
Journal of Advances in Biotechnology Vol 9 (2021) ISSN: 2348-6201                      https://rajpub.com/index.php/jbt 

 1 

DOI: https://doi.org/10.24297/jbt.v9i.9109 

A Mathematical Graph-Theoretic Model of Single Point Mutations Associated with Sickle Cell Anemia 

Disease 

Edem K. Netsey 1, Samuel Kakraba 2, * Samuel M. Naandam 1, Aayire C. Yadem 3 

1 Department of Mathematics, University of Cape Coast, Cape Coast, Ghana, West Africa 

2 Department of Mathematics and Statistics, College of Science, Technology, Engineering and Mathematics, 

Eastern Kentucky University, Richmond, KY 40475, U.S.A 

3 Department of Applied Science (Physics), University of Arkansas at Little Rock, Little Rock, AR 72205, U.S.A 

*Correspondence: Samuel Kakraba, Ph.D., Department of Mathematics and Statistics, College of Science, 

Technology, Engineering and Mathematics, 521 Lancaster Ave., 310 Wallace Building, Eastern Kentucky 

University, Richmond, KY 40475-3133, Telephone: (+1)-859-622-2478, Email: Samuel.Kakraba@eku.edu 

Abstract 

Folding and maintenance of protein is critical to protein function. Mutations in the amino acid sequence of a 

protein might prevent it from assuming the appropriate conformation needed for proper functions. Many 

diseases like cystic fibrosis and sickle cell anemia disease (SCD), among others, arise from single point mutations 

in the respective proteins. How a single point mutation might lead to a global devastating consequence on a 

protein remains an intellectual mystery. SCD is a genetic blood-related disorder resulting from mutations in the 

beta chain of the human hemoglobin protein (simply, β-globin), subsequently affecting the entire human body. 

Higher mortality and morbidity rates have been reported for patients with SCD, especially in sub-Saharan Africa. 

Clinical management of SCD often requires specialized interdisciplinary clinicians. SCD presents a major global 

burden, hence an improved understanding of how single point mutations in β-globin results in different 

phenotypes of SCD might offer insight into protein engineering, with potential therapeutic intervention in view. 

By use of mathematical modeling, we built a hierarchical (nested) graph-theoretic model for the β-globin. 

Subsequently, we quantified the network of interacting amino acid residues, representing them as molecular 

system of three distinct stages (levels) of interactions. Using our nested graph model, we studied the effect of 

virtual single point mutations in β-globin that results in varying phenotypes of SCD, visualized by unsupervised 

machine learning algorithm, the dendrogram. 

Keywords: Anemia–sickle cell disease (SCD), beta-globin (β-globin), hemoglobin protein (1A3N), graph theory, 

graph-theoretic model (nested graph), mutation GLU6VAL (E6V), homozygous HbSS, unsupervised machine 

learning, clustering 

Introduction  

Protein engineering requires deep insight into protein folding and misfolding, thereby underscoring the 

importance of experimental and computational models to study such complex network and systems. There is 

limited understanding of how a single point mutation in the β-globin prevents correct folding and maintenance 

of hemoglobin and subsequently affects the entire protein. Protein folding and maintenance are critical for 

ensuring proper protein function (Yagishita et al., 2008). Many factors (genetic or non-genetic) can prevent 

correct protein folding, leading to a protein’s inability to perform the appropriate structure-related functions 

(Cooper & Hausman, 2007). Even though the human body has several biological corrective and clearance 

mechanisms, in extreme instances, these mechanisms are unable to undo the effect of such misfolded proteins 

that might arise from severe mutations. Misfolded uncorrected proteins aggregate in and around the cells. Many 

diseases including SCD, COVID-19 and neurodegenerative diseases (such as Parkinson’s, Alzheimer’s, 

Amyotrophic lateral sclerosis) show elevated levels of protein aggregates resulting from mostly severe mutations 

(Ayyadevara et al., 2017; Balasubramaniam et al., 2019; Kakraba et al., 2019).  Conventionally, a mutation refers 

to changes in amino acid sequences of a protein, occurring by either addition, insertion, deletion or switching 

of positions in the amino acid residue(s) (Griffiths et al., 2002). Single point mutations (a mutation in only one 

amino acid residue) may result in varying degrees of severity and phenotypic clinical manifestations (Thom et 
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al., 2013). Illustratively, mutation in the Huntington gene, Parkinson’s (e.g. LRRK2, PARK7),  cystic fibrosis (e.g. 

N1303K, deltaF508), diabetes mellitus, sickle-cell anemia (e.g. E6V, V23I, K82N, K95E, E6K, E26K) among other 

diseases, all result from single point mutations in associated proteins (Abou-Sleiman et al., 2004; Chakravorty & 

Williams, 2015; Chernoff et al., 1954; Erer et al., 2016; Nuytemans et al., 2010). 

SCD is a genetic hemoglobin disorder affecting many people in different populations, diagnosed at birth upon 

receiving either one or two sickle cell genes (one from each parent) resulting in continuous production of faulty 

hemoglobin molecules. The most severe form of the disease, homozygous HbSS, occurs when the faulty 

hemoglobin producing gene is passed on from both parents to the newborn (Da Guarda et al., 2020). The faulty 

hemoglobin occurs because of a single point mutation involving the substitution of glutamic acid with valine at 

the sixth position (denoted as Glu6Val or E6V) of the β-globin. In contrast to healthy red blood cells (RBCs) (that 

appear ‘disc-like round’), sickled RBCs appears crescent, less flexible, less oxygenated (due to reduced cell 

surface and volume), stiff and have the general tendency to stick together, thus  preventing smooth blood 

transport which may end up clogging the blood vessels (Hartl, D. L., & Ruvolo, 2012). Sickle RBCs have a shorter 

life span of 10 to 20 days instead of the typical 90 to 120 days for healthy RBCs (Kanter & Kruse-Jarres, 2013; 

Neumayr et al., 2019). A Characteristic symptom of SCD is anemia (low RBCs cells count) leading to fatigue, 

occasional difficulty in breathing and retarded growth in children. Pulmonary hypertension associated with SCD 

is a serious complication estimated to affect 6-11% of patients with SCD. The world health organization (WHO) 

estimates the global prevalence of sickle cells trait to be about 5%, comprising mainly the sickle cell disease and 

thalassemia. Yearly, about 30,0000 newborns are diagnosed with significant hemoglobin disorders. In Africa, 

which carries a major percentage of the global distribution of SCD (SCD prevalence 20% to 45%), several children 

born with SCD die by the age of five (5). In the United States (US) SCD prevalence is about 1 in every 16,300 

Hispanic American and 1 in about every 365 African American births. SCD is among 8 out of 240 specific causes 

of disease that accounted for 100,000 deaths from 1990 to 2013 worldwide.  

Current treatment options are case and symptoms dependent. In the US, Hydroxyurea is prescribed to alleviate 

episodic pain sensation in SCD patients (Naghavi et al., 2015; Wastnedge et al., 2018). Long time use of 

Hydroxyurea has been shown to reduce mortality rate by 40% (Neumayr et al., 2019). However, certain adverse 

events associated with long term use of Hydroxyurea, including alopecia (hair loss), headache, nausea, weight 

gain and carcinogenic potential continue to impact its global use in SCD clinical management (Salinas Cisneros 

& Thein, 2020; Segal et al., 2008; Steinberg et al., 2003; Strouse et al., 2008). Periodic RBCs transfusion is an 

alternative therapy to manage SCD. Adverse immune response to donor antigens has been associated with RBC 

transfusions (Neumayr et al., 2019). Recently, L-glutamine was approved for management of SCD by the US FDA 

(Gardner, 2018; Neumayr et al., 2019; Strouse et al., 2008; Wastnedge et al., 2018). Though L-glutamine has been 

shown to reduce the occurrence of pain crises related to SCD, the frequency of administration of the drug and 

monthly usage cost (~$3000 USD) may be challenging to patients (Quinn, 2018). For complete treatment, the 

state-of-the art is bone marrow therapy or hematopoietic stem cell transplant (HSCT). HSCT procedure is an 

intensive and risky procedure, ultimately relying on availability of a matching donor. Although there are ongoing 

research efforts on gene editing therapy for SCD treatment, there are also medical ethics-related challenges and 

regulatory issues impacting the necessary technological advances required (Gardner, 2018; Neumayr et al., 

2019). This underscores the importance of a continuous search for novel treatment for SCD. We are of the view 

that a great deal of understanding of how a single point mutation in the beta chain of the hemoglobin protein 

leads to different phenotypes of SCD is critical to protein engineering, drug discovery and design to address the 

increasing challenges presented by SCD.  

Graph theory (a branch of discrete mathematics), concerned with the study of mathematical structures (graphs), 

is used for pairwise-object relationship modeling. It has been applied to model and study many dynamic systems 

in an attempt to gain insight into how such complex network systems function (Kyrtsos & Baras, 2012). Quite 

recently, few works have used mathematical graph-theoretic modeling for examining the effect of single point 

mutations in a protein domain that results in disease with varying phenotypes and clinical manifestations 

(Kakraba, 2015; Kakraba & Knisley, 2016; Knisley et al., 2013). Presently, to the best of our knowledge, graph-

theoretic modeling has not been employed to examine the effect of single point mutations on in the β-globin 

that result in SCD with various clinical manifestations. In this work, we extend mathematical graph-theoretic 
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modeling approach in our previous works (Knisley et al., 2013; Kakraba, 2015; Kakraba & Knisley, 2016) to the 

β-globin and examine the effect of single point mutations associated with SCD in β-globin of the hemoglobin.  

In modeling the β-globin, we constructed a 3-level hierarchical vertex-weighted model for the β-globin. We 

obtained new vertex and edge weighted combinatorial molecular indices for our graph-theoretic model of the 

β-globin. The molecular descriptors were computed based on standard graph theory definitions and authors-

adopted definitions for vertex-weighted graphs. The resulting impact of six (6) single point mutations associated 

with varying degrees of severity and phenotype of sickle cell anemia in the β-globin are measured by use of the 

nested graph model. Each virtual single point mutation results in distinct combinatorial invariants (indices or 

quantitative molecular descriptors) that reflect the local and global effect of each specific mutation on the entire 

protein. In this way, we captured the underlying consequential structural local and global network changes that 

stem from each single point mutation in the β-globin. Arguably, typical of our mathematical graph-theoretic 

modeling is the ability to rationally model how a local perturbation (mutation) results in small or huge global 

effect on the β-globin.  

Materials and Methods 

Graph-theoretic model for β-globin  

Although, graph-theoretic modeling adopted in this work is similar to previously used methods (Kakraba, 2015; 

Kakraba & Knisley, 2016), this work focuses on the beta chain of the hemoglobin protein and broaden previously 

published combinatorial descriptors to incorporate edge-weight assignments. We adopted some molecular 

indices from the molecular database from Table 1-3 (Kakraba, 2015; Kakraba & Knisley, 2016) and incorporated 

other standard and author-adopted graph invariants in this work.  Therefore, the molecular descriptors of the 

subdomain graphs (resulting from the unique partitioning into subsequences), the resulting β-globin graph, and 

the mutations examined in this work are specific to the β-globin. 

Subsequence partition of the β-globin  

The  fasta sequence of the protein corresponding to the β-globin (PDB ID: 1A3N) was retrieved from the protein 

databank (Tame & Vallone, 2000; The Protein Data Bank, 1998). Using UCFS Chimera (Pettersen et al., 2004) 

plug-in built for Cystoscape (Shannon et al., 2003), we visualized and partitioned the β-globin into ten (10) non-

overlapping subsequences represented by Gi, i =1…10. To preserve essential biological information contained 

in the secondary structures of the β-globin, we avoided cutting through binding sites, beta strands and alpha 

helixes during partitioning of the β-globin into subsequences. We also ensured each subsequence contained 

only one type of secondary structure; either a beta strand, an alpha helix, turn, bend or a loop with no more 

than 25 amino acid residues. A loop region was tolerated to include turns, a 3/10-helix, and an alpha helix with 

less than 6 residues of amino acids. Table 1 is the resulting non-overlapping subsequences for each subdomain 

and reason for such partitioning of the β-globin. 

Table 1. Subsequence Partition for the β-globin 

Subdomain Subsequence Amino Acid Sequence Reason/ 

Rationale 

G1 1…...17 VHLTPEEKSAVTALWGK Coil, alpha helix, turn 

G2 18…...35 VNVDEVGGEALGRLLVVY Coil, alpha helix, bend 

G3 36…...48 PWTQRFFESFGDL 3/10 helix, coil, binding site 

G4 49…...57 STPDAVMGN Bend, alpha helix, coil 

G5 58…...73 PKVKAHGKKVLGAFSD Alpha helix 

G6 74…...79 GLAHLD Binding site 
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G7 80……94 NLKGTFATLSELHCD Alpha helix, binding site 

G8 95..….117 KLHVDPENFRLLGNVLVCVLAHH Turn, coil, alpha helix, binding site 

G9 118.….123 FGKEFT 3/10 helix, bend 

G10 124.….146 PPVQAAYQKVVAGVANALAHKYH Alpha helix, turn, coil 

 

Subdomain graphs corresponding to the subsequences of the β-globin  

The subsequences corresponding to each subdomain of the β-globin were submitted to I-TASSER for Ab- initio 

modeling, and the results used in Cystoscape to generate the interaction or network graphs. Altogether, ten (10) 

subdomain graphs were generated corresponding toe the ten subsequences in Table 1. 

To observe more interactions between the amino acid residues in the subdomain graphs of the β-globin, we 

chose a proximity measure of six (6) angstroms. We determined the endpoints by the center of mass of each 

amino acid residue in the 3D structure of β-globin. The wildtype subdomain graph and mutated subdomain 

graph (E6V) of subsequence corresponding to G1 are shown in Fig.1 (refer to the appendix 1 for other subdomain 

graphs generated for β-globin). Mutated subdomain graphs were obtained by submitting the mutated 

subsequences to I-TASSER (Zhang, 2007b, 2007a) for ab initio predictive modeling, and subsequently using 

Cystoscope for the corresponding network graphs(refer to the appendix 2 for other mutated subdomain graphs 

generated for β-globin). 

Hierarchical (Nested Graph) Model for the β-globin 

Finally, we denote each of the subdomains with a vertex in a domain graph of the β-globin (H). From the protein 

sequence submitted to UCFS chimera software (Pettersen et al., 2004), we obtained the  network interaction 

data and using  Cystoscope  (Shannon et al., 2003) , network (interaction) graph was generated  for the β-globin. 

Our hierarchical graph has three (3) layers, namely, the lowest level, middle level, and the top level. The lowest 

level comprises 20-small vertex-weighted amino acids, corresponding to the 20 most essential amino acids. The 

middle level graph denotes the subgraphs corresponding to the subsequences of the β-globin. We generated 

ten (10) distinct vertex-weighted subgraphs (each vertex in the subgraph denoting an amino acid) in which the 

weights of the vertices and edges are graph invariants (molecular descriptors) obtained from the amino acids 

of the lower-level graph.  In the top-level graph, each subdomain graph (subgraph from the middle level) 

collapses into a single weighted vertex (node). The weights assigned to each subdomain graph as a vertex or 

node in the top-level graph are based on vertex and edge weighted molecular descriptors of each subdomain 

graph. The edges/links seen in the β-globin nested domain graph are determined by a nearness or proximity 

measure threshold distance of 6 angstroms (6Å) between any two adjacent residues of the graph. The molecular 

Figure 1. Subdomain (wildtype) G1 (left) and mutated subdomain graph (E6V) 

G1 (right) 
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descriptors particular to our β-globin model were then calculated for further network analysis. Figure 2 shows 

a model for the β-globin based on the graph-theoretic approach applied in this work. 

 

Figure 2. A Hierarchical (Nested) Graph Model for β-globin of Hemoglobin 

Graph-theoretic invariants (molecular descriptors) for Subdomain and Top-level Graph 

 We computed weighted graph invariants for subdomain graphs for the corresponding subsequences aimed at 

describing the local properties of the subgraphs. These values become the wildtype values of the subdomain 

graphs, and subsequently incorporated as vertex-edge weights in the top-level graph (H). The molecular 

descriptors calculated for the wildtype values of the subdomain graphs are depicted in Table 2. Descriptor e5 

was based on assignment of  molecular descriptors d13 from our previous work (Kakraba & Knisley, 2016).  

Weighted domination number, weighted betweenness, and weighted eccentricity measures were used in 

assessing the impact of specific nodes in the graphs to determine their influences within the graph networks. 

For a given subdomain or top-level graph, we also considered the absolute value of the change in molar mass 

per average edge (𝛥𝑀𝑑) along the edge between connected vertices Ri and Rj, using equation (1) in which �̅� is 

the average weighted degree. 

𝛥𝑀𝑑 = |
𝑀(𝑅𝑖)−𝑀(𝑅𝑗)

�̅�
| × 10

−3𝐾𝑔𝑚𝑜𝑙−1                           (1) 

Table 2: Weighted Molecular Descriptors of Subdomain Graphs for β-globin 

Subdomain e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 

G1 17.000 43.000 84.000 15.000 24.000 5.000 4.941 0.255 18.000 0.032 0.229 

G2 18.000 52.000 104.000 15.000 36.000 6.000 5.778 0.235 22.333 0.026 0.221 

G3 13.000 24.000 48.000 10.000 42.000 6.000 3.692 0.222 17.846 0.035 0.241 

G4 9.000 21.000 42.000 7.000 7.000 3.000 4.667 0.407 4.222 0.085 0.313 

G5 16.000 45.000 90.000 11.000 7.000 5.000 5.625 0.255 17.375 0.032 0.237 

G6 6.000 10.000 20.000 5.000 15.000 2.000 3.333 0.583 1.667 0.153 0.399 

G7 15.000 40.000 80.000 13.000 24.000 5.000 5.333 0.264 16.000 0.035 0.244 

G8 23.000 59.000 118.000 19.000 49.000 9.000 5.130 0.153 50.609 0.015 0.178 

G9 6.000 11.000 22.000 5.000 12.000 2.000 3.667 0.667 1.333 0.163 0.400 

G10 23.000 62.000 124.000 19.000 48.000 8.000 5.391 0.170 43.826 0.016 0.188 
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Key: e1 = order of graph (number of nodes/vertices), e2 = size of graph (number of interactions/edges); e3 = total 

vertex-weighted degree; e4 = average edge-weighted domination number; e5 = vertex-weighted domination based 

on assignment of atomic number assignment to the vertices (based on d13), e6 = diameter; e7 = average degree 

value; e8 = average eccentricity value; e9 = average betweenness value; e10 = average closeness; e11 = average 

eigenvector 

With these weights assigned to the edges of the top-level graph (H), we computed other graph centrality 

measures like weighted order of the graph, degree centrality, closeness centrality, eigenvector centrality and 

betweenness centrality (Ni et al., 2011) for subdomain graphs and top-level graph  using Cystoscape (Shannon 

et al., 2003).  

Virtual Single Point SCD Mutations in the β-globin  

To assess the effect of single point mutations on the entire β-globin, we proceeded by selecting six (6) prevalent 

mutations known to be associated with mild or severe SCD phenotypes in the β-globin from literature (refer to 

Table 3). In computing the set of graph-theoretic indices corresponding to each mutation, we employed these 

procedures. First, starting from the residue in the subdomain graphs (Gi), assign amino acid descriptors from 

the molecular database (Kakraba, 2015; Kakraba & Knisley, 2016) as weights to the vertices of the subdomain 

graphs and calculate graph invariants specific to each subdomain graph. Use subdomain molecular descriptors 

from above as weights of the vertices or edges in the top-level graph and subsequently obtain graph invariants 

for the top-level graph (H). These invariants of the top-level graph represent the wildtype molecular descriptors. 

To perform the virtual single point mutations for the mild and severe phenotypes, return to each subdomain 

graph where a specific mutation occurs, and locate the corresponding amino acid at that position in the amino 

acid residue. Mutate the residue by substituting or deleting the mutant residue at the position (where 

appropriate) in the subdomain graph. Consequently, a ‘mutant-specific vertex-weighted graph’ results for that 

subdomain graph where the mutation occurred. Next, compute the corresponding graph-theoretic molecular 

descriptors or invariants for the new vertex-weighted subdomain graph (‘mutated subdomain graph’) arising 

from the mutation. Proceed to assign these new set of molecular descriptors to the top-level graph and 

recompute the molecular descriptors of the top-level graph resulting from the mutation. Each mutation results 

in graph-theoretic-specific molecular descriptors of the top-level graph. Through this approach, we determine 

the local and global effect of each single point mutation on the β-globin. The wildtype graph-theoretic molecular 

descriptors and those arising from the six (6) mutation provide indices useful for viewing the local and global 

effect of each single point mutations in the β-globin (mutated subdomain graphs depicted in appendix 2). The 

mutation-specific molecular descriptors for the top-level graph (β-globin) are calculated and reported in Table 

4. 

Table 3. Anemia-Sickle Cell-Causing Mutations in β-globin 

Mutation SCD Phenotype 

Wildtype No 

GLU6VAL (E6V) Severe 

GLU6LYS (E6K) Mild 

VAL23ILE (V23I) Mild 

GLU26LYS (E26K) Mild 

LYS82ASP (K82N) Mild 

LYS95GLU (K95E) Mild 
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Table 4. Graph Invariants for SCD-Specific Mutation in the β-globin 

Measure Wildtype E6V E6K V23I E26K K82N K95E 

WMaxDeg 1.442 1.442 1.442 1.437 1.442 1.447 1.443 

WMeanDeg 0.936 0.940 0.936 0.939 0.936 0.937 0.936 

WMinDeg 0.243 0.263 0.244 0.248 0.243 0.243 0.243 

WMaxEig 0.583 0.583 0.583 0.583 0.583 0.582 0.583 

WMeanEig 0.248 0.248 0.248 0.247 0.248 0.248 0.248 

WMinEig 0.037 0.036 0.037 0.036 0.037 0.036 0.037 

WMaxClos 0.192 0.193 0.192 0.191 0.192 0.192 0.192 

WMeanClos 0.152 0.153 0.152 0.152 0.152 0.153 0.152 

WMinClos 0.100 0.101 0.100 0.100 0.100 0.100 0.100 

Key: WMaxDeg = maximum weighted degree; WMeanDeg = average weighted degree; WMinDeg = maximum 

weighted degree; WMaxEig = maximum weighted eigenvector; WMeanEig = average weighted eigenvector; 

WMinEig = minimum weighted eigenvector: WMaxClos =maximum weighted closeness; WMeanClos = average 

weighted closeness; WMinClos= mean weighted closeness 

Results and Discussion 

We used our graph-theoretic molecular weighted invariants or descriptors (refer to Table 4) computed for the 

wildtype, mild and severe mutations, and employed a statistical unsupervised machine learning algorithm 

(specifically, a hierarchical clustering) to visualize how each SCD single point mutation varies from the wildtype 

for the β-globin. In R statistical software (R Core Team, 2014), we used the single linkage function  and the 

Euclidean distance for generating the dendrogram. Our choice of the single-linkage function stems from our 

effort to decrease any possible biases in the clustering of the single point mutations associated with SCD. In this 

way, we were able to visualize the effect of the virtual SCD single point mutations on the entire β-globin in 

relation to the wildtype. The dendrogram (depicted in Fig. 3) is the resulting visual representation of the effect 

of each single point mutation on the β-globin, and subsequently the entire hemoglobin protein.  

Notably, our model (Fig. 3) classifies the severe mutation, E6V into entirely different and farthest cluster 

(distance of 0.015 Euclidean distance) away from the wildtype, as an expression of the profound impact of E6V 

on the β-globin. Consistent with literature and clinical manifestations, E6V (Glu6Val) is a typical sickle-cell anemia 

mutation of severe clinical outcomes. E6V or Glu6Val is the mutation occurring as a substitution of glutamic acid 

with valine at position 6 in the β-globin. Characteristic of E6V is the formation of abnormal hemoglobin S 

subunits that aggregates or sticks to each other. This results in formation of long, rigid rod-like molecules, 

thereby altering the characteristic functional shape of the red blood cells to form sickle or crescent shape. 

Consequentially, premature death of sickle-shaped cells arises, leading to shortage of red blood cells (anemia). 

Severe pain and damage to the organs happens when the rigid sickle-shaped cells block small blood vessels, 

preventing easy flow of blood (Cohen & Mahadevan, 2013; Hartl, D. L., & Ruvolo, 2012; Kim, 2014; Oksenberg 

et al., 2016; Parrow et al., 2017). In addition, our model suggests that V23I and K82N are significantly different 

from the wildtype, thereby warranting further research.  

Literature review only shows a handful of such graph-theoretic models that have been used to study the effect 

of single point mutations that leads to different phenotypes of diseases in associated proteins. Like previous 

research (Knisley et al., 2013; Kakraba, 2015; Kakraba & Knisley, 2016) that applied graph-theoretic modeling to 

examine the effect of single point mutations that leads to the severe and the mild phenotypes of cystic fibrosis 

in the NBD1 and NBD2 of CFTR, the current research has brought to light how a single point mutation in the 
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beta chain of the hemoglobin protein might lead to the anemia sickle cell disease of varying clinical 

manifestations. 

Conclusions 

That single point mutations (local perturbations) in the beta chain of the hemoglobin consequentially translate 

into either mild or severe global effect on an entire protein has not been explicitly studied. To gain further insight 

into how single point mutations might impact the entire hemoglobin protein, we built a hierarchical (nested) 

graph-theoretic model for the β-globin. Subsequently, we quantified the network of interacting amino acid 

residues, representing them as molecular system of distinct stages (levels) of interactions. Using our nested 

graph model, we studied the effect of virtual single point mutations on the β-globin, visualized by unsupervised 

machine learning algorithm, the dendrogram. By employing such mathematical modeling, computational and 

systems biology methodology, we were able to visualize how a small perturbation such as a single point 

mutation affects the entire hemoglobin protein. Future research might consider addressing questions such as, 

why does mutation E6V cluster farthest from the wildtype in our model? Also, what inhibitors (corrector small 

molecules e.g., amino acid) or graph invariant(s) of the subdomain graph containing E6V would cause the severe 

 

 

Figure 3: Visualizing the effect of single point SCD-associated mutations in the β-globin. In R 
statistical software, molecular descriptors of the top-level graph (from Table 3) were used with the 
in-built functions (hclust and single linkage) and the Euclidean distance for clustering the single 
point mutations in associated with different phenotypes of SCD. Notably, from the cluster, 
mutation E6V is at 0.015 Euclidean distance away from the wildtype mutation, consistent with 
literature that E6V is the most severe SCD-associated mutation in the beta chain of the hemoglobin 
protein. 
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single point anemia-sickle-cell causing mutation (E6V) to cluster along or closer to the wildtype in our 

hierarchical graph-theoretic model? Such research questions, when addressed, will provide great insight from a 

computational therapeutic perspective on small molecule discovery and design to attenuate and or reverse the 

effects of the severe single point mutation (E6V) causing SCD. 

Although, the present work focused on application of graph-theoretic model to examine the effect of single 

point mutations causing the mild and severe phenotype of SCD in the β-globin, the established mathematical 

modeling concept applied in this work is extendable to any disease arising from single point mutations in a 

protein like muscular dystrophy, COVID-19 (manuscript in preparation), among others. The existence of such a 

predictive graph-theoretic mathematical modeling that reflects systems biology might be informative in 

understanding unknown consequences of single point mutations in a protein domain, and aid in drug design 

for therapeutic intervention. This underscores the importance of computational models, especially mathematical 

graph-theoretic models in epidemiology. Our work adds to the existing knowledge on application of 

mathematical graph-theoretic modeling to study complex networks and systems biology, with potential 

therapeutic application in drug discovery and design. 
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Appendix 

 

 

 

Appendix 1: Subdomain graphs corresponding to subsequences partition of the β-globin. Nested 

(interaction) graphs were obtained by submitting the subsequences (in Table 1) to I-TASSER for ab-initio 

modeling and used in Cystoscape for generation of the nested graphs (refer to methods section for further 

details) 
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Appendix 2: Subdomain graphs corresponding to mild and severe SCD mutations. Nested (interaction) 
graphs were obtained by submitting the mutated subsequences to I-TASSER for ab-initio modeling and 

used in Cystoscape for generation of the nested graphs (refer to methods section for further details) 
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