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ABSTRACT 

A free radical is any molecule capable of independent existence that contains one or more free electrons. These free 
radicals fall under the broader category of reactive oxygen species (ROS). ROS such as O2

-
 , H2O2, NO

-
, OH

-
, HOCl, 

ONOO
-
 are toxic to cells. ROS act largely by driving several important molecular pathways that play important roles in 

pathologic processes including neurodegeneration. injury, atherosclerosis, and inflammatory responses and ischemia-
reperfusion. ROS, as in various radicals ions leads to mitochondrial dysfunction and consequently other cell organelles 
damage either through environmental effect or through genetic or metabolic disorders. Reactive molecular species also 
disturbs other metabolic pathways in a manner that cell’s normal functionality gets disrupted. Though diseases caused by 
reactive oxygen species are many, this review has covered its effect on major diseases. The present review paper will 
provide the detail of mechanism of ROS and its effect on different pathological states.   
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INTRODUCTION  

Oxygen is the vital element used for the aerobic life processes. Nearly about 5% and more of the inhaled O2 is converted 
into reactive oxygen species (ROS) (1), such as O2

-
, H2O2, NO, by the univalent reduction of O2 by the electron transfer 

system in mitochondria. The increase in ROS production threatens the cells under the aerobic conditions which derive 
their energy from the reduction of oxygen, and thus are protected by the antioxidant system of the cells. The imbalance 
between the ROS production and antioxidant system of the cell causes Oxidative Stress which leads to the cellular 
dysfunction causing various diseases. Free radicals, superoxide (O2

-.
), hydrogen peroxide (H2O2), and nitric oxide (NO) 

are three free radical reactive oxygen species (ROS) that are essential for normal physiology, but also accelerating a cell 
death through necrotic or apoptotic mechanism (Figure. 1). 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Harmful effects of ROS on the cell can be described as DNA damage, Lipid peroxidation and Oxidations of amino acids in 
proteins, Inactivation of specific enzymes by oxidation of co-factors. In diseases such as Alzheimer’s disease, rheumatoid 
arthritis, multistage carcinogenesis, cerebral and cardiac ischemia, inflammatory bowel disease, and aging which are 
mostly caused by ROS (Figure. 2) has been extensively studied.with specific emphasis on their molecular 
characterization. 
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Figure.1. Oxidative stress and Reactive Oxygen Species 
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Superoxide (O2
-)  

Superoxide (O2
-
) is generated by the mitochondrial electron transfer chain during the oxidation of reduced nicotinamide 

adenine dinucleotide (NADH) to oxidized nicotinamide adenine dinucleotide (NAD
-
), and also as a by

-
product of many 

enzymes that act as oxidases(2). The beneficial effects of O2
-
 include regulation of vascular function, cell division, 

inflammation, apoptosis, and bactericidal activity of neutrophils (3) whereas, decreased levels of O2
-
 can lead to an 

increased susceptibility to bacterial infections.  

Hydrogen peroxide (H2O2) 

superoxide dismutase catalyzed dismutation of O2 as well as many other enzymatic reactions causes production of 
Hydrogen peroxide (H2O2). H2O2 can diffuse across membranes and through the cytosol unlike O2

-
, which remains at the 

site of production (4). Since H2O2 is a powerful oxidizing agent, cells express abundant catalase, glutathione (GSH), and 
thioredoxin (Trx) that convert H2O2 to water. Reaction of H2O2 with free Fe

2-
causes oxidation of iron and production of 

hydroxyl radicals. Hydroxyl radical production has many severe cocsequences, including loss of vasodilation which can 
lead to tissue hypoxia and endothelial injury (5). 

Nitric oxide (NO) 

Cytosolic activity of enzyme known as NO synthase (NOS) causes generation of NO which plays a major role by activating 
the soluble guanylate cyclases that regulates the ion channels and thus regulating vascular tone. Apart from it through 
direct inhibition of cytochrome oxidase NO modulates cellular respiration by competitively occupying the oxygen

 
binding 

site of enzyme (6). Recovery from neuronal injury is promoted by NOS inhibitors (7). It is also believed to act as a 
neurotransmitter regulating neuronal channel (8). Endothelial NO produces vasodilation that can improve blood flow under 
ischemic insult,, but neuronal NO is produced during downstream of calcium dysregulation and can prevent energy 
generation in the mitochondria (9). Apart from it most importantly, in certain environments NO acts as an antioxidant and 
prevents the lipid peroxidation (10). 

PATHOLOGICAL EFFECTS 

Cancer 

Instead of the fact that they are opposite ROS plays a key role in both Apoptosis and Cancer  (11). In addition, oxidative 
DNA damage has been clearly linked to induction of carcinogenesis (12) and, 8-oxo-2'-deoxyguanosine, the DNA 
oxidative product has been reported to be highly mutagenic (13). Contribution to carcinogenesis of ROS is through 
interference with signal cascade systems, which among others included, the nuclear transcription factor kappa B (NFkB), 
activated protein-1 (AP-1), phospholipase A2, mitogen-activated protein kinases (MAPKs) and c-Jun kinase (14-18). Rapid 
reaction of cells to redox imbalance is through a plethora of biological responses, including cell cycle-specific growth 
arrest, gene transcription, and initiation of signal transduction pathways and repair of damaged DNA. These early events 
are likely to determine whether a cell will necrose, senesce, apoptose or survive and proliferate (19). Inhibition of 
apoptosis, follicular lymphomas, and carcinomas with p53 mutations causes tumors such as: lung cancer, colorectal 
cancer, medullary breast carcinoma; and hormone-dependent tumours: such as breast, prostate and ovarian cancer (20-
22). 

Apoptosis can be initiated by a variety of stimuli, oxidants, including, glucocorticoids, hyperthermia growth-factor or 
hormone withdrawal, ionizing radiation and multiple classes of chemotherapeutic agents (23-24). The stress exerted on 
the cell provides its viability. Following an apoptotic signal, progression in lipid peroxidation due to cells sustains. leads 
ROS and oxidative damage in the induction of apoptosis (25-28). The protein Bcl-2 protects against apoptosis by blocking 
cytochrome c release hence this protein may have an antioxidant function (29-34). It is suggested that oxygen inhibits the 
proliferation of human lymphocytes and fibroblasts (35-37). ROS as a mediator of apoptosis acts by decreasing 
intracellular glutathione, the major buffer of the cellular redox status and/or by increasing cellular reactive species (37-41). 
H2O2 at low doses induces apoptosis via production of OH

-
 radicals and alteration of the oxidant/antioxidant pathway (42-

43). a proton gradient and superoxide radicals is generated by Mitochondrial respiration, causing alkaline-induced cell 
death, mitochondrial integrity and oxidative stress (44). 

Diabetes 

Diabetes mellitus is a group of metabolic diseases. It is characterized by hyperglycemia resulting from defects in 
secreation of insulin or insulin action, sometimes both (45). Several other factors like hyperlipidemia and enhanced 
oxidative stress play a major role in diabetic pathogenesis besides hyperglycemia. At this level the progression of disease 
will be at high risk  (46-47).  

Chronic diseases, such as atherosclerosis, diabetes and rheumatoid arthritis are common end points of oxidative stress 
and oxidative damage to the tissue (48). Oxidative stress is currently suggested as mechanism underlying diabetes and 
diabetic complic ations (49) as persistent hyperglycemia causes increased production of reactive oxygen species (ROS). 
Increasing production and/ or decreased destruction of nonenzymic and enzymic catalase (CAT), reduced glutathione 
(GSH), and superoxide dismutase (SOD) (highly reactive) antioxidants of aerobic respiration that is where O2 is commonly 
produced. SOD which is primarily produced is the front line of defense against ROS-mediated injury (51). 

Lipids when react with free radicals, they undergo peroxidation to form lipid peroxides decomposing to form numerous 
products including malondialdehyde. In nervous system injury in diabetes,a one unifying mechanism causes both 
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metabolic and vascular insults to be increased by cellular oxidative stress and impairing the function of mitochondria (53, 
54). Through in vivo and in vitro measurement of oxidative stress in sensory neurons as well as neuronal protection by 
antioxidants this hypothesis have been supported. In vitro, O2 and H2O2 is produced by application of 10–20 mm glucose 
to dorsal root ganglia neurons that leads to lipid oxidation and neuronal death. IGF-I prevents this glucose-induced death, 
in part through decreased ROS production (55-56). Oxidative stress in diabetes and the development of complications is 
closely correlated. As the disease progresses, depending upon the level of glycemic control, plasma lipid peroxidation 
products increases and antioxidant potential decreases (57). Similarly, oxidative stress is linked to preclinical features of 
disease, such as vascular endothelial activation that can lead to atherosclerosis (58). In women, due to the early 
increment  of oxidative stress in diabetes is more pronounced and this may cause  increased cardiovascular disease 
patients (59). 

Skin Diseases 

Skin, which is the largest human body organ, is constantly exposed to an array of chemical and physical environmental 
pollutants and thus provides a major interface between the environment and the body (60).  Exposure of skin in UV 
radiation or xenobiotics drugs generates ROS in excessive quantities that quickly swamp tissue antioxidants and their 
pathways (61). Infiltrating activated leukocytes that possess abundant systems capable of generating these species, are 
an additional source of oxygen radicals in skin as well as in other organs, among which are O2 and hypochlorite an 
important sources of ROS in situ. Many of these agents are capable to generate ROS intrinsically or their metabolites such 
as redox active quinines.  Many of them are involved in the pathogenesis of multiple skin disorders/allergic 
reactions/neoplasms (63, 64). eicosanoids driving cutaneous inflammation is another important pathway, which are 
generated from arachidonic acid (AA) by the enzyme prostaglandin H synthetase that generates hydroxyl-endoperoxides. 
The eicosanoids including the leukotrienes and the prostaglandins are an important inflammatory mediators. Inducible 
nitric oxide synthase is another pro-oxidant enzyme present in skin, which is induced in infiltrating leukocytes and other 
phagocytic cells, and produces NO. NO interacts with respiratory burst generated OS to form a highly unstable reactive 
species ONOO

-
, that can damage DNA thereby producing point mutations, deletions, or rearrangements (65, 66). 

Following UVB exposure Urocanic acid is another molecule in skin that undergoes cis–trans isomerization and is likely 
involved in the immunosuppressive as well as photo aging effects of sunlight and is also known to prolong skin-graft 
survival time, and affect natural killer cell activity (67). UVA irradiation of trans-urocanic acid generates O2 radical ion that 
after initiating c-jun N-terminal kinase (JNK) signaling, leads to interstitial collagenase induction as well as the synthesis of 
IL-1 and IL-6 a proinflammatory cytokines, in UVA-irradiated fibroblasts and this revelation is determined by enhanced 
production of 5a-cholesterol hydroperoxide, a marker of O2 generation. However, endogenously generated chromophores 
like nicotinamide adenine dinucleotide (reduced form)/nicotinamide adenine dinucleotide phosphate (reduced form), 
tryptophan, riboflavin, etc. modulates this response (68). 

The Ageing process 

It has been proposed that the although mitochondria express a variety of protective defenses (antioxidant and repair 
enzymes as well as low molecular weight antioxidants), oxidation of proteins and the slow accumulation of DNA lesions 
resulting from the continuous formation of ROS may contribute to the ageing process (69). increased formation of ROS is 
caused due to effect in rate of electron flow through some these lesions, which supports the observed correlation between 
the rate of mitochondrial O2−• and H2O2 formation and at the same time lifespan among several species (70). 
Deficiencies in the mitochondrial DNA repair system directly correlates to ageing process. Since mitochondrial DNA does 
not contain histones, and therefore it is less protected against oxidative stress than the nuclear DNA. Consequently, the a 
10- to 20-fold increase in the content of 8-hydroxyguanine, the product of guanine oxidation is shown by mitochondrial 
DNA (71). Because of this mtDNA damage may indirectly inhibit respiration and stimulate ROS formation, since the 
mitochondrial chromosome codes for some electron carriers. A human condition that causes premature ageing, Cockayne 
syndrome, has been associated with a deficiency in the mitochondrial enzyme required for DNA repair that catalyses the 
removal of 8-hydroxyguanine (72). A more direct correlation between oxidative stress and ageing are shown by other 
studies. First, further linking oxidative stress with ageing, there is a correlation between accumulation of oxidized proteins 
and lifespan (69). Overexpression of catalase and SOD results in a 25 % increase in the lifespan of Drosophila 
melanogaster is shown by another study in a more direct approach (73-75). 

NEURODEGENERATIVE DISEASES 

Amyotrophic Lateral Sclerosis (ALS) 

Amyotrophic lateral sclerosis (ALS) is a neurological disease that has been associated with oxidative stress. About 10 % 
of the cases of familial ALS have been linked to a mutation in the gene coding for CuZn SOD (76). Misfolding will be occur 
due to this mutation, and the effective import of this enzyme to the inter-membrane space will be prevented, thus 
increasing the steady-state concentration of O2−• in this compartment, a process that may lead to apoptosis (77). 

Leber Hereditary Optic Neuropathy 

 Another genetic mutation indirectly associated with increased formation of ROS is the mutation in one of the subunits of 
Complex I responsible for Leber hereditary optic neuropathy that causes neuronal apoptosis. In a recent article, the 
investigators manipulated the expression of MnSOD in order to increase the intramitochondrial steady state of O2−• in 
normal cells, resulting in the same histopathological changes observed in Leber's disease (78). 
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Alzheimer’s Disease & Parkinson’s disease (Mechanisms of Oxidative Stress: ROS 
Production by Mitochondrial Dysfunction and NADPH Oxidase) 

In many neurodegenerative diseases including AD, PD, Huntington’s disease, ALS, PSP, Friedreich’s ataxia, 
Neurodegeneration with brain iron accumulation, and optic atrophy, mitochondrial pathology is evident (Figure 3). The 
respiratory chain dysfunction and oxidative stress, reduced ATP production, calcium dysregulation, mitochondrial 
permeability transition pore opening, peturbation in mitochondrial dynamics, and deregulated mitochondrial clearance 
shows whole spectrum of mitochondrial dysfunction. From the hippocampus and platelets of AD patients, as well as in AD 
animal models and AD cybrid cells, in mitochondria the complex IV activity is reduce (79). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consequent increase in ROS production and opening of the PTP due to deregulation of calcium homeostasis has been 
demonstrated in AD, with βA causing increased cytoplasmic calcium levels and mitochondrial calcium overload. βA is 
responsible for induced opening of PTP in isolated mitochondria and primary astrocytes (80, 81). In brains of AD patients, 
activation of NOX2 has been demonstrated (82), which shows an upregulation of NOX1 and NOX3 in early stage 
postmortem AD brain (83). The role of NADPH oxidase in AD has also been suggested at a cellular level. Direct activation 
of NADPH oxidase in rat primary culture of microglial cells and human phagocytes is induced by Amyloid-beta (βA) (84-
86). Through B-class scavenger receptor CD36, βA activates microglial NOX (87). Active NADPH oxidase transfers 
protons across the membrane and for normal functioning, requires opening of an ion/anion channel for charge 
compensation (88). In βA activated microglia, by blocking the charge compensatory mechanism of NADPH oxidase, 
inhibition of CLIC1 channel, inhibited superoxide production and protect cells (89). By its antioxidant properties, 
Neuroprotective effect of some endogenous compounds, such as hormone melatonin is induced (90). βA also activates 
NADPH oxidase by massive NO production and the generation of peroxynitrate and inducing calcium entry into astrocytes 
but not neurons (91) resulting in the generation of oxidative stress, which depolarises the mitochondrial membrane and, in 
combination with calcium, induces opening of the mitochondrial permeability transition pore (mPTP) as well as changing 
membrane structure through activation of phospholipase C (92). This oxidative stress signal is passed to more vulnerable 
neighboring neurons than astrocytes. It has therefore been suggested that due to increased oxidant production by NADPH 
oxidase, depletion of GSH in astrocytes could diminish GSH release from astrocytes and consequently deplete GSH in 
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neurons. Although, in some studies it is evident that βA and the presenilins exhibit the ability to activate NADPH oxidase in 
primary neurons (91). In Parkinson’s disease (PD), oxidative stress has been demonstrated in both the rotenone and 
MPTP-induced toxin models showing further activation of NADPH oxidase (NOX2) in microglia (193). Furthermore, 
pharmacological inhibition of NADPH oxidase is able to protect mesencephalic dopaminergic neuronal (N27) cells against 
MPP+-mediated dopaminergic degeneration (94). Interestingly, the NADPH oxidase is activated by Oxidative Medicine 
and high cytosolic calcium concentration, leading to overproduction of superoxide inhibitingt the plasmalemmal glucose 
transporter resulting in deregulation of mitochondrial metabolism (95). In cytosol of neocortical neurons the βA is able to 
activate production of H2O2 (96). Inhibitor of XO allopurinol significantly suppressed OH

;
 suggesting a potential role for 

XO in the oxidative stress associated with PD and AD (97). In different neuronal populations neurodegenerative disease is 
the selective vulnerability that may affected in a progressive and often stereotyped manner. However, the susceptible 
neuronal population varies between diseases, despite oxidative stress being implicated as the major pathogenic process 
in all of them and neurons were affected, there must be additional factors that determine the selective cell death in each 
disease. Certain neuronal groups have high intrinsic levels of oxidative stress and are therefore more vulnerable to 
additional disease-related oxidative stress. Neurons that have long axons and multiple synapses have high bioenergetic 
requirements for axonal transport or long-term plasticity and will render these groups of neurons far more sensitive to 
degeneration than other neuronal groups. Different neuronal groups exhibit different degrees of oxidative stress. The 
exposure of neurons at higher levels of cytosolic dopamine; that is, dopaminergic neurons are also exposed to additional 
oxidative stress produced by the metabolism of dopamine by MAO (which generates hydrogen peroxide) as well as the 
autooxidation of dopamine (which generates superoxide). Thus endogenous dopamine, as well as exogenous treatment 
with levodopa (used in PD) may be a further source of oxidative stress that may worsen pathogenesis (98, 99). However, 
it should be noted that the MAO-induced metabolism of dopamine and production of hydrogen peroxide have an important 
role in physiological calcium signaling in astrocytes and is not solely a pathological process (100). One interesting 
hypothesis has emerged from the discovery that adult substantia nigra pars compacta dopaminergic neurons have an 
autonomous pacemaker mechanism that utilizes L-type calcium channels resulting in intracellular calcium oscillations 
showing for the vulnerability of specific neuronal groups in Parkinson’s disease. As the repeated and persistent entry of 
calcium into cells needs to be counterbalanced by ATP demanding pumps to restore the calcium concentration creates a 
metabolic stress for such neurons. In fact it has been demonstrated that the opening of these kinds of ion channels results 
in higher levels of OS in the mitochondria of such neurons (101). 

Multiple Sclerosis Lesions 

Production of ROS is accomplished by two principally different mechanisms: activation of free radical producing those 
enzymes which are involved in oxidative burst, and by mitochondrial dysfunction (102-104).  The result through microarray 
studies shows a deterioration of mitochondrial function in active multiple sclerosis lesions, which appears to be related to 
active degeneration of myelin, oligodendrocytes, neurons and axon (105-107). After formation of bruise the mitochondrial 
numbers and activity of enzyme is increase, apparently reflecting the increased metabolic demand of demyelinated axons 
in the lesions or a reaction to chronic mitochondrial insult (107-108).  Furthermore, cells containing oxidized lipids and 
oxidized DNA are mainly concentrated at these sites (109) and the clearest damage to mitochondria in oligodendrocytes 
and axons is seen in this area (105-107). Experimental studies suggest that oxidative tissue damage under these 
conditions is most likely mediated by peroxynitrite (110). ROS is produced by activated microglia through classical Nox2-
dependent oxidative burst. This view is supported by several observations. First, p22phox and gp91phox are more 
abundantly expressed in active multiple sclerosis lesions compared with other oxidases, such as MPO (111-113). 
Secondly, the co-expression of different components of the Nox2 complex in the same microglia cells indicates that these 
complexes are functionally active. Thirdly, the expression of p22phox and gp91phox are less intense in macrophages. 
Potential functional importance of Nox2 complexes in inflammatory demyelinating brain lesions are shown by the 
protective effect of gp91phox gene deletion in animals with autoimmune encephalomyelitis (114, 115). In vitro, microglia 
toxicity is, in part, mediated through ROS production by the Nox1 complex (116). 

Oxidative Stress and the Thyroid Gland 

Synthesis of thyroid hormones requires formation of the hydrogen peroxide; a highly reactive oxidant.H2O2 and I
.
 are 

immediately used in peroxidation reaction that is catalysed by thyroid peroxidase (117). In a healthy thyroid, ROSs are 
produced in an area that is located at the apical pole of the cell in microvilli, where H2O2 is consumed either during the 
hormone synthesis or by antioxidant systems (118). However, Th1- induced ROS production causes ROS accumulation 
both in the cytoplasm and in nuclei, where it can become toxic. As hydrogen peroxide and iodine are cosubstrates in 
thyroid hormone production, iodine inhibits hydrogen peroxide production. Tobacco smoke contains thyocyanate that 
blocks iodine transport into thyrocite. This could increase H2O2 production and oxidative load, especially when associated 
with other environmental factors. Increase in ROS balanced by the increase in AOD would lead to minimal inflammation, 
but unopposed increase in ROS would lead to strong inflammation and cell necrosis. Reducing ROS would lead to 
inflammation reduction and vice versa (119, 120). 

Graves’ disease (Peripheral Tissues and Retro-orbital Tissues) 

Graves’ disease is characterized by increased oxidative stress. However, thyroid hormones, per se, induce OS, which is 
tissue and species specific. Even in subclinical hyperthyroidism, oxidative stress and antioxidative response seem to be 
increased (121, 122). It seems that the oxidative stress-induced activation of the NF-kappaB pathway might play a role in 
the autoimmune response in hyperthyroidism (123). Therefore, when antioxidant supplementation is added to 
methimazole, euthyroidism is more rapidly achieved (124,125). Hyperthyroidism is associated with increased lipid 
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peroxidation products in rat liver and with increased activities of glutathione peroxidase, superoxide dismutase, and 
catalase in the liver (126). Liver oxidative stress increases quickly after increase of thyroid hormones (127). In rat kidney 
and testis, hyperthyroidism is associated with increased oxidative stress and lipid peroxidation (128-130). Hyperthyroidism 
is also associated with increased oxidative stress and oxidative damage to lipids and genomic DNA in the aortic wall 
(131). During hyperthyroidism, there is an increase in myocardial oxidative stress that is associated with lipid peroxidation 
and protein oxidation. Myocardial antioxidant enzyme activities elevation accompanied by protein expression induction 
occurs after four weeks of hyperthyroidism (132). It seems that oxidative stress plays an important role in cardiac 
hypertrophy, by the redox activation of AKT1 and JUN/FOS signaling pathways (133). Redox imbalance due to 
hyperthyroidism induces adaptation of antioxidant systems, also inducing ERK1/2 activation and leading to development 
of cardiac hypertrophy (134). This response may involve the thyroid hormone-induced upregulation of HSP70 (135). In 
skeletal muscle, hyperthyroidism causes increased oxidative stress associated with oxidative modification in myosin heavy 
chain causing the decrease in force production (136). Enhanced adipogenesis and overproduction of glycosaminoglycans 
causes an increase in orbital volume and fibrosis of the extraocular muscles (137) causing Grave’s disease. In orbital 
fibroblasts, obtained from subjects with severe grave orbitopathy, superoxide radicals induce a dose dependent cellular 
proliferation (138).  IL-1β is produced by activated macrophages and is an important mediator of the inflammatory 
response. Adding IL-1β to cultures of retroorbital fibroblasts causes an increased oxygen-free radical production in a dose-
dependent manner. This is observed both in Graves’ and in control cultures. Total intracellular superoxide dismutase 
(SOD) activity was stimulated by IL-1β, both in control and in Graves’ cultures. HSP72 is a stress inducible form of 
cytosolic HSP70. Its expression is induced by the environmental stress, such as heat shock, anoxia, and ischemia. 
Antioxidants, methimazole, and PTU reduced H2O2-induced HSP72 expression, and to a lesser degree heat-induced 
HSP72 expression (139-141). In patients with Graves’ orbitopathy, there was significant correlation between TSH receptor 
antibody levels and 8-hydroxy-2_-deoxyguanosine (a biomarker of DNA damage) content (142). It should be noted that 
smoker had higher urinary 8-OhdG level than never-smokers, and that smoking was significant factor in multivariate 
analysis. Study by Tsai et al. implies that smoking-induced oxidative stress contributes to the pathogenesis of Graves’ 
orbitopathy (143, 144). One of the major forms of DNA damage induced by OS is 7, 8-dihydro-8-oxoguanine, referred in 
an abbreviated way as 8-oxoguanine (8-oxoG). This type of DNA damage is repaired by the base excision repair pathway. 

CONCLUSION 

Oxidative stress plays an important role in human pathogenesis. Accumulation and eneration Of (ROS) Reactive Oxygen 
Species within cells are detrimental and can exacerbate the disease progression. Therefore, several strategies have been 
studied to prevent or slow down ROS-mediated damages The concept of oxidative stress simply implied that ROS/RNS 
are toxic species because of their highly reactive nature. The production of ROS is mainly accomplished by two principally 
different mechanisms: activation of free radicalproducing enzymes, such as those involved in oxidative burst, and by 
mitochondrial dysfunction an increment in the generation of Reactive Oxygen Species such as superoxide, hydrogen 
peroxide and hydroxyl radical is the cause of oxidation and modification of structure of membrane lipids, cellular proteins 
and nucleic acids. In summary, ROS formation is part of normal cellular physiology. Excessive or abnormal free radical 
production and accumulation result in oxidative stress which responsible for a significant pathology in many diseases, 
including Cancer, Diabetes and neurodegenerative diseases. Investigations into the specific molecular targets of ROS in 
different pathway and the specific signaling mechanisms will be important for the understanding of biology and  of different 
diseases for future research purposes. 
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