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ABSTRAC 

In this paper, we study the existence of multiple sign-changing solutions with a prescribed 
1-pL 

norm and the existence of 
least energy sign-changing restrained solutions for the following  nonlinear Schrödinger-Poisson system:                                              
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By choosing a proper functional restricted on some appropriate subset to using a method of invariant sets of descending 

flow, we prove that this system has infinitely many sign-changing solutions With the prescribed 
1-pL 

norm and has a least 
energy for such sign-changing restrained solution for (3,5)p . Few existence results of multiple sign-changing restrained 

solutions are available in the literature. Our work generalize some results in literature. 
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1. INTRODUCTION AND MAIN RESULTS 

   In this paper, we study the multiplicity of sign-changing solutions of the following nonlinear Schrödinger-Poisson system:                          
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where 3,5( ),  p    is a parameter. This system has been first introduced in [1] as a physical model describing a 

charged wave interacting with its own electrostatic field in quantum mechanic. The unknowns of the system are the field u  

associated to the particle and the electric potential  . The presence of the nonlinear term simulates the interaction 

between many particles or external nonlinear perturbations. We refer the readers to [1] and the references therein for the 
physical aspects of problem (1.1). Similar equations have been very studied in literature, see [2-7,10-16]. 

      The   in (1.1) is called a frequency. For fixed  , system (1.1) has been extensively studied on the existence of 

positive solutions, ground states, radial and non-radial solutions and semiclassical states, see e.g. [6-17], etc. As shown 
by recent results the structure of the solution set of (1.1) depends strongly on the value of p  of the power-type  

nonlinearity. In [6] and [8], a related Pohozeav equality is found, and then the authors proved that system (1.1) does not 

admit any nontrivial solution for 2p   or 5p   if 1  . While as 2,5( )p , the existence and multiplicity results have 

been obtained for 0   by using variational techniques. 

      To continue the statement well, let us fix some notations. We will write 1 1 3( )H H , 1 1,2 3 6 3( )={ ( ) :D D u L u    
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2 3( )}L  as the usual Sobolev spaces, and 1 1, r rH D  the corresponding subspaces of radial functions. Recall that the 

inclusion 1 3( )q q

rH L L    is compact for  2 6q   (see [18]). In the present paper, we will take 1

rH H  as the work 

space. Sometimes we will simply write f  to mean the Lebesgue integral of 3( ) in f x . We make use of the following 

notations. 

                             3

3 3

1

1
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                            , , ,j jc d c d  Denote positive constants which can change line to line. 

          We say that 1 3( , ) ( )c c ru H    is a couple of solution to (1.1) if 
cu  is a solution to (1.1) with .c   

Motivated by the fact that physicists are often interested in restrained solutions or normalized solutions, that is, solutions 

with a prescribed 
1-pL 

norm, we consider for each 0c   the following problem: 

(
c

P ): There exists a couple  1 3
( , ) ( )

c c r
u H  of solution to (1.1) such that 1

1
| | .

p

p
u c




   

          Recently, normalized or restrained solutions to elliptic equations attract much attention of researchers, see  e.g. [19-
31]. In [19], Liu and Wang considered the restrained problem to the following quasilinear Schrödinger equation: 

                                                               
2 11

2
( ) | |              in   .                             (1.2)p Nu V x u u u u u       

They proved the existence of a positive solution with the restraint 
N

1| | 1,pu dx   and   appears as an unknown 

Lagrangian multiplier, to Eq. (1.2). In [20], Xiong and Liu proved the existence of a sign-changing solution with the restraint 
1

1| | 1p

pu 

   to (1.2). In [21],  Benci and Cerami considered the following semi-linear Schrödinger equation: 

                                                                        ( ),            ,      .                                        (1.3)Nu u g u x       

With 
1( )= | | ,pg u u u

 they proved the existence of multiple positive solutions with the restraint 1

1| | 1p

pu 

   to (1.3). 

        In [23], by using a minimax procedure, Jeanjean proved that for each 0,c   there is a couple 1( , ) ( )N

c cu H   

  of weak solution to (1.3) with 2

2| | .u c  In [26], Bartsch and De Valeriola considered the semi-linear Schrödinger 

equation (1.3) and proved that there are infinitely many normalized solutions to Eq. (1.3). In [27], Bellazzini et al. 

considered (1.1) and  proved that for 
7

3
( ,5)p  there exists 

0 0c   such that for any 
0(0, ),c c  equation (1.1) has a 

couple 1 N( , ) ( )c cu H 
  of weak solution with 2

2| |u c  by using a mountain pass argument on 

                                                                            1 3 2

2( ) { ( ) : | },      0.S c u H u c c     

Luo in [30] proved that when 
7

3
( ,5),p  there exists 

0 0c   such that for any 
0(0, ),c c

 
equation (1.1) admits an 

unbounded sequence of couples of weak solutions 1{( , )} ( )N

n n ru H     with 2

2| |nu c  for each .n   Luo 

and Wang in [31] proved that there are infinitely many normalized high energy solutions to Kirchhoff-type equations 

restrained on 1 3 2

2( ) { ( ) : | }, 0.S c u H u c c     

         On the other hand, the problem of finding sign-changing solutions is a very classical problem. In general, this 
problem is much more difficult than finding a mere solution. There were several abstract theories or methods to study sign-

changing solutions. In recent years, for fixed  ,  Wang and Zhou [32] obtained a least energy sign-changing solution to 

(1.1) without any symmetry by seeking minimizer of the energy functional on the sign-changing Nehari manifold when 

(3,5),p  based on variational method and Brouwer degree theory. Liu et al [33] considered a more general nonlinear 

term ,f  they proved that problem (1.1) has infinitely many sign-changing solutions under some appropriate conditions on 

the nonlinearity, especially, the f  is quasi-asymptotic p  order, i.e., 
| |

| ( ) |
limsup

| |ps

f s

s

   for some (2,5).p  Using 
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concentration compactness principle and rotational transformation, d' Aveni [34] showed the existence of non-radially 
symmetric sign-changing solution of (1.1). Using a Nehari type manifold and gluing solution piece together, Kim and Seok 
[35] proved the existence of radially sign-changing solutions of (1.1) with prescribed numbers of nodal domains for 

3,5( ).p  Ianni [36] obtained a similar result to [35] for [3,5)p  via a heat flow approach together with a limit procedure. 

Based on the Lyapunov-Schmidt reduction method, in another paper of Ianni and Vaira [37], the existence of non-radially 
symmetric sign-changing solutions for the semi-classical limit case of (1.1). 

        Motivated by the above works, a natural question is whether (1.1) has sign-changing solutions 
cu  for problem (

cP ) 

and whether (1.1) has infinitely many sign-changing restrained solutions 
cu for problem (

cP ). To the authors' knowledge, 

there are very few results on the multiple of sign-changing restrained solutions for problem (1.1) in the literature. In the 
present paper, we focus on the study of multiple sign-changing restrained solutions for system (1.1). We will verify that 

system (1.1)  has infinitely many sign-changing restrained solutions  for (3,5).p  Our main result in this aspect is the 

following: 

Theorem 1.1.  Let (3,5).p  Then for any given 0c  , equation (1.1) has a sequence of couples of sign-changing 

restrained solutions 1 3{( , )} ( )k k ru H    with 1

1| |pk pu c

   for each .k   

       To prove the theorem we use the general ideas inspired by [38] adapting their arguments to our problem which 
contains also the coupling term. Where a suitable subset was given in which there exist two subsets separating the 

motivating functional, and on which an auxiliary operator A  was constructed, so that we are able to apply suitable 

minimax arguments in the presence of invariant sets of a descending flow generated by the operator A  to obtain the 

existence of multiple sign-changing solutions with restraint to system (1.1). We have used this method to obtain an 

analogous result to (1.1) for (3,5)p  and 1.   Some arguments in our proof are borrowed from [38]. Remark that the 

ideas in [38] can not be used directly, and here we will give some new techniques. The method seems to be quite new for 
the nonlinear Schrödinger-Poisson equations and presents several difficulties due to nonlocal term. The method is 
different from that used in [20, 23, 26, 27] and others. 

        Since (1.1) has infinitely many sign-changing restrained solutions, another natural question is whether (1.1) has a 
least energy sign-changing restrained solution, which has not been studied before. Here we can prove the following result. 

Theorem 1.2.  Suppose that the conditions in Theorem 1.1 hold. Then system (1.1) has a least energy sign-changing 

solution ( , )c cu   with restraint 1

1| |pc pu c

  , that is, it has the least energy among all sign-changing radially solutions with 

restraint 1

1| |pc pu c

  . 

       The paper is organized as follows. In Section 2, we present some preliminary results. We prove Theorem 1.1 in 
section 3 and Theorem 1.2 in section 4, respectively.          

2.  PRELIMINARIES 

          In this section, we give some preliminary results. An important fact involving system (1.1) is that this class of system 
can be transformed into a Schrödinger equation with a nonlocal term (see, for instance, [8, 10]), which allows to apply 

variational  approaches. For any given 
1u H , the Lax-Milgram Theorem implies that there exists a unique 1[ ] uu D    

such that 2| |u   and 

                                                                                                 
3

2 ( )
( ) .

4 | |
u

u y
x dy

x y





  

         We now summarize some properties of the map  , which will be useful later. See, for instance, [5] and [8] for a 
proof. 

Lemma 2.1.   

(1)   The map 1 1: uu H D     is of class  
1
.C  

(2)   [ ] 0.uu     

(3)   2[ ] [ ]tu t u    for every 
1u H  and .t  

(4)   There exists * 0c   independent of u  such that  

                                                                                                  
3

2 4c*|| || .uu u   
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(5)   If u  is a radial function, then so is .u  

(6)    If 
nu u   weakly in 1

rH  then [ ] [ ]nu u   in 1,rD  and 
3 3

2 2[ ] [ ]n n
R R

u u u u     strongly. 

            From above properties, substituting 
u   into system (1.1), we can rewrite system (1.1) as the single equation 

                                                                                       
1| | ,p

uu u u u u       

and the energy functional 1: rI H  : 

                                                2 2 2 11 1 1

2 4 1
( ) ( (| ( ) | | ( ) | ) ( ) ( ) | ( ) | )p

u
p

I u u x u x x u x u x dx   


      

is well defined for any 0.   Furthermore, it is known that I  is a 
1

C  functional with derivative given by 

                                                 1( )[ ] | | .p

uI u v u v uv uv u uv           

        Throughout this paper, we take the following functional  

                                 2 2 2 11 1 1

2 4 1
( ) ( (| ( ) | | ( ) | ) ( ) ( ) | ( ) | )                          (2.1)p

u
p

I u u x u x x u x u x dx 


      

as our motivating functional. However the functional is unbounded from above and from below on 1.rH  The idea is to 

restrict the functional to a suitable subset on which this unboundedness is removed, and in which we can select two 
subsets separating the motivating functional. 

      Define 

                                                                                     
1 1

1

1 1

1

1
* { : | | 2 };

2
 { :| | }.

p

r p

p

r p

M u H c u c

M u H u c









   

  

 

Evidently *M  is open subset of H  and M  is closed. Define 

                                                                            * 2 *{ *:|| || },    .b b bN u M u b N N M      

We will see that, to obtain solutions of (1.1) solving problem (
cP ),  we turn to study the functional I  restricted to *,bN  

which is a problem with another extra constraint. We obtain directly the couple on ( , )c cu   with restraint 1

1| |pc pu c

   

solving Eq. (1.1) without utilizing critical points of the functional I . Recalling the Sobolev inequality 

                                                                           2 2 1

1|| || | | ,              ,p ru S u u H    

where S is a positive constant. 

             Fix any .k  Let 
1kW 
 be a 1k   dimensional subspace of H . Then we can find some 0kb   such that 

                                                                   2 1

1 1|| || ,       satisfying  | | 2 .                         (2.2)p

k k pu b u W u c

      

Fix a 0b   such that 

                                                     21 1
2( * 1) .                                           (2.3)

2 4 1
k k k

c
b b c b b

p
    


 

From now on, we let 2 2 2(| | | | )  || ||u u u     , 2( )u x u   , 1| ( ) |pu x    as fixed notations for convenience. 

Let  1

1 1{ :  | | },  p

k k pB u W u c

    and for any 
ku B  we have that 

                                                                    
1 1 1 1 1

( ) .
2 4 1 2 4

I u
p

        


 

Since ,  
kk bB N we have that 
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                                                                               2 2|| || ,     * . k ku b c b     

Then we obtain that 

                                                                                     21 1
( ) * . 

2 4
k kI u b c b   

Let 21 1

2 4
* 1,  k k kd b c b   therefore, we have 

                                                                                          sup ( ) .                                                                (2.4)
k

k
u B

I u d


  

Then for ,bu N  we have that 

                                                                      
1 1 1 1

( ) .
2 4 1 2 1

c
I u

p p
       

 
 

 And we have that 

                                                                                        inf ( ) .                                                                (2.5)
b

k
u N

I u d


  

Hence we achieve the following important lemma. 

Lemma 2.2.  There exists 0 kd  such that  

                                                                        inf ( ) sup ( ).                                                         (2.6)
b

k

k
u N u B

I u d I u
 

   

         Now we introduce an auxiliary operator A , which will be used to construct the descending flow for the functional 

.I Clearly, for any *,bu N  the operator 1 u   is positive definite in 1.rH  For any *,bu N let 1

rw H  be the unique 

solution to the following linear equation 

                                                                        
1 1| | ,              .                                          (2.7)p

u rw w w u u w H       

Since 1

1

1

2
| | 0,p

pu c

   , so 0w   and 

                                                                        1 2 2 2| | || || | | || || 0.p

uu uw w w w       

Let 

                                                                     
1

,               where    0.
| |p

c
w w

u uw
 


  


 

Then w  is the unique solution of the following problem 

                                                                    

1

1 1

| | ,                                                          (2.8)

| | ,            .                                                           

p

u

p

r

w w w u u

u uw c w H

  



   


  
 

Then, the operator A  is defined as follows: for any * 1, ( ) .b ru N u w H  A  Clearly, A  is odd. Furthermore, we have 

Lemma 2.3.  The operator  A  is of class 
1

C  from *

bN  to 1,rH  that is, 
1

AC *( , ).1

b rN H  

Proof. To prove that 
1

AC *( , ),1

b rN H we consider the map * 1 1: ,b r rN H H     where 

                                                 1 1 1( , , ) ( ( 1) ( | | ), | | )p p

uu v v u u v u uv c           

Then  is of class 
1

C , the implicit function theorem can be applied to  . Note that (2.8) holds if and only if 

( , , ) (0,0)u v   . We compute the derivative of   with respect to ( , )v   at the point ( , , )u w   in the direction 
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( , )w   and obtain a map 1 1: r rH H     given by  

                                                        ( , )

1 1 1

( , ) ( , , )( , )

             ( ( 1) ( | | ), | | ).
v

p p

u

w D u w w

w u u w u uw
  

   

  

    
 

If ( , ) (0,0),w    that is 

                                                                            
1| | ,                                                            (2.9)p

uw w w u u       

And                                                                     
1| | 0.pu uw   

Multiplying the equation (2.9) by w  and then integrating it, we get 

                                                                                    2 1|| || | | 0.pw u uw    

Then 0w   and 
1| | 0pu u    in 

3 ,  so 0  . Hence   is injective. 

          To prove   is surjective, given any 1

1( , ) rf c H  , let 1

1 2, rv v H  be solutions of the linear problems 

                                                                      
1 1 1

1

2 2 2

,        

| | .         

u

p

u

v v v f f

v v v u u



 

     

   

 

Since 1

1

1
| | 0,

2

p

pu c

    so 
2 0v   and then 1

2| | 0.pu uv   Let 

1

1 1

1 21

2

| |
,   ,

| |

p

p

c u uv
w v v

u uv
 






  




then 

1( , ) ( , ),w f c  which implies   is surjective. Hence   is a bijective map, which implies that 1
AC *( , ).1

b rN H  

This completes the proof. 

Lemma 2.4.  Suppose that { } ,  ( ).n b n nu N w u  A  Then { }nw  has a strongly convergent subsequence in 1

rH . 

Proof.  Let { } ,  n bu N then 
nu  is bounded in 1

rH . By (2.7) and the Sobolev inequality, we have 

                                                      2 1 1

1 0|| || | | | | c || || .

p

p p

n n n n n p nw u u w c w w 

    

Then 1{ }n rw H  is a bounded sequence. Passing to a subsequence, we may assume that 
0,  n nu u w V   weakly in 

1

rH  and 
0,  n nu u w V   strongly in 

sL  for (2,6).s Since 
nu u  strongly in 

12

35 ( )L , it follows from Lemma 2.1(6) 

and the Sobolev imbedding theorem that 
nu u   strongly in 

6L . Consider the identity 

                                           1 1( ) | | ,            .                               (2.10)
n

p

n n u n n n rw w w u u H              

Using the Hölder inequality, we have 

                                                   
0 6 0 12 12

5 5

| ( ) | | | | | | | (1)
n n nu n u u nw V w V o          

for any 1.rH   Then we get 

                                 1

0 0 0 0( ) ( ) ( ) | | ( ) (1). 
n

p

n n n n u n n n n nw w V w w V w w V u u w V o              

Hence 

                                                        2 2

0 0 0|| || (1) || || (1),n n nw w V w V o V o        

which implies 
0nw V strongly in 1

rH . Taking limit as n  in (2.10) yields 

                                                  1 1

0 0 0( ) | | ,            .p

u rV V V u u H              
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This implies that 
0V  satisfies 

                                                                            
1

0 0 0 | | .p

uV V V u u      

Since 1

1| | ,p

pu c

  so 
0 0V   and then 1

0| | 0,pu uV   which implies that 

                                                              
01 1

0

lim lim .
| | | |

n p pn n
n

c c

u uw u uV
 

  
  

 
 

Therefore, 
0 0 0n n nw w V V     strongly in 1

rH . This completes the proof. 

           Now let us define a map 

                                                                        *: ,    ( ) ( ).b rN H u u u  1
V V A  

 To constructing a descending flow for the  functional ( )I u , we prove that V  is a sort of pseudo-gradient vector of ( )I u  

restricted on 
bN . We have the following lemma. 

Lemma 2.5.                                         ( )[ ( )] || ( ) || ,                   .bI u u u u N   2
V V  

Proof.  Take any  bu N  and write ( )w u A  as above. By (2.8), we have 1| | ( ) 0.pu u u w c c      Let 

= ( ) ,v u u w V , then =u v w  and 1| | 0pu uv  , we deduce from (2.1) and (2.8) that 

                                                         

( )[ ] ( ) | |

             = ( ) ( ) ( )

             =|| || | |

             || || .

p

u

u

p

u

I u v u v uv uv u uv

v w v v w v v w v

v u uv v

v





 





      

      

 



  

 

 

1

2 1 2

2

 

Lemma 2.6.  Let  n bu N  be such that        

                                                                  ( ) ,n kI u d d    and  ( ) 0nu V   strongly in . rH 1  

Then, up to a subsequence, there exists 
bu N  such that 

nu u  strongly in 
rH 1  and ( ) 0u V . 

Proof.   Since 
n bu N , then 

nu  is bounded. By Lemma 2.4, up to a subsequence, we may assume that 
nu u  weakly 

in 
rH 1  and 

0( )n nw u V A  strongly in 
rH 1 , hence 

nu u  in sL  for [2,6]s , we have 

                                                       1,   ( ) ( ) 0,         ,n n n ru u u u u u H              for all  

and 

                                                                            2 2

0 0| ( ) | | | 0.n nw V w V      

Hence 2

0 0 0( ) 0,   ( ) 0,   | ( ) | 0n n nu u V u u V w V            and 2

0| | 0nw V  . Since ( ) 0nu V , it 

reads 2 2| ( ) | | | 0n n n nu w u w     , hence 2| ( ) | 0n nu w    and 2| | 0n nu w  . So we have that 

                                                 

0 0

0 0

2
2

1 0 0

0 | ( ) | | ( ) ( ) |

        = | ( ) || ( ) | | ( ) ( ) | | ( ) |

        =c [ | ( ) | | ( ) | ] | ( ) | (1).

n n n n n n

n n n n n n

n n n n

u u u u w w V V u u

u w u u w V u u V u u

u w w V V u u o

           

            

         

 

  

  

 

Similarly, we have 
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0 0

2
2

1 0 0

0 | ( ) | | ( )( ) |

 c [ | | | | ] | ( ) | (1).

n n n n n n

n n n n

u u u u w w V V u u

u w w V V u u o

       

      

 

  

 

Hence 
nu u  strongly in 

rH 1  and so  
bu N . Therefore, ( ) lim ( ) 0. n

n
u u


 V V Moreover, ( )n kI u d d   and so 

bu N . This completes the proof. 

         To obtain sign-changing solutions, we make use of the positive and negative cones as in many references such as 
[33, 38]. Precisely, we define                

                                            { : 0}rP u H u   1  and { : 0},rP P u H u     1  set  = .P P P   

Moreover, for 0   we define { :dist ( , ) }r pP u H u P   1

1
, where 

                                                                  
dist ( , ) min{dist ( , ),   dist ( , )},

dist ( , ) inf{| | :  }.

p p p

p p

u P u P u P

u P u v v P

 

  

 

 



  

1 1 1

1 1

 

Denote max{ , }u u  0 , then u u u    and, it is easy to check that  dist ( , ) | |p pu P u

 
1 1

. 

           Then P  is an open and symmetric subset of 
rH 1  and \rH P

1 contains only sign-changing functions. 

Lemma 2.7.  There exists 0 0
 such that for (0, )  0

, there holds 

                                                   
1

2
dist ( ( ), ) ,    ,   dist ( , ) .p b pu P u N u P     1 1A  

Proof.  For u P , we have that dist ( , )p u P 

 
1

 or dist ( , )p u P 

 
1

. To show 
1

2
dist ( ( ), )p u P  1 A  , we need 

to show that either 
1

2
dist ( ( ), )p u P 

 1 A  or 
1

2
dist ( ( ), )p u P 

 1 A  be valid. Indeed, for   small enough, we have 

the following two statements: 

             (1)   If dist ( , )p u P 

 
1

, then 
1

2
dist ( ( ), )p u P 

 1 A . 

             (2)   If dist ( , )p u P 

 
1

, then 
1

2
dist ( ( ), )p u P 

 1 A . 

 Since the two conclusions are similar, it suffices to prove the first one. Let ( )w u w w   A , we have 

                           

0 0

0

0

dist ( , ) || || | | || || || || ( , )

                                = [ | | ] 

                                = [ | | | | ( ) ]

                         

r
p p H

p

u

p p

u

w P w w w c w c w w

c u uw ww

c u w u w w





     

 

  

    

   

 

  

 

  

11 1

1

2

0 0      | | | | || || .p p

pc u w c u w   

  1

 

Therefore 

                                              
0 0dist ( , ) | | | | | | dist ( , ).p p

p p p p pw P c u u c u u P      

     1 1

1 1 1 1 1
 

Let 0 0
 small enough such that -

0

1

2
.pc  1

0   Then we get that, if (0, )  0
 and 

bu N  with  

dist ( , )p u P 

 
1

, we have that 
1

2
dist ( ( ), )p u P 1 A



  . This completes the proof. 

             To continue our proof, we introduce a notion of local genus simulating that of vector genus introduced by [38] to 
define suitable minimax energy levels. To do this, we consider the class of sets 
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                                                { :  B M B F  is closed and symmetric with respect to 0},  

and, for each BF  and Nk , the class of functions 

                                            ( ) { : ,k

kF B f B f  1  is odd and ( , )}.kf B 1C    

 Here we denote R {0}0 . The genus   of BF  is a number in { }  . We say that ( )B k   if for every 

( )kf F B  there exists u B  such that ( ) 0f u  . We denote 

                                                                     { : ( ) }.k B B k   F:  

As usual, we have the following useful properties of the genus. 

Lemma 2.8.   

  (1)   Let B M  and let :  { ,| | , 0}k kS x x c c B      1  be an odd homeomorphism. Then .kB   

  (2)   There holds ( ) kB   whenever 
kB   and : B M   is a continuous odd map. 

          The following two lemmas are crucial in constructing suitable minimax values of I . 

Lemma 2.9.   Let 2k  . Then there exists 0 0
, for any (0, )  0

 and any 
kB  ,  there holds \B P   . 

Proof.  For any 
kB  . By the definition of 

k , then for any ( )kf F B  there exists u B  such that ( ) 0f u  . 

Consider the function kB  1  defined as ( ) ( | | ,0, ,0)p kf u u u  
1 . Clearly ( )kf F B , so there exists 

u B  such that ( ) 0f u  . Note that u M , that is | |pu c 
1 , we conclude that 

                                                                                 
1

| | | | ,
2

p pu u c     
1 1  

that is, 
1

2
dist ( , ) ( ) p

p u P c 

 

1

1

1
, and so \u B P  for every 

1

2
( ) pc   

1

1

0
. 

Lemma 2.10.  There exists  
kB   1

 such that 
bB N  and sup ( )u B kI u d  . 

Proof.  Let 
1kW 
 be a 1k   dimensional subspace of 1

rH .  We define 1

1 1{ :  | | }p

k k pB B u W u c

     . Obviously, 

there exists an odd homeomorphism from kS  to B . By Lemma 2.8 (1) one has 
kB   1

. From (2.2) we have that 

kbB N , and so Lemma 2.2 yields sup ( )u B kI u d  . 

            Now we are in a position to construct the minimax values for I .  For every 
1 [2, 1]k k   and 

1

2
( ) pc   

1

1

0
, 

we define                                                                                          

                                                                                          
01

1 \

inf sup ( ),                                                    (2.11)
k

k
B u B P

c I u



 

  

where                                                
1 1

0 { :k k bB B N      and  sup }.B kI d  

Note that 
2 1

0 0

k k    for any 
2 1k k , hence 

1

0

k   and so 
1k

c  is well defined for any 
1 [2, 1]k k  . Moreover,  

1k kc d   for every (0, )  0
 and 

1 [2, 1]k k  . Define  0 { : ( ) }b b kN u N I u d   , then by Lemma 2.2 0

k bB N . 

           Now we can construct a descending flow for the functional I , and then the set 0

bN  will be seen turned out to be 

the desired invariant set of the flow. 

Lemma 2.11.  There exists  a unique global solution 0 1:[0, ) b rN H     for the initial value problem 

                                                                        0( , )
( ( , )),    (0, ) ,                                (2.12)b

d t u
t u u u N

dt


    V  
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which satisfies 

      (1)    0( , ) bt u N   for any 0t   and 0

bu N . 

      (2)    ( , ) ( , )t u t u     for any 0t   and 0

bu N . 

      (3)     For every 0

bu N , the map ( ( , ))t I t u  is non-increasing. 

      (4)     There exists 
1

2
(0, ( ) )pc 

1

1

0
 such that, for every   0

, there holds 

                                             ( , )t u P      whenever   0

bu N P     and     0t  . 

Proof.  The proof is similar to that has shown as in [39]. For the sake of completeness we reproduce that proof here. 

         Recalling Lemma 2.3, it shows that ( )u  1
V C *( , ).1

b rN H  Since 0 *

b bN N  and *

bN  be open, so (2.12) admits a 

unique solution *( , ) bt u N  , where 
max 0T   is the maximal time such that 0 * 1

max:[0, ) b b rT N N H     for all t 

max[0, )T  (since ( )uV  is defined only on *

bN ). We should prove 
maxT    for any 0

bu N . Reasoning by contradiction, 

suppose that there exists some 0

0 bu N , the flow starting from which the maximal time 
maxT   . Consider 

                                                      

max

| ( , ) | ( 1) | ( , ) | ( , )( ( , ) ( ( , ))

                         ( 1) ( 1) | ( , ) | ,        0< .

p p

p

d
t u p t u t u t u t u

dt

p c p t u t T

    



 



   

     

 



1 1

0 0 0 0 0

1

0

A
 

Since | (0, ) | | |p pu u c    
1 1

0 0
, we infer that | ( , ) |pt u c  

1

0
 for all 

max0 t T  . Then *( , ) b bt u M N N   0
 

for all  t
max[0, )T , hence 

max 0( , ) bT u N  , and so 
max 0( ( , )) kI T u d  . Since ( , ) bt u N 0

 for all t
max[0, )T , we 

deduce from Lemma 2.5 that 

                                              

max

max

max 0 0 0 0
0

2

0 0 0
0

( ( , )) ( ) ( ( , ))[ ( ( , ))]

                     ( ) || ( ( , )) || ( ) ,

T

T

k

I T u I u I t u t u dt

I u t u dt I u d

  



 

   





V

V

       

a contradiction. So 
maxT   , and above inequality shows  similarly that ( ( , )) ( ) kI t u I u d    for all 0t   and 

0

bu N , hence previous argument shows that 0( , ) bt u N   for all 0t   and then (1),  (2),  (3) hold. 

         Finally, let 
1

2
(0, ( ) )pc 

1

1

0
 be such that Lemma 2.7 holds for   0

. For any 0

bu N  

with dist ( , )p u P    
1 0

, since 

                                        ( , ) (0, ) ( ) (1 ) ( ) ( ),
d

t u u t u o t t u t u o t
dt

       A  

we achieve that 

                                     

1

2

dist ( ( , ), ) dist ((1 ) ( ) ( ), )

                         (1 )dist ( , ) dist ( ( ), ) ( )

                         (1 ) ( )

p p

p p

t u P t u t u o t P

t u P t u P o t

t t o t



  

 

 

   

   

    

1 1

1 1

A

A
 

for 0t   small enough. Hence (4) holds. 

3.  PROOF OF THEOROM 1.1 

            After all the preparations above, now we are in a position to prove Theorem 1.1. 
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Proof.  of Theorem 1.1.(Existence part)  Take any 
1 [2, 1]k k   and (0, )  0

,  write 
1k

d c  for convenience in 

this part. We  prove that there exists a couple ( , )c cu   with 
cu  changing its sign and 1

1| |pc pu c

   such that ( , )c cu   is a 

solution to (1.1), that is, 
1k

d c  is a correspondent value of some critical value of 
c

I . 

           We claim that there exists a sequence 0{ }n bu N  such that 

                                         ( ) ,   ( ) 0n nI u d u V    as  ,n   and   dist ( , ) ,    .          (3.1)p nu P n
1



     

Proving this claim by contradiction. Suppose that (3.1) does not hold, recalling that 
kd d , there exists small (0,1)   

such that 

                                       || ( ) || ,   ,  | ( ) | 2 ,   dist ( , ) .b pu u N I u d u P       2 0

1
V  

Recalling the definition of 
1k

d c  in (2.11), we see that there exists 
kB 

1

0  such that  

                                                                                        
\

sup ( ) .
u B P

I u d





   

 Noting that 0

bB N , we can consider (2, )D B , where   is in Lemma 2.11. Hence 0

bD N . Lemma 2.8 (2) and 

Lemma 2.11 (2) imply that 
kD 

1

. By Lemma 2.11 (3), we have sup supD B kI I d  , that is 
kD 

1

0  and so 

\supD P I d


 . Let 
1 \u D P  such that 

\ 1sup ( )D P I I u


  , then there exists u B  such that 2( , )u u  1
 and 

                                                                         
1

\

2sup ( ) ( ( , )).
D P

d I I u I u


        

Since 0( , ) bt u N   for any 0t   and 2( , )u u P  1
, Lemma 2.11 (4) shows that ( , )t u P   for all 0, 2[ ]t . In 

particular, u P  and so ( )I u d   . Hence for all 0, 2[ ]t  we have 

                                                                   2( ( , )) ( ( , )) ( ) .d I u I t u I u d          

Which deduces || ( ( , )) ||t u 2
V  and 

                                                    2

0( ( , )) ( ( , ))[ ( ( , ))] || ( ( , )) || ,
d

I t u I t u t u t u
dt

         V V  

for every 0, 2[ ]t . Therefore, we arrive at 

                                                           
2

0
2( ( , )) ( ) 2 ,d I u I u dt d d               

a contradiction. Then (3.1) holds. By Lemma 2.6, up to a subsequence, there exists 
bu N  such that 

nu u strongly in 

 
rH 1  and ( ) 0, ( ) ku I u d c  

1
V . Since ( ) ( ) 0u u u  V A , that is ( )u u A , hence u  satisfies 

                                                                            

1

1

| | ,     

| | .                        

p

u

p

u u u u u

u c

  



   


 
 

Since dist ( , )p u P  
1

, we know that  u P , hence u  is sign-changing. Let 

                                                                  

2 2|| || | |
,     .

u

c c

u u
u u

c


 


  

  

 We see that ( , )c cu   solves the problem  (
cP ). In a word, for any 

1 [2, 1]k k  , every 
1k

c  corresponds to a critical 

value of I  such that 
1

( ) (1 )
1c c k c

c
I u c

p
    


for some couple ( , )c cu   which solves the problem (

cP ). 

 

(Multiplicity part)  We prove that system (1.1) has infinitely many sign-changing normalized solutions. Reasoning by 
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contradiction, suppose that there exists 
0n   such that system (1.1) has only 

0n  such solutions. Take 
0 1k n   

fixed and (0, )  0
, since 

1 1

0 0

1k k   , we have 

                                                                    
2 3 ( 1) .                                    (3.2)k k kc c c c d          

Since 
1k

c  are correspondent values of critical values of I  for all 
1 [2, 1]k k   with some couple ( , )c cu  . We show 

that for any two different minimax values 
1k

c , the corresponding couples ( , )c cu  are different. Set 
1 2d d  are two such 

values, 
id  corresponds to the couple ( , )i iu  . If 

1 21 2( ) ( )I u I u  , then 
1 1 2 2( , ) ( , )u u   obviously.  If 

1 21 2( ) ( )I u I u  , since ( ) (1 )
1i i i i

c
I u d

p
   


, one has 

1 2 2 1

1
( ) 0

p
d d

c
 


    , then 

1 2   and so 

1 2u u , hence 
1 1( , )u    

2 2( , )u  . Therefore, there certainly exists some 
12 N k   such that 

                                                                       
1 1( 1) .                                                (3.3)N N kc c c d      

Define 

                                               { :  bu N u K  is sign-changing,   ( )I u c
   

and   ( ) 0}.                  (3.4)u V  

Then K is finite and symmetric, that is, . K F Then there exists 
0 1k k   and 

0{ :1 }mu m k  K  such that 

                                                                   
0{ ,  :  1 }.m mu u m k   K  

Taking 
muO  be open neighborhoods of 

mu  in H , such that any two of 
muO  and 

muO , where 
01 m k  , are disjoint and 

                                                                   
0

1

.
m m

k

u u
m

 K O = O O  

Define a continuous map : \{0}f O  by 

                                                                  
0

0

1

1

1,      ,  
( )

1,      .

m

m

k

m u

k

m u

u
f u

u





 

  

O
=

O

if

if

 

Then ( ) ( )f u f u = . Then by Tietze's extension theorem, there exists ( , )f HC  such that |f fO
. Define 

                                                                  
( ) ( )

( ) ,
2

f u f u
F u

 
=  

then |F fO
 and, is odd on H . Define 

                                                                { : inf || || }.b vu N u v   
K

K =  

Take 0   small such that 
2 K O . Recalling ( ) 0V u   in K and K is finite, there exists 0C   such that 

                                                                      
2|| ( ) || ,            .                                              (3.5)u C u   V K  

By (3.4) and Lemma 2.6, it is easy to see that there exists small 
2

(0, )k
d c




  such that 

                             || ( ) || ,   \ ( )bu u N P 2
V    K

   
satisfying   | ( ) | 2 .                           (3.6)I u d    

Let 
1

2 3
min{1, }

C


  . Then we can take 

NB 
1

0

1  such that 

                                                                  
1\ ( 1)sup .                                                    (3.7)B P NI c c

        

Let 
2D= B\ K , then DF . We claim that 

1( )D N  . Otherwise, then there exists 
1
( )Ng F D  such that for any 

, 0u D g  . By Tietze's extension theorem, we get a map 1 1
( , )

N
g H


C  such that 

Dg | g . Define 
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( ) ( )

( ) ,         ,
2

g u g u
g u u H

 
 =  

then 
Dg | g  and is odd. Let ( ) ( ( ), ( ))G u g u F u=  for u B , then  1 1 1

( , )
N

G H
 

C  and is odd. Hence 
1 1( )NG F B . 

Since 
NB 

1 1 , so ( ) ( ( ), ( )) 0G u g u F u =  for some u B . If 
2u  K O , then ( ) 0F u  , a contradiction. So 

2u B\ = D K , and then 0 ( ) ( ) 0g u g u = , also a contradiction. Hence 
1( )D N  , that is, 

ND 
1

 . Note that 

bD B N   and 
NB 

1

0

1 , then sup supD B kI I d  , we obtain that 
bD N 0  and 

ND 
1

0 . We consider E   

,
3

( )D
C


 . As previous proof in existence part, we have 

NE 
1

0 , hence 
1\supE P NI c c

   .  On the other hand,  

there exists 
1 \u E P  such that 

\ 1sup ( )E P I I u


  , hence there exists u D  such that ,
3

( )u
C

u


 1  and then, 

we have 

                                                                 
\ 1 ,

3
sup ( ) ( ( )).E P u

C
c I I u I




        

Since 0( , ) bt u N   for all 0t   and ,
3

( )u
C

u P


 1  , we have ,( )ut P   for all 
3

[0, ]
C

t


 . In particular, u P  

and so ( )I u c    by (3.7), since 
2u D= B\ B K . Then for any 

3
[0, ]

C
t


 , we have 

                                                            , ,
3

( ( )) ( ( )) ( ) .u u u
C

c I I t I c


          

In order to use (3.6), we need to show  that ,( )ut  K  for all 
3

[0, ]
C

t


 . If there exists 
3

[0, ]
C

T


  such that 

,( )uT  K , then there exist 
1 20 t t T    such that 

1 2 2, , ,( ) ( )u ut t   K K , and 
2,( ) \ut   K K  for 

1 2( , )t t t . So we see from (3.5) that 

                                                         
2

1
1 2 2 1|| ( , ) ( , ) || || ( ( , ) || 2 ( ),

t

t
t u t u t u dt C t t        V  

that is, 
2 3C C

t t T
 

2 1    , a contradiction. Hence ,( )ut  K  for all 
3

[0, ]
C

t


 , hence 2|| ( ( , )) ||t u V  and, 

we achieve that 

                                           3

0
,

3
( ( )) ( ) 2 ,Cu

C
c I I u dt c c




               

a contradiction. Hence we have infinitely many different values of 
( 1)kc 

. This completes the proof. 

4.  PROOF OF THEOROM 1.2 

Proof.  of Theorem 1.2.   Define 

                                            {( , ) :  ( , )c c c c cu u K  solves the problem (
cP ) with 

cu  sign-changing}.  

Then 
c  K . Let 

( , )inf ( )
c c cud I u 

K
.  Then d  is well defined since 21

4
( ) || ||I u u   for u N , the Nehari 

manifold defined as {( , ) \{0} : ( )[ ] 0}u H I u u      N . Take  1k   in Section 3, (1.1) has a couple ( , )c cu   

with 
2 1( )

c cI u c d    solving the problem (
cP ). Hence 

1d d . Let ( , ) ( , )n n

c c n n cu u  K  be a minimizing sequence  

of d  with 
1( )

n nI u d   for all 1n  , then 2

1|| || 4 ( ) 4
nn nu I u d  , that is, { }nu  is a bounded sequence. Since ( , )n nu   

solves (
cP ), we have ( ) 0

n nI u
   and 

2 2

0

|| || | |
nn u n

n

u u
c

c





 

 , then 
n  has a convergent subsequence which 
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still likewise labeled as 
n and set 

n c    . Recalling the Sobolev inequality 2 2

1| | || ||n p nS u u   and ( , )n n cu  K , 

we deduce that 

1

1inf{ , }  0

p

p

n S c 



  . Then  we have 

                                                    1( )[ ] | |
n

p

n n n u n n nI u v u v u v u v u u v           

and 

                                                 1( )[ ] 0 | | .
n n

p

n n n u n n n nI u v u v u v u v u u v            

Then we evaluate that 

                                                                        1( )[ ] ( ) | |pn n n nI u v u u v        

which implies that 

                                                                      1| ( )[ ] | | |  | | | | .p

n n n nI u v u u v        

Recalling the Sobolev inequality 2 2

1| | || ||pS v v   again, we deduce that 

                                                                     
1 1| ( )[ ] | | |  | | || ||,p

n n n pI u v c u v   
    

that is, 
1| ( ) | | |n nI u c      which implies that ( ) 0nI u

  . Hence { }nu  is a PS sequence of I , and the fact that 

 the PS condition is valid for [3,5)p  and for any 0   has been inferred in [6]. Then 
nu  has a strongly convergent 

subsequence which still likewise labeled as  
nu . Suppose 

nu u  strongly in H  with 1

1| |ppu c

  , then ( ) 0I u
   and 

( )I u d  . We need to show u  changing sign. Recalling the Sobolev inequality 2 2

1| | || ||pS u u  , we deduce from 

( )[ ] 0
n n nI u u

   that 

                                                          2 2 1 2 1

1 1 0 1| | || || | | | | | | ,
n

p p

n p n n n p u n n pS u u u u c u       

       

 which implies that 

1

1

1 1

0

| | ( ) 0p

n p

S
u c

c

 

     for  all 1n  . Hence 
1 1| |pu c

   and so ( , ) cu  K . This completes the 

 proof. 
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