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Abstract 

In this paper, the stability of the unperturbed rigid body motion close to conditions, related with the center of mass, is 
investigated. The three first integrals for the equations of motion are obtained. These integrals are used to achieve a 
Lyapunov function and to obtain the necessary and sufficient condition satisfies the stability criteria. 
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1. Introduction 

The stability of a rigid body has shed the attention of outstanding researchers during the last seven decades whether if the 
body contains fluid [1-4] or under the action of attracting center [5-13]. The stability of the rotational motion of a solid 
containing an ideal incompressible homogenous fluid filled entirely or partially was studied in [1] and [2]. This problem was 
investigated in [3] for the case of a uniform vortex motion, directed along a rough plane. The sufficient conditions for the 
stability of the studied motions are achieved. The permanent rotations and their stability for same problem were discussed 
in [4].  

The stability of a rigid body, rotates about one fixed point, was discussed from different point of view such as in [5], the 
author studied the permanent rotation in the presence of Newtonian field, as in [6] when the motion is constrained similar 
to Euler's case and as in [7] for a certain special cases of the considered motion. Moreover, the first integral related with 
energy was used in [8] for the aim of obtaining the sufficient condition of the stability when the governing system of the 
body has not any perturbation. The stability of the steady motions of the rigid body problem when the body undergoes 
from potential field was investigated in [9] and generalized in [10] when the body is subjected to a central field whereas the 
stability of the spinning motion Lagrangian top was discussed in [11]. The orbital stability of a symmetric rigid body 
(pendulum oscillations and rotations) is carried out in [12] when the first two principal axes are equal twice of the third one. 
Recently, the permanent rotation of asymmetric rigid body was investigated in [13] when the body subjected to Newtonian 
field and a gyrostatic moment. The authors obtained the necessary and sufficient conditions, for some cases of the 
gyrostat configurations. 

The main aim of this paper is to study the stability of the rotational motion of a rigid body for the unperturbed motion, 
relative to its variables, in the presence of supposed conditions associated with the center of mass. The first three 
integrals related with energy, area and the geometric one are obtained. By virtue of these integrals, the condition satisfies 
the stability criteria given by Lyapunov, is obtained which is considered necessary and sufficient condition. 

2. Statement of the problem 

Let O  be one of its fixed points of a rigid body coincides with the origin of a fixed frame OXYZ  and a moving one 

Oxyz . Let us consider that the body rotates with angular velocity ),,( 321    about the principal axes of 

rotations OyOx,  and ,Oz  and ),,( 321    be the gyrostatic moment along the same axes in which the first 

component different from zero and the other two ones equal zero, see (Fig. 1). Bearing in mind that, the motion of the 
body is considered under the following conditions 

 

 
,0,0, 000321  zyxIII  

 

where ),,( 321 III  represent the components of the principal inertia tensor I  of the body and directed along the principal 

axes, and ),,( 000 zyx  refer to the components of the center of mass C .  
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Fig. 1: Configuration of rigid body diagram 

 

Therefore the Euler's dynamical equations for the motion of a heavy rigid body take the form 
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Here ),,( 321   denote to the components of the unit vector along the fixed axes OZ , m  represents the mass of the 

body, g  is acceleration due to gravity and dot dente to the derivative with respect to time t . 

 

Considering amgx 0
, consequently the previous equations can be rewritten in another equivalent form as 
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The second system of the rigid body motion is the following Poisson's equations 
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It is mention to state that, the governing equations of motion (2) and (3) have a special solution in the form 
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in which characterizing the uniform rotation of the considered body about x -axis that coincides with the vertical.  

 

3. Stability procedure 

Now, we investigate the stability of the body for the unperturbed case relative to the variables 321321 ,,,,,   
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Substituting (5) into (2) and (3) gives 
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Referring to the above system (6), we can obtain the first integrals among its equations. To achieve this purpose, 

multiplying the first three equations of system (6) by 321 ,,   and 321 ,,   respectively, adding the results equations 

of each group and integrating the resulted two equations to obtain the first two integrals related with energy and area in 
the form 
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where 1V  and 2V  represent the constants of integration. 

 

The third first integral called geometric integral can be obtained after multiplying the last three equations of system (6) by 

321 ,,  , adding the results equations and by integration, one obtains 
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in which 3V  is a constant. 
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In the present work we will get the condition that satisfies the stability criteria as given by Lyapunov and Chetayev. 

Consequently, we construct Lyapunov function L  as the form of liner relation from integrals (7) as 
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therefore, by virtue of (7) one gets 
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where 
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An inspection of (8c) shows that, the quadratic form 1L  is positive definite, it is necessary and sufficient that the following 

inequality is satisfied 
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consequently, one obtains 
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Similarly, the quadratic form  2L  is positive definite if 
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as a result of the previous determinant 
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Moreover, the quadratic form  3L  is positive definite if 
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which gives 
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It is obvious that, conditions (10) and (11) are satisfied directly when condition (9) is satisfied for  

  

 
.321 III   

 

Therefore condition (9) is considered the necessary and sufficient condition for unconditional stability of the motion (4) with 

respect to the body variables .,,,,, 321321   

4. Conclusion 

The stability for the rotational motion of a rigid body about a fixed point when the center of mass lies on the third principal 
axes is carried out. The first integrals related with energy, area and the geometric one are achieved and used to construct 
the Lyapunov function. The necessary and sufficient condition satisfies the stability criteria is obtained.  
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