Can The Spectra Of Hermitian Operator Be Invariant

Under x $\rightarrow\ulcorner$ p ? :Case Study :1D General Oscillator

Biswanath Rath
Department of Physics, North Orissa University, Takatpur, Baripada -757003, Odisha, INDIA
biswanathrath10@gmail.com

Abstract

We address an intriguing question on spectral invariance in quantum mechanics on exchange of co-ordinate and momentum $\mathrm{x}^{-}-\mathrm{p}$ considering general oscillator as an example.

Keywords

exchange of co-ordinate and momentum, spectral invariance, general oscillator .
PACS no-03.65.Ge

I.Introduction

In a recent paper Rath and Mallick [1] proposed a generalised model on co-ordinate and momentum transformation in the case of Harmonic Oscillator to reflect the spec-tral invariance. Further it is well known that commutation relation

$$
\begin{equation*}
[\mathrm{x}, \mathrm{p}]=\mathrm{i} \tag{1}
\end{equation*}
$$

between co-ordinate (x) and momentum (p) on exchange ($x^{-} \leftharpoondown p$) becomes

$$
\begin{equation*}
[p, x]=-i \tag{2}
\end{equation*}
$$

.Now question arrises whether spectra of Hermitian operator (more precisely self-adjoint operator) be invariant under exchange of co-ordinate and momentum ?. If the answer to this case is yes, then why not address this to some model Hermitian operator. . In this context we would like to state that in the past there was a considerable interest among many others to study spectra of anharmonic oscillator [2-9] . In any way we consider a more general type of oscillator [2-9]

$$
\begin{equation*}
h=\mu p^{2}+\lambda_{1} x^{2}+\lambda_{2} x^{4}+\lambda_{3} x^{6} \tag{3}
\end{equation*}
$$

and study its spectra on exchanhe of co-ordinate and momentum.

II.New Operator and Spectra

Here we consider the operator

$$
\begin{equation*}
H=\mu x^{2}+\lambda_{1} p^{2}+\lambda_{2} p^{4}+\lambda_{3} p^{6} \tag{4}
\end{equation*}
$$

In order to solve it we use the eigenvalue relation[2,6,8,10,11]

$$
\begin{equation*}
H|\Psi>=\in| \Psi\rangle \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\left|\psi>=\sum \mathrm{A}_{\mathrm{m}}\right| \mathrm{m}> \tag{6}
\end{equation*}
$$

In the above |m > stands for standard harmonic oscillator wave function[10,11] sat-isfying the relation

$$
\begin{equation*}
\left[p^{2}+x^{2}\right]|m>=(2 m+1)| m> \tag{7}
\end{equation*}
$$

Now using the above relation one will notice that A_{M} satisfies the following recurrence relation

$$
\begin{equation*}
P_{m} A_{m-6}+Q_{m} A_{m-4}+R_{m} A_{m}+S_{m} A_{m}+T_{m} A_{m+2}+U_{m} A_{m+4}+V_{m} A_{m+6}=0 \tag{8}
\end{equation*}
$$

where

$$
\begin{gather*}
P_{m}=<m-6|H| m> \tag{9}\\
Q_{m}=<m-4|H| m> \tag{10}\\
R_{m}=<m-2|H| m> \tag{11}\\
S_{m}=<m|H| m> \tag{12}\\
T_{m}=R_{m+2} \tag{13}\\
U_{m}=Q_{m+4} \tag{14}\\
V_{m}=P_{m+4} \tag{15}
\end{gather*}
$$

The eigen values calculated using this relation using matrix diagonalisation method $[8,10,11]$ are tabulated in table-1.

Tale-1: Eigenvalues of New Operator and Comparision.

n	$H=x^{2}-100 p^{2}+p^{4}$	$h=p^{2}-100 x^{2}+x^{4}[7]$
0	-2485.867880343	-2485.867880343
1	-2485.867880343	-2485.867880343
2	-2457.643822699	-2457.643822699
3	-2457.643822699	-2457.643822699
n	$H=x^{2}-2 p^{2}-2 p^{4}+p^{6}$	$h=p^{2}-2 x^{2}-2 x^{4}+x^{6}[2,8]$
0	-1.000000	-0.999987
1	-0.154110	-0.154093
2	3.629625	3.629880
3	8.007560	8.007742
n	$H=x^{2}+p^{4}$	$h=p^{2}+x^{4}[9,8]$
0	1.060362090	1.060362090
1	3.799073029	3.799073029
2	7.455697937	7.455697973
3	11.644745511	11.644745511

III.Conclusion

In one-dimensional general oscillator considered above we notice that hermitian operator has an equivalent operator whose eigenspectra remain invariant. Further we plot the $\left|\Psi_{\mathrm{N}=0-3}\right|^{2}$ corresponding to Hamiltonian

$$
\begin{equation*}
H=x^{2}-2 p^{2}-2 p^{4}+p^{6} \tag{16}
\end{equation*}
$$

in fig-1. Similarly we plot the $\left|\Phi_{\mathrm{N}=0-3}\right|^{2}$ corresponding to Hamiltonian

$$
\begin{equation*}
h=p^{2}-2 x^{2}-2 x^{4}+x^{6} \tag{17}
\end{equation*}
$$

in fig-2. From the figs it is claer that eventhough two systems are iso-spectral in nature but different from each other.

References

[1] B.Rath and P.Mallick,Open.Phy. 14,492(2016). and references cited therein.
[2] R.N.Chaudhuri and M.Mondal ,Phys.Rev A40(10),6080(1989) and references cited therein.
[3] W.Janke and H.Kleinert,Phys.Rev. Lett 75(15),2787(1995).
[4] E.J.Weniger ,Phys.Rev.Lett, 77,2859(1996) and references cited therein.
[5] W.E.Caswell,Ann.Phys 123,153(1979) and references cited therein.
[6] B.Rath,Phys.Rev 42(5),2520(1990).
[7] R.Balsa,M.Plo,J.G.Esteve and A.F.Pacheco, Phys, D28,1945 (1983).
[8] B.Rath and H.Mavromatis,Ind.J.Phys,B73(4),641(1999).
[9] K.Benerjee, S.P.Bhatnagar,V.Choudhry and S.S.Kanwal,Proc.R.Soc.Lond A360,575 (1978).
[10] B.Rath,P.Mallick and P.K.Samal.African.Rev.Phys.10:0007,55(2015).
[11] B.Rath : Complex Siamese-Twins and Real Spectra, Lambert Aca-demic Publishing Company, Germany (2018).

Figure 1: $H=x^{2}-2 p^{2}-2 x^{4}+x^{6}$
: $\left|\Psi_{n=0-3}\right|^{2}$ of Equivalent Sextic Oscillator

Figure 2: $h=p^{2}-2 x^{2}-2 x^{4}+x^{6}$
: $\left|\Phi_{n=0-3}\right|^{2}$ of Sextic Well Oscillator

