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ABSTRACT  

Cystic fibrosis is one of the most prevalent inherited diseases. This disease is caused by a mutation in a membrane protein, 
the cystic fibrosis transmembrane conductance  regulator (CFTR). CFTR is known to function as a chloride channel that 
regulates the viscosity of mucus that lines the ducts of a number of organs.  The most  prevalent mutation of CFTR is 
located in one of two nucleotide binding domains, namely, the nucleotide binding domain one (NBD1). However, some 
mutations in nucleotide binding domain two (NBD2) can equally cause cystic fibrosis. In this work, a graph-theoretic model is 
built for NBD2. Using this model for NBD2, we examine the consequences of single point mutations on NBD2. We collate 
the wildtype structure with eight of the most prevalent mutations and observe how the NBD2 is affected by each of these 
mutations. 
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1. INTRODUCTION  

Cystic fibrosis is caused by a single point mutation in a membrane protein and is the most common genetic disorder in the 
caucasion population. The cystic fibrosis transmembrance conductance regulartor (CFTR) is a large protein that is 
embedded in the membrane of epithelial cells and functions as a chloride channel [1–4]. The most common mutation of 
CFTR results in the misfolding of the protein and subsequent degradation. Consequently, people with this mutation have 
an absence or diminished amount of mature, functioning CFTR in the membrane of the epithelial cells of organs such as 
the lungs, pancreas and colon. The viscosity of the mucus that lines the ducts of these organs is altered, resulting in sticky 
mucus plugs that disrupt the normal function of these organs. Lung disease is the primary cause of death for cystic fibrosis 
(CF) patients. The affected protein, CFTR, is a large protein consisting of five domains; two transmembrane domains, two 
nucleotide binding domains and a regulatory domain. The deletion of phenylalanine at position 508 (ΔF508) occurs in 
more than 90% of the CF population [5] and occurs in one of the two nucleotide binding domains (NBD1). 

It is still not fully understood how mutations of CFTR cause the mis-folding of the protein. In previous work by Knisley et al, 
[6 ], a graph-theoretic model was built to study the effects of various mutations on the protein domain NBD1. Despite the 
fact that most of the disease causing mutations occur in NBD1, a number of them also occur in NBD2. There are seventeen 
mutations in the LSGGQ sequence and Walker B motif of NBD1 which cause CF, while there are four mutations in the 
same respective region of NBD2. In addition, research has shown   that whereas there is only one mutation in the Walker A 
motif of NBD1 causing cystic fibrosis, there are as many as five of these mutations taking place in NBD2. In view of the fact 
that mutations that results in cystic fibrosis can equally occur in NBD2, it is appropriate to make an effort to gain 
understanding on how mutations in NBD2 can impact significantly on NBD2  [7, 8. 9]. 

To address the key question, we build a graph-theoretic model of NBD2. With a vertex-weighted nested graph 
representation of the protein domain NBD2, we present a method to model the effect of a single point mutation of a 
protein. Using the vertex-weighted graph, we define novel combinatorial descriptors based on these vertex-weights. We 
employ these graph-theoretic measures to quantify the consequences of nine mutations of CFTR’s NBD2. Each mutation 
results in a distinct set of graph-theoretic measures that are both local and global and capture the underlying structural 
network consequences of the mutation. Our graph-theoretic approach models a process by which a local change can 
produce a significant global change. Even though the method of this research is analogous to that used by Knisley et al. [6], 
the molecular descriptors that  are calculated to inform the graph-theoretic model are much more extensive and particular 
to NBD2. A more complete understanding of the effects of a single point mutation on the structure and function of the 
protein molecule are necessary to guide the rational design of drugs to treat this fatal disease. 
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2. METHODS 

2.1 Graph-theoretic Model 

Each of the twenty most common amino acids is  modeled as a vertex-weighted graph. The backbone and central carbon 
atom are represented by a single vertex and each of the atoms in the corresponding amino acid residue’s chain structure 
is represented by a vertex. The hydrogen atoms are suppressed. Vertices in the residue chain are weighted by the nearest 
integer value of the molecular mass of the corresponding atom and edges are determined by molecular bonds. Using each 
of these hydrogen suppressed models of the twenty most common amino acids, we obtain twenty corresponding vectors 
of descriptors of length twenty two that are based on the graph-theoretic measures. The definitions of the measures used 
can are found below. 

2.1.1 Molecular Descriptors 

The molecular descriptors  in the Tables 1A, 1B and 1C are computed from the graph-theoretic model based on weighted 
degree and the assignment of atomic numbers as to each vertex. Keys:  d1 = number of vertices  (order of the graph), d2 
= number of edges (size of the graph), d3 = total weighted degree of the graph (obtained by adding all the weights of all the 
vertices), d4 = weighted domination number, d5 = average eccentricity, d6 = radius (minimum eccentricity), d7 = diameter 
(maximum eccentricity), d8 = average weighted degree (total degree, divided by the number of vertices), d9 = maximum 
eigenvalue of the weighted Laplacian matrix of the graph, d10  =  minimum eigenvalue of the weighted Laplacian matrix of the 
graph, d11 = Average eigenvalue of the Laplacian matrix of the the graph, d12 = second smallest eigenvalue of the Laplacian 
matrix of the graph. Using the atomic numbers as weights of vertices in the graph theoretic model of each of the amino 
acids, we obtain the following descriptors in Tables 2-3: d13 =  weighted domination number using the atomic number, d14 = 
average weighted eccentricity based on the the atomic number, d15 = weighted radius based on the atomic number 
(minimum eccentricity), d16 = weighted diameter based on the atomic number (maximum eccentricity), d17 = total weighted 
atomic number of the graph (obtained by summing all the atomic number of each of the vertices in the graph), d18 = average 
weighted atomic number or degree based on atomic number in the graph. Descriptors d19 through d22 in the Tables 1A, 
1B and 1C were obtained  from the  weighted Laplacian matrix, d19 = weighted maximum eigenvalue based on atomic number, 
d20 = weighted min- imum eigenvalue based on the atomic numbers, d21 = weighted average eigenvalue based on the 
atomic numbers, and d22 = weighted second smallest eigenvalue of the weighted Laplacian matrix. The resulting tables are 
below. 

 

Molecule Symbol d1 d2 d3 d4 d5 d6 d7 d8 

Arginine R 8.00 7.00 12.00 6.00 8.120 6.00 12.00 1.50 

Histidine H 7.00 6.00 14.00 6.000 6.71 6.000 9.00 2.00 

Lysine K 6.00 5.00 10.00 4.00 7.00 5.00 9.00 1.667 

Aspartic Acid D 5.00 4.00 8.00 4.00 5.17 3.00 6.00 1.60 

Glutamic Acid E 6.00 5.00 10.00 5.00 6.00 4.00 8.00 1.667 

Serine S 3.00 2.00 4.00 2.00 1.670 2.00 3.00 1.333 

Threonine T 4.00 3.00 6.00 3.00 3.250 1.00 4.00 1.50 

Asparagine N 5.00 4.00 8.00 4.00 5.00 3.00 6.00 1.60 

Glutamine Q 6.00 5.00 10.00 4.00 5.860 4.00 8.00 1.667 

Cysteine C 3.00 2.00 4.00 2.00 2.33 1.00 3.00 1.333 

Glycine G 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

Proline P 4.00 4.00 8.00 4.00 4.00 4.00 4.000 2.00 

Alanine A 2.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 

Isoleucine I 5.00 4.00 8.00 4.00 3.25 3.00 6.00 1.600 

Valine V 4.00 3.00 6.00 3.00 3.25 1.00 4.00 1.50 

Leucine L 5.00 4.00 8.00 4.00 5.00 3.00 6.00 1.60 

Methionine M 5.00 4.00 8.00 4.00 5.40 3.00 7.00 1.60 

Phenylalaine F 8.00 8.00 14.00 6.00 7.00 6.000 11.000 1.750 

Tyrosine Y 9.00 9.00 18.00 7.00 8.88 6.000 13.000 2.000 

Tryptophan W 11.00 12.00 24.00 8.00 11.10 9.000 14.000 2.182 

 

Table 1A 
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Molecule Symbol d9 d10 d11 d12 d13 d14 d15 d16 

Arginine R 12.499 -4.307 3.500 -2.590 19.00 31.444 20.00 38.00 

Histidine H 12.876 -3.721 4.286 -1.185 15.00 23.10 18.00 31.00 

Lysine K 10.363 -3.151 3.00 -0.536 12.00 24.50 18.00 31.00 

Aspartic Acid D 11.539 -4.178 3.20 0.528 12.00 16.40 12.00 20.00 

Glutamic Acid E 11.530 -3.425 3.333 -0.538 12.00 21.00 14.00 26.00 

Serine S 5.00 1.00 2.00 2.00 6.00 13.33 8.00 20.00 

Threonine T 9.928 -3.928 3.00 3.00 6.00 12.40 8.00 14.00 

Asparagine N 11.539 -4.178 3.20 0.528 12.00 16.50 14.00 20.00 

Glutamine Q 12.207 -4.255 3.333 -1.043 12.00 21.167 15.00 24.00 

Cysteine C 6.243 -2.243 2.00 2.00 6.00 16.670 12.00 22.00 

Glycine G 0.00 0.00 0.00 0.00 1.00 3.50 1.00 6.00 

Proline P 12.00 -4.00 4.00 4.00 12.00 12.00 12.00 12.00 

Alanine A 2.00 0.00 1.00 2.00 6.00 6.00 6.00 6.00 

Isoleucine I 10.851 -6.085 1.80 -1.517 12.00 15.60 12.00 18.00 

Valine V 9.928 -3.928 3.00 3.00 6.00 10.50 6.00 12.00 

Leucine L 11.029 -4.729 3.20 1.052 12.00 15.60 12.00 18.00 

Methionine M 9.49 -2.812 2.80 0.678 18.00 27.20 18.00 34.00 

Phenylalaine F 14.851 -4.801 4.25 -1.672 18.00 23.25 18.00 24.00 

Tyrosine Y 12.868 -4.793 4.333 -2.054 18.00 27.78 20.00 38.00 

Tryptophan W 13.511 -6.324 4.00 -2.576 24.00 27.50 18.00 36.00 

Table 1B 

 

Molecule Symbol d17 d18 d19 d20 d21 d22 

Arginine R 45.00 5.00 23.343 0.00 10.667 4.20 

Hisitidine H 47.00 4.70 24.243 -1.734 10.400 1.605 

Lysine K 37.00 6.17 22.739 -0.179 10.167 1.372 

Aspartic Acid D 34.00 6.80 28.634 0.00 10.40 2.969 

Glutamic Acid E 40.00 6.67 28.731 0.00 10.667 1.822 

Serine S 22.00 7.33 20.00 0.00 8.667 6.00 

Threonine T 27.00 5.40 23.819 -4.227 9.00 6.00 

Asparagine N 33.007 6.60 27.708 0.00 10.00 3.00 

Glutamine Q 39.00 6.50 27.831 0.00 10.50 1.849 

Cysteine C 28.00 9.33 28.00 0.00 11.333 6.00 

Glycine G 7.00 3.50 7.00 0.00 3.50 0.00 

Proline P 24.00 6.00 24.00 0.00 12.00 12.00 

Alanine A 12.00 6.00 12.00 0.00 6.00 0.00 

Isoleucine I 30.00 6.00 24.841 -1.641 9.60 3.373 

Valine V 24.007 6.00 24.00 0.00 9.00 6.00 

Leucine L 30.00 6.00 25.021 0.00 9.60 3.113 

Methionine M 40.00 8.00 31.344 0.00 13.60 2.656 

Phenylalaine F 48.00 6.00 26.993 0.00 12.00 2.026 

Tyrosine Y 56.00 6.22 28.252 -0.96 12.222 1.599 

Tryptophan W 68.00 5.667 29.778 0.211 12.75 2.044 

Table 1C 
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2.1.2  Subdomains of the Protein 

We next partition the sequence of CFTR that corresponds to the NBD2 domain into nine subsequences using 3GD7 from 
the Protein Data Bank [10].  In particular, we obtain the following subsequences denoted by  Si, i = 1…9 as shown in the 
table below. In determining these subsequences, we are guided by the secondary structures of the protein. Each 
subsequence contains one and only one type of secondary structure, either a beta strand, an alpha helix, or a loop. The 
loop regions may contain turns, a 3/10-helix or an alpha helix with no more than 6 residues. The corresponding 
subsequences of each subdomain are provided in Table 2. 

Subdomain Subsequence Amino Acid Seqennce 

S1 1209..1224 QMTVKDLTAKYTEGGN 

S2 1225..1238 AILENISFSISPGQ 

S3 1239..1261 RVGLLGRTGSGKSTLLSAFLRLL 

S4 1262..1277 NTEGEIQIDGVSWDSI 

S5 1278..1305 TLEQWRKAFGVIPQKVFIFSGTFRKNLD 

S6 1306..1324 PNAAHSDQEIWKVADEVGL 

S7 1325..1340 RSVIEQFPGKLDFVLV 

S8 1341..1364 DGGCVLSHGHKQLMCLARSVLSKA 

S9 1365..1391 KILLLDEPSAHLDPVTYQIIRRTLKQA 

   

Table 2 

 

The secondary structures that guide the cutoff points  of each of the subdomains are given in the Table 3 below.  

Subdomain Subsequence Reason 

S1 1209..1224 beta strand, binding site, turn,  bend 

S2 1225..1238 binding site, beta strand,  turn 

S3 1239..1261 beta strand, binding site, turn, bend,  alpha-helix 

S4 1262..1277 bend, beta strand,  turn 

S5 1278..1305 binding site, alpha helix, bend, turn, beta  strand 

S6 1306..1324 turn, bend, alpha helix 

S7 1325..1340 bend, turn, alpha helix, beta strand, 3/10 -alpha   helix 

S8 1341..1364 turn, bend, alpha helix, beta  strand 

S9 1365..1391 alpha helix, beta strand,  bend 

Table 3 

We model the structure corresponding to each  subsequence as a graph to obtain nine graphs which we denote by Gi 
where i = 1…9. The vertices(nodes) of each graph represent an amino acid in the sequence  and edges are determined by 
a proximity measure of eight angstroms. The distance endpoints are determined by the center of mass of each amino acid 
residue in the 3D structure provided in 3GD7. Figure 3 is the graphs of the substructure S4 and S5. 

 

Figure 1: Subdomain Graphs for corresponding to S4 and S5 
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I S S N  2 3 4 8 - 6 2 0 1  
                                                                V o l u m e  6  N u m b e r  1  
                                         J o u r n a l  o f  A d v a n c e s  i n  B i o t e c h n o l o g y  

784 | P a g e                                      C o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  

J u n e ,  2 0 1 6                                                     w w w . c i r w o r l d . c o m  

 

Finally, each subdomain graph such as the two above  is represented by a vertex  in the NBD2 CFTR domain graph. The 
edges of the NBD2 CFTR domain graph, or simply the domain graph, are based on a proximity measure where the 
distance endpoints are determined by a threshold distance of 8 angstroms between any two residues of each subdomain. 
Summarizing the method of construction, the nested graph has three layers. At the lowest level we have a collection of 
twenty small vertex-weighted graphs, one for each of the twenty most common amino acids. At the middle level, we have 
a collection of nine vertex-weighted graphs,  in which each vertex represents an amino acid and the weights of the vertices 
are the combinatorial descriptors of the amino acid graphs at the lower level. At the highest level, (third in this case) we 
have a vertex-weighted graph  that represents the nucleotide binding domain NBD2. The vertices in the domain graph 
each represent one of the subdomain graphs  and the weights assigned to these vertices are derived from the vertex-
weighted graph descriptors of each. Using these measures we obtain a final set of graph-theoretic-based measures for the 
domain graph  of NBD2. The graph-theoretic model for the NDB2 is depicted in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

2.2 Virtual Mutations 

Having obtained a set of measures for the wildtype NBD2 domain, we select eight disease causing mutations found in the 
Cystic Fibrosis Mutation Databank [11] that occur in NBD2. Given that we have selected eight mutations to model, we now 
obtain a set of graph-theoretic measures for each mutation in the following way. To measure the global structural effect of 
a single point mutation, we first make the corresponding change at the residue level. This change affects one of the 
subdomains . We obtain a new set of subdomain graph measures of the effected subdomain. Note that an amino acid 
switch (virtual mutation) produces a graph that contains a different residue together with different set of combinatorial 
descriptors. Since both the structure of, and possibly a vertex-weight for one vertex may have changed, this changes the 
corresponding vector of vertex-weights for the vertex in that substructure . In this way, we incorporate the graph-theoretic 
changes of a single point mutation with the predicted structural change by using the vertex-weights at each level. The 
edge set of the domain graph remains unchanged, but the weights of the vertices are adjusted according to the structural 
(both vertex and edge) changes of the underlying subdomain graphs. Since our measures are based on vertex-weights, 
we obtain a new set of values associated with each mutation. These, together with the wildtype, provide a set of measures 
for nine distinct graphs.  The eight mutations that were selected and that occur most frequently in the population together 
with the clinical manisfestations are given in Table 4. 

 

Mutation CF 

 

Wildtype  No 

Y1212G  Mild 

G1271E  Mild 

S1347R  Mild 

I1234V  Mild 

D1270N  Mild 

V1212W  Mild 

S1235R  Mild 

   N1303K Severe 

Table 4 : Some CF-causing Mutations in NBD2 

Figure 2: Nested Graph Model for NBD2 
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The resulting change in the descriptors for the main domain graph for each mutation is calculated and given below.  The 
definitions of the t values  for Table 7 follow: t1 = average of non-zero numbers in column 3 of the weighted adjacency 
matrix, t2 = average of non-zero numbers in column 4 of the weighted adjacency matrix, t3 = average of non-zero numbers 
in column 9 of the weighted adjacency matrix, t4 = average weighted degree of the top level graph (divided by 
thousand), t5 = total weighted degree of the top level graph (divided by thousand), t6 = weighted connectivity for row 1 of 
the weighted adjacency matrix (obtained by summing all the numbers on row 1), t7 = weighted connectivity for row 2 of the 
weighted adjacency matrix, t8 =weighted connectivity for row 3 of the weighted adjacency matrix, t9 = weighted connectivity 
for row 4 of the weighted adjacency matrix,  and  t10  =  weighted connectivity for row 5 of the weighted adjacency matrix. 

 

Mutation t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

Wildtype 4.42 2.99 4.93 0.90 8.12 13.95 7.66 18.31 13.20 24.60 

Y1219G 4.33 2.90 4.49 0.82 7.37 13.65 6.67 18.00 13.11 24.43 

V1212W 3.15 3.60 5.14 0.92 8.23 13.61 6.39 19.24 11.93 24.15 

I1234V 4.67 2.99 4.93 0.90 8.10 14.20 7.90 18.30 13.44 24.85 

S1235R 3.09 2.99 4.93 0.91 8.18 12.62 6.40 18.38 11.94 23.27 

G1271E 4.04 2.99 4.93 0.91 8.23 13.57 7.40 18.55 13.06 23.99 

S1347R 4.42 2.99 5.19 0.91 8.18 14.21 7.66 18.64 13.27 24.98 

N1303K 4.44 3.01 4.95 0.91 8.14 14.01 7.68 18.35 13.22 27.95 

D1270N 4.53 2.99 4.93 0.91 8.23 14.06 7.89 18.54 13.54 24.71 

 

Table 5: Mutation-specific molecular descriptors for NBD2 

3. RESULTS AND DISCUSSION 

The R statistical Software [12]  was used to cluster the mutations using the molecular descriptors  for the top level graph when 
the single point mutations were performed. The single linkage function in R was used for our hierarchical clustering as it was 
ascertained to be the best to reduce biased results. The dendrogram clusters (shown in Figure 13) the wildtype mutation 
and other mutations using the molecular descriptors from Table 5  and the results are shown below. 

. 

Figure 3 : Heirachical Clustering of CF-causing Mutations in NBD2 

The N1303K mutation is one of the known mutations in NBD2 that causes severe cystic fibrosis.  The evidence that the 
substitution of N with K at position 1303 leads to variations in the arrangement of the molecule when folded in the lab has 
not explained why the molecule does not fold appropriately in the cell. N1303K is said to be linked to pancreatic 
insufficiency cystic fibrosis [13,14] . Our results in Figure 2 show that the resulting structural effects of N1303K are 
expressively distinct from the wildtype. Also, it is obvious from our results that the difference between the wildtype and 
domain graphs caused by mutations like I1234V, S1345R and D1270N are less significant. More so, our results lead to a 
conclusion that Y1219G, G1271E, V1212W and S1235R are also considerably distinct from wildtype, even though they all 
belong to one larger cluster. Our findings call for the need for further investigations. For instance, questions such as, under 
what circumstance would N1303K match up to or mirror the wildtype in our nested graph model? In other words, what 
graph-theoretic or combinatorial descriptors of the graph containing N1303K would result in a graph that is very similar to 
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wildtype or will cause the clustering of N1303K along the wildtype or other mild mutations? Answers to such questions are 
of paramount importance  since they might ultimately  lead  to a useful discernment into a line of action for the design of a 
molecule that can correct this specific mutation associated with cystic  fibrosis. 

4. CONCLUSION 

A single point mutation that results in either the absence of a single residue or a switch from one residue to another in a 
protein structure can have a profound local effect, but how this local perturbation manifests to a global one remains 
unclear. In this work, using the nested graph model, we quantify the network of interacting amino acids by viewing the 
molecule as a system with levels of interaction.  A systems biology approach such as this one may aid in helping 
researchers understand the consequences of a small mutation on a large protein molecule and thereby direct the design 
of a drug to address the faulty protein. Whereas we are focused on cystic fibrosis, the method easily extends to the study 
of any disease that is the consequence of a mutation, especially single point mutations such as muscular dystrophy and 
sickle cell anemia. 
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