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Abstract 

In the same way every circle is corresponding to an equal sided triangle the 3-sphere is corresponding to an inserted 
tetraeder. The latiude of the corners of the tetraeder on the 3-sphere is calculated here giving the result arcsin(1/3), while 
arcsin(1/2) is derived for the 2-dimensional sphere. 
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Introduction  

In the same way every circle is corresponding to an equal sided triangle the 3-sphere is corresponding to an inserted 

tetraeder. The latiude of the corners of the tetraeder on the 3-sphere is calculated here. 

 

 

Fig.1: Tetraeder in 3-sphere 

Method 

The rules found by Pythagoras and angular relations are the only methods necessary to calculate the angle. First we have 
to consider the triangle forming one side of the tetraeder. 

                 

Fig.2: Triangle on one side of the tetraeder 

 

The first relation we need is the Pythagorean theorem[1], p.244,  in two cases: 

  

 

  (1) 
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        (2) 

These two equations resolve to  

 

        
(3) 

 

with the solution    

 

        (4) 

 (1) => 

 

        (5) 

 The law of sines [1], p.253, applied to Fig. 2 
gives: 

 

        (6) 

 

     (7) 

(5), (6) and (7) gives us 

 

    
    (8) 

 

  

defining 

 

        (9) 

 

Let us consider now the triangle in the midth of the tetraeder. 

                 

Fig. 3 Triangle in the midth of the tetraeder 

 

 

There we have the following relationships derived by the law of sines [1], p.253 
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        (10) 

=>  

        (11) 

     

 

  

=>  

 

        
(12) 

 

If we apply the law of cosines [1], p.253, on the triangle in Fig.3 we get 

 

        (13) 

 

and so for s 

(14) 

   

Inserting (8) into (12) we get  

 

   (15) 

 

=>    

 

 (16) 

   

=>    

(17) 

   

 

If we apply again the law of cosines [1], p.253, on the complete triangle in Fig.3 and in the next step the Pythagorean 
theorem[1], p.244, and insert (8) in the last step we get 

  

 

 

which evaluates to   

(18) 

  Using this (17) becomes  

(19) 
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Result 

 

By inserting the definition for k (9) into equation (19) we get the final result.  

(20) 

   

or 

(21) 

   

 

The numerical value for the latitude of equation (21) is   

 

 

or  

 

 Conclusion 

This calculation for the latitude of a corner of an equal sided triangle in a two dimensional sphere and a tetraeder inside a 
three dimensional sphere resulted in a simple formula containing the dimension of the  considered geometry in the 
denominator. 

The two dimensional latitude we got from Fig. 2 and (6) as 

  

(22) 

 

  

(23) 

   

or generalized  

 

(24) 

   

 

which is at least valid for the equal sided bodies in the 2-dimensional-sphere and the  

3-dimensional-sphere as calculated here and may be valid also for higher dimensional spheres or fractal dimensions, if it 
proves to be a general law. 

 

If we consider the rule of construction and extend it to the 1-dimensional and the 4-dimensional-sphere we get: 
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Fig.4: 

dimension=1          dimension=2                         dimension=3                               dimension=4 

arcsin(1/1)            arcsin(1/2)                             arcsin(1/3)                                  arcsin(1/4) ? 

90°                         30°                                       19.47°                                       14.47° ? 

 

General Construction Rule for dimension n:  

1. draw the n-dimensional sphere  

    (i.e. draw 2 points at distance r in 1-dim, a circle in 2-dim, a 3-sphere in 3-dim ) 

2. into the sphere draw n+1 connected n-1 dimensional objects and connect the n-2 dim edges 

The "n-1 dimensional object" is a point in 1-dim, a line in 2-dim, an area in 3-dim, a tetraeder in 4-dim space. The fourth 
dimension is the time, so that the fourth figure shows a 3-sphere in time. 

Discussion  

The construction rule is a little bit hard to imagine for the 4-dimensional case. The rule not only demands the four tetraeder 
connecting side by side to the fifth one. Also each of the other sides of the tetraeders have to be connected to a matching 
side of another tetraeder forming a closed connected 3-dimensional manifold.  

The property "closed" implies, that there is no way to leave the volume by going in any direction. 

The property "connected" implies, that there are no borders or holes in this volume.  

The limited size of the volume is just five times the volume of one tetraeder.  

This model may be compared to the known cosmological model having a diameter of 8.8 x10
26

m [6] and a limited 

volume of 4 x10
80

m
3

[5]. 

In literature, p.e. Wikipedia [2], the four dimensional case is constructed with inwards pointing tetraeder. In this case the 
volume is harder to see, but the connection of the sides of the tetraeder is established directly. The four dimensional object 
is called in literature a "4-polytope" [2] or a "Polychoron" [3]. 
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