BVSP, HSI, MERV and MXX and at the 5% level for GDAX. 

Concerning EGARCH, we found that conditional mean is significant at the 1% level for the five markets. The same is true 
for L1 parameter and the constant Con EARCH-A. Nevertheless, these three markets do not present errors 
autocorrelation. Therefore, EGARCH explains very well volatility of the markets with auto-correlated errors, notably GDAXI 
and HSI. 

GJR-GARCH parameters are all significant at the % level for HSI, MERV and MXX, whereas for GDAX, MC and L1 
TARCH are significant at the 5% level. As for BVSP, L1 TARCH is not significant and it is only significant at the 5% level. 
BVSP is marked by stationarity of returns.  

In summary, GARCH models explained very well volatility of HSI, MERV, MXX and GDAX. The simplest GARCH family 
model could not function for VSP because the KPSS test showed stationarity of its returns. We may conclude that volatility 
of returns of HSI, MERV, MXX and GDAX presents symmetry of responses to positive and negative market information.  

The EGARCH model explained very well volatility of returns only for GDAX. We may deduce that this model is not 
adequate. This model differs from the GARCH model by the fact that it efficiently captures volatility clustering and leverage 
effects. Since GDAX has been very well explained by GARCH, therefore volatility does not present a leverage effect of 
negative information against positive information. EGARCH highlighted clustering of volatility of returns for this index.   

Volatility clustering is defined by Mandelbrot (1963) as “substantial changes followed by other substantial changes of 
whatever sign and small changes are followed by small changes”. A quantitative illustration of this fact is that when returns 
are not auto-correlated, absolute returns (|𝑟𝑡|) show a significant auto-correlation function and start slowly to disappear.  

The GARCG model is marked, on the one hand, by uncorrelated serial error processes (𝑢𝑡  ) with a zero mean, and on the 

other hand by a symmetric response of current volatility to positive or negative lagged errors (𝑢𝑡−1). However, since error 

𝑢𝑡  is not correlated to its past, it may be considered as a measure of new information entering the financial market at 

moment t. Consequently, negative information will have a typically higher impact on future volatility of returns than positive 
information.  

Such asymmetry of responses to market information is called leverage effect. It cannot be captured by a basic GARCH 
model. The EGARCH model is an exponential extension of the GARCH model. Volatility is measured by conditional 
variance. It is considered as a multiplying function of lagged innovations by opposition to the GARCH model which is an 
additional function of lagged error terms. Consequently, variance becomes very sensitive to the model‟s parameters.   

The GRJ-GARCH allows for having different impacts of positive and negative lagged innovations. It allows for detecting 
the leverage effect. The GRJ-GARCH model showed performance similar to that of the GARCH model. Absence of a unit 
root, non-normality of returns and their leptokurtic distributions has contributed to such a result. The GRJ-GARCH is more 
sophisticated than the EGARCH model. It allows the leverage effect for positive and negative variations. It shows therefore 
more acceptable performance in explaining volatility of the five markets. Then, we accept the first hypothesis which 
assumes that volatility of returns has different regimes, thus there is volatility excess. This excess is illustrated by 
changing volatility regimes captured by these three models: volatility clustering and leverage effect. This result 
corroborates that of Blitz, Pang, Van Vliet (2012) and Conrad and Loch (2012).     

Comparing performance of the GARCH-type models in explaining volatility of returns of the five markets points to the 
insufficiency of the EGARCH model compared to GARCH and GJR-GARCH models because of errors terms 
characteristics. However, we were able to study the performance of other models belonging to the same family, mainly 
GARCH-N, GARCH-t, GARCH-HT, etc. Detecting volatility characteristics (leverage and clustering effects) leads us to 
check for presence of volatility excess, thus checking our first hypothesis.  

Moreover, we could use the SPA
18

 test, proposed by Hansen (2005), which is a robust and a more accurate test. It 
examines the relative performance of GARCH-type models aimed at studying symmetric or asymmetric distributions. This 
test requires inter-daily data (5, 15 and 60 minutes) unavailable in this study.  

Volatility is a fundamental variable in theory and practice. Its central role is to evaluate assets and manage risk. Since true 
volatility cannot be observed, we chose variance as a proxy. It is computed through sums of squared inter-daily returns. 

                                                           
16

  First lag of TARCH. 
17

  Constant of TARCH.  
18

 Superior Predictive Ability test  
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Nevertheless, the precision of this estimator is affected by market microstructure noise, especially when data is high-
frequency data.  
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