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Abstract 

The objective of the study conducted in the Lamto Guinean savannah situated at 165 km northwest of Abidjan, 

Côte d’Ivoire consisted to assess the changes in soil mite abundance, diversity and community structure 

specific to the second fire cycle applied in 2015, as well as the inter-annual variation between the two fire 

cycles (2014 and 2015). Three study sites (Salty marigot, Plateau and North piste) were selected in shrub 

savannah, where on each, three adjacent stands of 100 m x 50 m formerly delimited were considered.  The 

three fire regimes (early, mid-season, and late fire) were respectively applied on the three sites and stands. 

Thus, 135 soil cores (5 soil cores × 3 sampling periods × 3 fire regimes or stands × 3 sites) were used for mite 

extraction. 108 soil cores were taken at two upper layers (0-5 and 5-10 cm) for determination of the bulk 

density and water content. Whatever the fire regimes, the mean density of soil mites decreased after the fire 

application. The highest value of density was observed through the early fire (1,715 ± 327 ind.m-2) whereas the 

lowest value was recorded during the mid season fire (1,433 ± 153 ind.m-2). 41 species had been recorded 

along the three fire regimes and distributed as follows: early fire 34 species, mid season fire 20 species , and 

late fire 13 species. The mean species richness of soil mites changed significantly across the fire regimes, and 

reduced after the fire application, except for the mid season fire. The Simpson diversity index was significantly 

modified across the fire regimes, and increased after the fire application. Beyond to 24 specialist species, over 

50% of the species observed before the burns were rediscovery after the fire application, and could explain 

this variation. The inter-annual variation of soil mites showed that the density (early fire, mid season fire, and 

late fire), mite richness (early fire), and diversity (early fire and late fire) increased whereas the mite richness 

(mid season fire and late fire), and diversity (mid season fire) decreased, respectively, during 2015-burn 

compared to the previous cycle (2014-burn). The rebound of soil mite parameters during the second fire cycle 

could be assigned (i) to litter and woody debris, which burn in a mosaic, reflecting local fire intensity,  (ii) 

improving of stand complexity and canopy structure, and (iii) fire tolerance of mites.  
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1. Introduction 

The savannahs, defined broadly as tropical and subtropical grasslands  (characterized by grasses with C4 

photosynthetic pathway) with varying densities of tree cover, constitute the most fire-prone ecosystems on 

Earth (Russell-Smith et al., 2013). In protected areas, savannah managers are returning repetitive fire to the 

landscape to facilitate regeneration of desirable species. Generally, fire is seen as important management tool 

and biodiversity conservation (Driscoll et al., 2010; Hugo-Coetzee and Avenant, 2011). Its use and its various 

applications favor landscape heterogeneity, namely diversification of vegetation and soil biodiversity (Hudak et 

al., 2004). Early theories focused on climatic controls, but a conceptual model has emerged suggesting that 

savanna trees are subject to a fire-mediated recruitment bottleneck, with frequent fires preventing recruitment 

of saplings into the tree layer and maintaining biomass well below its climate-determined upper bound 

(Murphy et al., 2015). However, the removal of the litter dwelling represents a substantial loss of habitat for 

most soil mesofauna. Even if the response of the disturbance depends on the frequency, duration, size or 

spatial extent, and their intensity or severity (Bengtsson, 2002), several studies have pointed out that the 

responses of soil microarthropods to fire vary depending on the type of ecosystem and range from a large 

reduction in species richness and abundance (Kim and Jung, 2008; Camann et al., 2008, 2012). In addition to 

microarthropods, fires affect also soil properties by decreasing the soil organic carbon (Certini et al., 2011). 

Such carbon losses are attributable to the almost complete elimination of the litter layer. According to Kim 

and Jung (2008), burning out of leaf litter and other organic matter may cause the depletion of food source of 

soil arthropods since most of the soil microarthropods are decomposers of organic materials.  Soil mites play a 

key role in the ecological functioning of soil. They are involved in litter fragmentation, organic matter 

decomposition, and minerals recycling (Gulvik, 2007; Yang and Chen, 2009), and therefore are seen as good 

indicators of the ecological quality of the soil (Zhao et al., 2013). Indeed, the abundance, diversity and 

community structure of free-living mites (Acari) respond considerably to land management practiced (Behan-

Pelletier, 1999; Camann et al., 2012). The distribution and abundance of these biological components change 

in time and space because of variable and dynamic interactions among the biotic and abiotic components 

(Kim and Jung, 2008). The prescribed fire alters oribatid assemblages, reducing species richness and species 

diversity and modifying assemblage dominance relationships as observed by Camann et al. (2008, 2012). Most 

of the studies based on short term effects are devoted to forest ecosystems. Also, no investigation has been 

made to understand the recovery process after the fire in relation to the resilience after disturbance (Kim and 

Jung, 2013). 

With an area of 2,500 ha, the Lamto savannah is one of the most protected areas. The management of this 

ecosystem includes the use of prescribed fire. Traditionally, the mid season fire was practiced in Lamto 

savannah each year for over 30 years. This fire is applied to relatively dry vegetation towards mid January. 

However, it must be noted that regularly burned patches tend to become afforested. For this reason, two 

other types of fire that are the « early fire » and the « late fire» respectively established in November and 

March are associated to the first one. The impact of these three prescribed fires on soil mite community was 

evaluated in 2014 during the first fire cycle (N’Dri et al., 2017). According to authors, 70 species were observed, 

with 29, 44 and 31 species recorded respectively during the early, mid-season and late fires. Mite density and 

species richness significantly varied among the three fire regimes and decreased substantially after  each fire 

application. Except for the mid-season fire, the Simpson index from all mites significantly differed across 

sampling periods. Lower Oribatida represented 25% of the total Oribatida. Whatever the fire regime, 

brachypyline Oribatida abundance increased the day after fire application. Overall, fire intensity reduced 

drastically soil mite abundance and diversity. In 2015, the second fire cycle was applied. The aim of the present 

investigation consisted to assess the changes in soil mite abundance, diversity and community structure 

specific to the second fire cycle applied in 2015, as well as the inter-annual variation between the two fire 

cycles (2014 and 2015). We hypothesized that (i) whatever the fire regime, soil mite density and diversity 

decrease after the application of fire, (ii) soil mite density and community diversity reduce during the second 

fire cycle compared to the first one. 
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2. Materials and Methods 

2.1. Site description 

This study was carried out in Lamto Guinean savannah (6°13’N, 5°02’W) located at 165 km northwest of 

Abidjan. The climate is intertropical type with four seasons – a long dry season from December to February, a 

long-wet season from March to July, a short dry season in August, and a short-wet season from September to 

November. Annual rainfall during the study year (2014–2015) was about 1,235 mm, and the average monthly 

temperature was about 29°C. The vegetation of Lamto is a forest-savannah mosaic (Menaut and César, 1979), 

characterized by (i) the gallery forests that borders the Bandama River, and the islets of forest which are 

surrounded by savannahs, (ii) herbaceous savannahs dominated by Loudetia simplex, (iii) shrub savannahs 

dominated by Hyparrhenia diplanda and Andropogon sp., (iv) wooded savannahs, (v) and shrub savannahs 

protected from fire. Soils are ferralitic type under forests and tropical ferruginous type under savannah (Riou, 

1974). 

2.2. Sampling design and mite identification 

The field works were conducted in shrub savannah of Lamto not protected from fire. In this zone, three sites 

(Salty marigot, Plateau and North piste) were selected and considered as replications . The site of Plateau was 

more wooded whereas Salty marigot and North piste were grassy. The choice of these sites allowed taking 

into account the vegetation heterogeneity. On each site, three adjacent stands of 100 m × 50 m were 

delimited for the sampling. A layer of 10 m width was made around each plot. Five sampling points were 

allocated on each stand following the two diagonals. The three fire regimes were applied respectively on the 

three stands and the three sites. The “early fire” was applied in November to humid vegetation with a green 

appearance, the “mid season fire” in January to relatively dry vegetation, and the “late fire” in March to highly 

dry vegetation. At each fire regime, soil cores were taken three days before the fire application (BE), the day 

after the fire application (AF) and one month after the fire application (OM). On each stand, five soil cores 

including litter thickness was randomly taken with a steel corer (Ø 4 cm) at 0–10 cm soil depth. Thus, 5 soil 

cores × 3 sampling periods × 3 fire regimes or stands × 3 sites gave a total of 135 soil cores. These soil cores 

were brought to the laboratory in plastic packets for mite extraction. Fire intensity data were provided by Soro 

(2016). Three days before the fire application, three soil cores were taken following the 0–5 and 5–10 cm layers 

on the first diagonal by using the cylinder method (Assié et al., 2008) for physical measurements. One month 

after the application of the fire, these same soil cores were performed on the opposite diagonal. A total of 108 

soil cores were taken for estimation of the bulk density and water content. 

Mites were extracted from soil using modified Berlese-Tullgren funnel with heat applied over the course of 10 

days and collected into 70% ethanol before determination. All mites from samples were mounted on cavity 

slides containing 85% lactic acid solution and observed with a digital camera VC.5000 mounted on a NOVEX 

light microscope. In the absence of African keys, adult mites were identified to major groups (Actinedida, 

Gamasida, and Oribatida), family, genus and morphospecies levels by using keys and illustrations provided in 

Balogh and Balogh (1992), Krantz and Walter (2009) and Walter et al. (2013). 

2.3. Data analysis 

Soil mite abundance was expressed as the mean number of individuals per squar e meter. The diversity of 

communities was studied by calculating the mean species richness, cumulative species richness, Simpson 

index, Simpson diversity index, evenness, Berger Parker index, and the Jaccard dissimilarity index expressed in 

percentages. The community structure was characterized by using dominant, ubiquitous, and specialist species 

(Badejo and Ola-Adams, 2000). The relative dominance of each species was classified according to Yang et al. 

(2015): Eudominant: species comprising over 30% of the total number of individuals, Dominant: 10–30% of 

individuals, Sub-dominant: 5–10% of individuals, Minor: 1–5% of individuals, and Rare: less than 1% of the 

total number. A particular interest was devoted to Gamasid and Oribatid mites due to their abundance and 
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their key role in the ecosystem functioning. Soil bulk density was estimated using the cylinder method (Assié 

et al., 2008). Soil water content was determined after drying at 105°C for 48 h.  

The homogeneity of variances was analyzed using the Levene test. Numerical data prior to the statistical 

analysis were subjected to logarithmic transformation – log (x+1) because the data did not follow a normal 

distribution (Gérard and Berthet, 1966). A one-way ANOVA associated with the post-hoc Tukey’s test was 

performed to examine the effects of fire regimes and sampling periods on the soil biological and physical 

characteristics. The Bulk density and water content were also evaluated following soil depth using the Student 

t-test. The factorial Anova added to general linear mixed (GLM) model were used to explore the interaction 

fire regimes × sampling period’s effects on soil biological and physical characteristics. The inter-annual 

variation of soil biological and physical characteristics was analyzed by using the Student t-test. All tests were 

carried out using the software Statistica 7.1. (StatSoft Inc., Tulsa, USA). Unweighted Pair-Group Method using 

arithmetic Averages (UPGMA) was used as the clustering method (Thioulouse et al. 1997). The cumulative 

species richness was estimated after 500 randomizations by using the software EstimateS 7.5. The first-order 

jackknife non-parametric estimator was used to estimate the true species richness. We used rarefaction to 

determine whether observed differences in species richness were attributable to sample size differences. 

3. Results 

3.1. Soil mite density 

 

Figure 1: Soil mite abundance recorded along the fire regimes and the sampling periods. EF–Early Fire, MF–

Mid season Fire, LF–Late Fire, BE–Before fire, AF–After Fire, OM–One Month later. 

The mean density of soil mites did not differ significantly across the fire regimes (one-way ANOVA; F = 1.91, p 

= 0.151) during the second cycle. The highest value of density was observed through the early fire (1,715 ± 

327 ind.m-2) whereas the lowest value was recorded during the mid season fire (1,433 ± 153 ind.m-2). 

Whatever the fire regimes, the mean density of soil mites did not vary significantly on the  three sampling 

periods: early fire (one-way ANOVA; F = 0.72, p = 0.490), mid season fire (one-way ANOVA; F = 1.95, p = 

0.153), and late fire (one-way ANOVA; F = 2.37, p = 0.105). In all cases, highest densities (Figure 1) were 

recorded before the fire application (early fire: 2,335 ± 614 ind.m-2, mid season fire: 1,698 ± 1250 ind.m-2, and 

late fire: 3,025 ± 1049 ind.m-2). The density of soil mites did not vary significantly with the fire regimes-

sampling periods interaction (GLM; F = 1.72, p = 0.149). During the first cycle of fire, the density of soil mites 

was lower for the late fire and higher for the mid season fire. Whatever the fire regimes, the density of soil 
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mites increased in the second cycle compared to the first fire cycle. However, this inter-annual variation of the 

mite density was significant during the early (t-test; t = -2.72, p = 0.007) and late (t-test; t = -2.26, p = 0.026) 

fire. While considering the sampling periods, the inter-annual variation of the density highlighted that the soil 

mites increased significantly one month after the early fire (t-test; t = -4.24, p = 0.0002) and before the late fire 

(t-test; t = -2.30, p = 0.028), respectively, in the second fire cycle compared to the first one. 

3.2. Species richness and diversity of soil mites  

The mean species richness of soil mites changed significantly (Anova 1; F = 9.84, p = 0.0001) across the fire 

regimes, and decreased after the fire application, except for the mid season fire. The species richness of soil 

mites did not differ significantly with the fire regimes-sampling periods interaction (GLM; F = 1.57, p = 0.183). 

The mean species richness observed during the first cycle of fire significantly varied across the three fire 

regimes and sampling periods. In total, the soil mite richness reduced during the second cycle (41 species) 

compared to the previous one. The soil mite richness slightly decreased during the mid season fire (t-test; t = 

0.786, p = 0.433), and the late fire (t-test; t = -0.395, p = 0.693), and significantly increased during the early fire 

(t-test; t = -2.057, p = 0.042), respectively, in the second cycle compared to the first fire cycle. While 

considering the sampling periods, the inter-annual variation indicated that the species richness was 

significantly higher one month after the early fire (t-test; t = -3.456, p = 0.001), and significantly lower before 

the mid season fire (t-test; t = 2.687, p = 0.011), respectively, in the second fire cycle compared to the first one. 

The Simpson index significantly varied across the three fire regimes (one-way ANOVA; F= 5.38, p = 0.005) 

during the second cycle of fire (Table 1). Apart from the early fire (one-way ANOVA; F = 0.27, p = 0.758), and 

the late fire (one-way ANOVA; F = 1.07, p = 0.350), the Simpson index significantly varied through the 

sampling periods during the mid season fire (one-way ANOVA; F = 3.47, p = 0.04). Its highest values were 

recorded one month after the early (0.42 ± 0.10), and the mid season (0.74 ± 0.09) fires and before the late fire 

(0.32 ± 0.11) application. The Simpson index did not change significantly with the fire regimes-sampling 

periods interaction (GLM; F = 1.38, p = 0.242). 

The Simpson diversity index significantly (one-way ANOVA; F = 5.38, p = 0.005) differed across the fire 

regimes during the second cycle, and increased after fire application. Contrary to the early fire (one-way 

ANOVA; F = 0.27, p = 0.758), and the late fire (one-way ANOVA; F = 1.07, p = 0.350); the values of Simpson 

diversity index varied significantly through sampling periods for the mid season fire (one-way ANOVA; F 

= 3.47, p = 0.040). However, it did not vary significantly with the fire regimes-sampling periods interaction 

(GLM; F = 1.38, p = 0.242). The inter-annual variation revealed an increase of the Simpson diversity index for 

the early fire (t-test; t = -0.610, p = 0.542), late fire (t-test; t = -1.734, p = 0.863), and a decrease for the mid 

season fire (t-test; t = -0.898, p = 0.376) during the second cycle compared to the first cycle. While considering 

the sampling periods, the inter-annual variation showed that the Simpson diversity index significantly 

increased before the early fire (t-test; t = -2.891, p = 0.007), and significantly decreased one month after the 

mid season fire (t-test; t = 4.379, p = 0.0001) during the second cycle compared to the first one. During the 

second cycle of fire, the evenness did not vary significantly across fire regimes (one-way ANOVA; F = 0.88, p = 

0.414) and sampling periods: early fire (one-way ANOVA; F = 0.55, p = 0.579), mid season fire (one-way 

ANOVA; F = 0.88, p = 0.420), and late fire (one-way ANOVA; F = 0.57, p = 0.567).  

3.3. Community structure 

The soil mite community consisted of three major groups (Oribatida, Gamasida, and Actinedida).  Whatever the 

fire regimes, the Oribatid mites (73–80%) and Gamasid mites (15–27%) represented the dominant groups. The 

soil mite community was constituted of 41 morphospecies. Respectively 34, 20, and 13 soil mite species were 

collected during the early, mid season, and late fires. 17 ubiquitous species and 24 specialist species were 

observed across the three fire regimes (see appendix). Successively 0, 1, and 1 eudominant species; 0, 1, and 1 

dominant species; 4, 3, and 2 sub-dominant species and 30, 15, and 9 minor species were recorded during the 

early, mid season and late fires. Rare species were not found in the biological material. Over 50% of the 

observed species before the fire application were rediscovered respectively after the application of  each fire  
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Table 1: Soil mite diversity parameters estimated along the fire regimes and sampling periods. BE –Before fire, 

AF–After fire, OM–One month later. Smean: Average number of mite species, D: Simpson index, 1-D: Simpson 

diversity index, J’: Evenness 

               Early fire   

  BE   AF   OM P-value 

Smean 2.33 ± 0.58a 

 

1.13 ± 0.33a 

 

1.80 ± 0.41a 0.189ns 

D 0.34 ± 0.08a 
 

0.33 ± 0.10a 
 

0.42 ± 0.10a 0.758ns 

1-D 0.65 ± 0.08a 
 

0.66 ± 0.10a 
 

0.57 ± 0.10a 0.758ns 

J' 0.34 ± 0.10a   0.21 ± 0.08a   0.25 ± 0.09a 0.579ns 

 

Mid season fire 

   BE   AF   OM P-value 

Smean 0.60 ± 0.21a 
 

1.00 ± 0.30a 
 

1.20 ± 0.20a 0.224ns 

D 0.38 ± 0.12a 
 

0.36 ± 0.11a 
 

0.74 ± 0.09b 0.040* 

1-D 0.61 ± 0.12a 

 

0.63 ± 0.11a 

 

0.26 ± 0.09b 0.040* 

J' 0.08 ± 0.08a   0.17 ± 0.08a   0.26 ± 0.12a 0.420ns 

 
Late fire 

   BE   AF   OM P-value 

Smean 0.66 ± 0.25a 

 

0.40 ± 0.23a 

 

0.66 ± 0.23a 0.665ns 

D 0.31 ± 0.11a 

 

0.12 ± 0.07a 

 

0.23 ± 0.08a 0.350ns 

1-D 0.68 ± 0.11a 

 

0.87 ± 0.07a 

 

0.76 ± 0.08a 0.350ns 

J' 0.20 ± 0.11a   0.11 ± 0.07a   0.26 ± 0.11a 0.567ns 

 
                                                               * P < 0.05 

regime. 10 species of Gamasida and 29 species of Oribatida were observed along the fire regimes. 8, 2, and 2 

species of Gamasida and 25, 16, and 10 species of Oribatida were respectively recorded during the early, mid 

season and late fires. The community of Gamasida was composed of two groups (Gamasina and Uropodina). 

The abundance of Gamasina (one-way ANOVA; F = 2.92, p = 0.049) and Uropodina (one-way ANOVA; F 

= 3.80, p = 0.024) mites significantly varied through the fire regimes. The highest abundances of Gamasina (9 

± 2 individuals), and Uropodina (12 ± 1.52 individuals) were both recorded during the early fire (Figure 2A). 

The community of Oribatida was constituted of five groups (Palaeosomata, Parhyposomata, Mixonomata, 

Desmonomata and Brachypylina). Contrary to Parhyposomata (one-way ANOVA; F = 0.50, p = 0.607), 

Palaeosomata (one-way ANOVA; F = 0.51, p = 0.598), Mixonomata (one-way ANOVA; F = 2.04, p = 0.133) and 

Brachypylina (one-way ANOVA; F = 0.12, p = 0.879), only the abundance of Desmonomata (one-way ANOVA; 

F = 4.90, p = 0.008) significantly varied across the fire regimes. The highest abundances of Palaeosomata (3 ± 
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0.57 individuals), Parhyposomata (1 ± 0.33 individuals), Mixonomata (2 ± 0.66 individuals) and Desmonomata 

(11 ± 1.45 individuals) were found during the early fire whereas those of Brachypylina (63 ± 9.5 individuals) 

were recorded during the late fire (Figure 2B). Whatever the fire regime, the higher Oribatida constituted the 

dominant group (over 75% of the Oribatid mites). Values of the Jaccard dissimilarity index estimated between 

fire regimes were above 60%.  

 

Figure 2: Abundance logarithmic transformation – ln (x+1) of Gamasida (A) and Oribatida (B) major groups 

across the fire regimes. EF–Early fire, MF–Mid season fire, LF–Late fire. 

While considering the sampling periods, the hierarchical classification of soil mite communities showed five 

groups (Figure 3). The clustering was as follows: first group (One month after the early fire), second (Before, 
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After, and One month after the late fire), third (After and One month after the mid season fire), fourth (Before 

the mid season fire and After the early fire), and the fifth group (Before the early fire). The cumulative species 

richness could reach respectively 47, 30, and 13 species and would represent successively 73, 67, and 100% of 

the expected species during the early, mid season and late fires. The rarefaction data was lower during the late 

fire relative to early fire and mid season fire (Figure 4). However, these rarefaction curves did not reach an 

asymptote except for the late fire, indicating that the sampling effort was not sufficient to complete the mite 

species inventories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Sample-based rarefaction curves of species richness from the three fire regimes. The 95% confidence 

intervals are not shown. EF–Early Fire, MF–Mid season Fire, LF–Late Fire. 

Figure 3: Hierarchical classification of 

fire regimes and sampling periods based 

on mite species composition using 

UPGMA (Unweighted Pair-Group 

Method using Arithmetic averages). BE–

EF: Before the early fire, AF–EF: After the 

early fire, OM–EF: One month after the 

early fire, BE–MF: Before the mid season 

fire, AF–MF: After the mid season fire, 

OM–MF: One month after the mid 

season fire, BE–LF: Before the late fire, 

AF–LF: After the late fire, OM–LF: One 

month after the late fire.  
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3.4. Soil physical characteristics  

During the second cycle of fire, the values of bulk density were nearly similar and varied from 0.9 ± 0.03 g.cm-3 

(5–10 cm, before the late fire application) to 1.38 ± 0.08 g.cm-3 (5–10 cm, one month after the early fire 

application). Whatever the layer and the sampling periods, the values of bulk density significantly differed 

through the fire regimes, successively, before (0–5 cm: one-way ANOVA, F = 12.26, p = 0.0001; 5–10 cm: one-

way ANOVA, F = 13.01, p = 0.0001), and one month after the fire application (0–5 cm: one-way ANOVA, F = 

10.02, p = 0.0006; 5–10 cm: one-way ANOVA, F = 6.31, p = 0.0062). It decreased significantly with soil depth (t-

test; t = 3.303, p = 0.010) before the application of the late fire (Table 2). The reverse trend was measured one 

month after the application of the late fire (t-test; t = -3.128, p = 0.014). The bulk density significantly changed 

with the fire regimes-sampling periods interaction. The inter-annual variation of the bulk density was 

significant before the mid season (t-test; t = -6.88, p = 0.000004), and late (t-test; t = 4.83, p = 0.0001) fires, 

and one month after the early (t-test; t = -4.11, p = 0.0008) and mid season (t-test; t = -2.21, p = 0.041) fires. 

Table 2: Soil physical Characteristics following the fire regimes and the sampling periods. BE–Before fire, OM–

One Month later, n = 9. 

 

                          

  

 

Fire regimes 

 Bulk density Early fire   Mid season fire   Late fire P-value 

0-5 cm BE 1.03 ± 0.04a 

 

1.31 ± 0.05b 

 

1.02 ± 0.02c 0.0001*** 

 

OM 1.27 ± 0.06a 

 

1.36 ± 0.05a 

 

1.05 ± 0.01b 0.0006*** 

5-10 cm BE 1.15 ± 0.08a 

 

1.34 ± 0.05b 

 

0.9 ± 0.03c 0.0001*** 

 

OM 1.38 ± 0.08a 

 

1.22 ± 0.04ab 

 

1.09 ± 0.02b 0.0062** 

0-5 cm /5-10 cm BE 0.562 
 

0.764 
 

0.010* 
 

0-5 cm /5-10 cm OM 0.380   0.132   0.014*   

Water content 

 

  

           
0-5 cm BE 13.3 ± 0.90a 

 

1.68 ± 0.17b 

 

26.32 ± 0.34c 0.0000001*** 

 

OM 12.99 ± 1.59a 

 

20.62 ± 3.84a 

 

17.88 ± 2.83a 0.1923 

5-10 cm BE 15.01 ± 3.04a 
 

1.88 ± 0.36b 
 

25.72 ± 0.94c 0.0000001*** 

 
OM 19.26 ± 9.89a 

 
22.76 ± 3.21a 

 
22.82 ± 2.72a 0.8982 

0-5 cm /5-10 cm BE 0.499 
 

0.617 
 

0.375 
 

0-5 cm /5-10 cm OM 0.562   0.651   0.002**   

  

  

                                                 * P < 0.05, ** P < 0.01, *** P < 0.001 

During the second cycle of fire, the value of water content ranged from 1.68 ± 0.17% (0–5 cm, before the mid 

season fire) to 26.32 ± 0.34% (0–5 cm, before the late fire). Whatever the layer and the sampling periods , the 

values of water content significantly varied across the fire regimes, respectively, before the fire application (0–5 
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cm: one-way ANOVA, F = 47.1, p = 0.0000001; 5–10 cm: one-way ANOVA, F = 41.40, p = 0.0000001). The soil 

water content significantly increased (t-test; t = -4.47, p = 0.002) with soil depth one month after the 

application of the late fire. It varied significantly with the fire regimes-sampling periods interaction (Table 3). 

Except for one month after the early and late fires, the inter-annual variation of soil water content was 

significant, particularly before the early (t-test; t = 2.19, p = 0.043), mid season (t-test; t = 8.58, p = 0.00001), 

and late (t-test; t = -20.79, p = 0.00001) fires, and one month after the mid season fire (t-test; t =- 5.94, p = 

0.00001). 

Table 3: Anova table of general linear mixed effect models on log (x+1)-transformed soil physical 

characteristics across Fire regimes and Sampling periods. F-values and the corresponding P-values are 

displayed.  

 

           

  

Bulk density Water content 

  df F P F P 

Fire regimes 2 30.45 0.0000001*** 10.89 0.00005*** 

Sampling periods 1 10.74 0.0014** 6.9 0.0099** 

Depth 1 0.05 0.82 1.4 0.2382 

Fire regimes × Sampling periods 2 6.29 0.0026** 13.58 0.000006*** 

Fire regimes × Depth 2 2.84 0.0633 0.16 0.851 

Sampling periods × Depth 1 0.01 0.9113 0.95 0.3321 

Fire regimes × Sampling periods × Depth 2 2.31 0.1042 0.06 0.934 

                                                                            ** P < 0.01, *** P < 0.001 

3.5. Relationships between soil physical characteristics and biological parameters 

The density of soil mites was significantly correlated to the bulk density, successively, one month after the 

early (R = -0.750, p = 0.018) and late fires (R = -0.92, p = 0.0004), and before the late (R = -0.74, p = 0.022) fire 

(Table 4). The water content was significantly correlated to the density of soil mites, respectively, one month 

after the mid season (R = 0.734, p = 0.024) and late (R = 0.785, p = 0.012) fires. The species richness of soil 

mites was significantly correlated to the bulk density one month after the early fire (R = -0.747, p = 0.020).   

4. Discussion 

Fire is an important variable that causes ecosystem change significantly modifying the structure and 

functioning of the system (Jung et al., 2010). Its impact on the soil physico-chemical and biological parameters 

vary depending on the type of habitat. Whatever the type of terrestrial ecosystem, the biological compartment 

plays an essential role in soil functioning and providing ecosystem services (Coleman et al., 2004). The huge 

niche partitions in soil associated to the diversity of microhabitats and to spatial and temporal segregation 

between species promote the maintenance of the biodiversity (Decaëns , 2010). Unfortunately, the prescribed 

fire reduces the soil mite abundance and diversity, as highlighted by Camann et al. (2008, 2012). These 

observations are similar to the results of our investigation. On the three fire regimes, the soil mite density  
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Table 4: Spearman correlation between biological variables and soil physical characteristics  

                        

  Mite density   Species richness 

 

Before fire 

 

One month later 

 

Before fire 

 

One month later 

  R p-value   R p-value   R p-value   R p-value 

Bulk density 

 

          

Early fire -0.089 0.818 
 

-0.754 0.018* 
 

0.015 0.748 
 

-0.747 0.020* 

Mid season fire -0.289 0.450 

 

-0.393 0.294 

 

0.372 0.323 

 

0.176 0.650 

Late fire -0.74 0.022*   -0.92 0.0004***   0.172 0.656   0.017 0.964 

Water content 

           Early fire 0.345 0.363 

 

-0.442 0.233 

 

0.116 0.367 

 

0.537 0.135 

Mid season fire 0.106 0.784 

 

0.734 0.024* 

 

-0.328 0.388 

 

0.232 0.547 

Late fire -0.241 0.530   0.785 0.012*   0.458 0.214   0.407 0.276 

                                                                     * P < 0.05, *** P < 0.001 

decreased after the fire application. The same trend was recorded with the mean species richness, except for 

the mid season fire. Indeed, from a high intensity fire result a low abundance of soil mites. In general, the litter 

buffers the mineral soil by limiting both the impact of soil compaction and fluctuations in soil temperature and 

moisture. The removal of soil litter by burn exposes the soil surface directly to the sunlight, and allows 

evaporating more moisture (Kim and Jung, 2008). Our investigation revealed that one month after the three 

fire regimes application, the mite density was significantly impacted by the bulk density and soil water content. 

Thus, the mites emerge in soils rich in water and organic matter (Behan-Pelletier, 1999; Noti et al., 2003). The 

poverty of Lamto soil in nutrients (Mordelet et al., 1996) consecutive to annual fire application could be due to 

the low availability of influx of organic matter into the soil because of the depletion of a bove ground 

vegetation and depletion of soil surface organic matters by combustion (Kim and Jung, 2008). The high 

intensity fire (4365 kW.m-1) caused by a drier vegetation could explain the low density of mites  (1,433 ± 153 

ind.m-2) observed during the mid season fire. In fact, when the vegetation is humid with a green appearance, 

the fire intensity applied is lower (791 kW.m-1) and the soil mite density (1,715 ± 327 ind.m-2) increases, as 

recorded during the early fire. In contrast to our expectations, the increase of mite species richness the day 

after the mid season fire application could be due to vertical variation of the distribution with relatively diverse 

microhabitats, which might enable the mites to survive better from the flame and fire disturbance (Kim and 

Jung, 2008). Traditionally, the mid season fire was practiced in Lamto savannah each year for over 30 years. 

Probably at this time of the year, the species would develop cuticular or genetic adaptations allowing them to 

resist to flames and fire intensity. However, this latter hypothesis should be studied with a well-established 

protocol. Whatever the fire regimes, the Simpson diversity index increased after the fire application, showing 

the emergence of a greater diversity of soil mites after the burning of stands. One of the reasons explaining 

this variation would be that in addition to specialist species (24 species), over 50% of the species observed 

before the burn were rediscovery after the fire application. The comparison with others studies indicates that 

the densities and species richness observed before the fire application were inferior to those from the works 

performed by Noti et al. (1996) in a humid savannah of the Democratic Republic of Congo (dry season: 7500 
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ind.m-2; rainy season: 13500 ind.m-2; richness: 105 Oribatida species). The research made by Coleman and 

Rieske (2006) on leaf-litter arthropods and ground-dwelling arthropods in oak–pine forests for two growing 

seasons following fire disturbance pointed out that burning, including both single and multiple-burns, caused 

an 83% reduction in arthropod abundance during the first year and a 48% reduction in abundance the second 

year relative to unburned plots. Similarly, their results showed that arthropods richness reduced 20%, and 

diversity of leaf-litter arthropods increased 15% in response to prescribed burning relative to unburned plots.  

However, the work performed by Jacobs et al. (2015) in DuPage County, Illinois indicated that soil mite 

abundance (5.07 individuals/sample) and diversity indices (0.23) were lower in annually burned plots 

compared to unburned controls (abundance: 6.28 individuals/sample; diversity: 0.26).  Fire is an important 

variable that causes ecosystem change significantly modifying the structure and functioning of the system 

(Jung et al., 2010). 41 species had been recorded along the three fire regimes and distributed as follows: early 

fire 34 species, mid season fire 20 species, late fire 13 species. In fact, changes in vegetation, seasonality and 

dispersal ability lead to large transformations in composition and functioning of communities of soil animals, 

triggering specific post-fire successions (Athias-Binche, 1994; Mordkovich et al., 2008; Pérez-Velázquez et al., 

2011). As presented in materials and methods section, the early fire was applied in a short-wet season 

(November) to humid vegetation with a green appearance. The environmental characteristics favorable may 

accelerate the recolonization by soil mites because of the sufficient energy input. The rever se case is observed 

across the mid season fire and the late fire, respectively applied in dry season and at the beginning of the 

rainy season. The inter-annual variation of soil mites showed two trends: (i) the density (early fire, mid season 

fire, and late fire), mite richness (early fire), and diversity (early fire and late fire) increased, respectively, in the 

second fire cycle compared to the first one, (ii) mite richness (mid season fire and late fire), and diversity (mid 

season fire) decreased, respectively, in the second fire cycle compared to the first one. The soil mites respond 

consistently and predictably to fire. The rebound of soil biological parameters during the second fire cycle 

could be assigned to litter and woody debris, which burn in a mosaic, reflecting local fire intensity. In addition, 

this response might have resulted from fire tolerance (Camann et al., 2008). Indeed, from the first fire cycle to 

the second fire cycle, some species (Afrotrachytes sp.3, Eviphididae sp.1, Gehypotinidae sp.1, Nothrus sp.3, 

Nothrus sp.4, Oppia sp.1, Oppia sp.3, Damaeidae sp.1, Damaeidae sp.2, Lamellobates sp.1, Scheloribatidae sp.1, 

Acaronychus sp.1, and Acaridae sp.2) increased numerically during the post-fire recovery period. Jacobs et al. 

(2015) found an increase of abundance and diversity during the burned plots of October 2009 (abundance: 

9.13 individuals/sample; diversity: 0.39) compared to the burned plots of October 2008 (abundance: 7.5 

individuals/sample; diversity: 0.29). The works realized by Mordkovich et al. (2008) in the West Siberian plain 

showed that density (Oribatid mites: 11,000 individuals.m-2, 18,000 individuals.m-2, and 30,000 individuals.m-2; 

Gamasid mites: 80 individuals.m-2, 3,000 individuals.m-2, and 2,700 individuals.m-2) and species richness 

(Oribatid mites: 15, 28, and 28 species; Gamasid mites: 2, 11, and 11 species) of mites in biotopes of post-fire 

succession series increase over time, respectively, in the young burnt site, old burnt site, and control plot. 

However, the decrease of soil biological parameters during the second fire cycle could be due to the decline of 

Oribatid assemblage heterogeneity in burned stands. The reduction of stand complexity and canopy structure 

probably diminishes the tolerance of oribatid assemblages for fire disturbance (Camann et al., 2008). 
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Appendix: List of the mite species with abundance (total from all samples) recorded along the different fire 

regimes and sampling periods (n =15). BE–Before fire, AF–After fire, OM–One month later. D–Dominance index 

(species/number ratio expressed in percentages) from each fire regime.  With (*): ubiquitous species; without 

(*): specialist’s species.  

                          

 

Early fire 

 

Mid season fire 

 

Late fire 

Taxa BE AF OM D   BE AF OM D   BE AF OM D 

Actinedida 

             
 

Microtrombidium sp.1 0 0 0 0.00 

 

1 2 0 4.35 

 

0 0 0 0.00 

Cheyletidae sp.1* 1 1 1 3.37 

 

0 0 3 4.35 

 

2 0 0 2.74 

Gamasida 

              
Gamasina 

              
Eviphididae sp.1* 4 1 0 5.62 

 

0 0 2 2.90 

 

0 2 0 2.74 

Eviphididae sp.3 3 0 0 3.37 
 

0 0 0 0.00 
 

0 0 0 0.00 

Laelaptonyssidae sp.1 0 0 1 1.12 
 

0 0 0 0.00 
 

0 0 0 0.00 

Uropodina 
              

Afrotrachytes sp.1 2 0 1 3.37 
 

0 0 0 0.00 
 

0 0 0 0.00 

Afrotrachytes sp.3 2 0 0 2.25 
 

0 0 0 0.00 
 

0 0 0 0.00 

Trachyuropodidae sp.1 0 0 0 0.00 
 

0 0 0 0.00 
 

0 2 0 2.74 

Trachyuropodidae sp.2 0 0 1 1.12 
 

0 0 0 0.00 
 

0 0 0 0.00 

Trachyuropodidae sp.3 2 3 0 5.62 

 

0 0 0 0.00 

 

0 0 0 0.00 

Trematuridae sp.1 0 0 0 0.00 

 

1 0 0 1.45 

 

0 0 0 0.00 

Uropoda sp.3 1 0 0 1.12 

 

0 0 0 0.00 

 

0 0 0 0.00 

Oribatida 

              
Palaeosomata 

              
Acaronychus sp.1* 2 1 0 3.37 

 

0 0 1 1.45 

 

2 0 0 2.74 

Parhyposomata 

              
Gehypochthoniidae sp.1* 0 0 1 1.12 

 

0 0 1 1.45 

 

0 0 0 0.00 
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Desmonomata 
              

Nothrus sp.1* 1 1 0 2.25 
 

0 0 0 0.00 
 

0 0 2 2.74 

Nothrus sp.3 2 3 1 6.74 
 

0 0 0 0.00 
 

0 0 0 0.00 

Nothrus sp.4 3 0 0 3.37 

 

0 0 0 0.00 

 

0 0 0 0.00 

Mixonomata 

              
Javacarus sp.1 0 1 0 1.12 

 

0 0 0 0.00 

 

0 0 0 0.00 

Phthiracarus sp.1 0 1 0 1.12 

 

0 0 0 0.00 

 

0 0 0 0.00 

Brachypylina 

              
Carabodes sp.1 0 0 0 0.00 

 

0 1 1 2.90 

 

0 0 0 0.00 

Eremobelba sp.1* 1 2 0 3.37 

 

0 1 0 1.45 

 

0 0 0 0.00 

Oppia sp.1* 2 1 0 3.37 

 

0 0 3 4.35 

 

30 4 0 46.58 

Oppia sp.2* 0 0 3 3.37 
 

0 0 0 0.00 
 

0 2 0 2.74 

Oppia sp.3* 0 1 0 1.12 
 

0 0 1 1.45 
 

2 0 6 10.96 

Oppiidae sp.1* 3 0 1 4.49 
 

0 2 2 5.80 
 

0 0 0 0.00 

Oppiidae sp.2 1 1 0 2.25 
 

0 0 0 0.00 
 

0 0 0 0.00 

Damaeidae sp.1* 2 1 1 4.49 
 

3 0 1 5.80 
 

0 0 0 0.00 

Damaeidae sp.2* 0 0 4 4.49 
 

0 2 0 2.90 
 

2 5 0 9.59 

Dolicheremaeus sp.1 0 1 1 2.25 
 

0 0 0 0.00 
 

0 0 0 0.00 

Brachypylina, Poronota 

              
Ceratozetidae sp.3* 2 1 3 6.74 

 

0 2 0 2.90 

 

2 0 0 2.74 

Haplozetidae sp.1 0 0 0 0.00 

 

1 0 0 1.45 

 

0 0 0 0.00 

Galumna sp.1* 2 1 1 4.49 

 

1 2 0 4.35 

 

2 0 0 2.74 

Galumnella sp.2 1 0 0 1.12 

 

0 0 0 0.00 

 

0 0 0 0.00 

Mycobatidae sp.1 1 0 0 1.12 

 

0 0 0 0.00 

 

0 0 0 0.00 

Mycobatidae sp.2 0 0 1 1.12 

 

0 0 0 0.00 

 

0 0 0 0.00 

Lamellobates sp.1* 0 0 2 2.25 

 

0 1 0 1.45 

 

0 0 0 0.00 

Scheloribatidae sp.1* 1 1 2 4.49 
 

1 3 5 13.04 
 

0 0 0 0.00 

Scheloribatidae sp.2 0 0 1 1.12 
 

0 0 0 0.00 
 

0 0 0 0.00 

Scheloribatidae sp.3 0 0 0 0.00 
 

0 0 0 0.00 
 

0 0 2 2.74 
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Acaridae sp.2 0 0 0 0.00 
 

21 0 0 30.43 
 

0 0 0 0.00 

Acaridae sp.3* 0 0 2 2.25 
 

0 0 4 5.80 
 

2 0 4 8.22 

                              

 
              

 

 

 


