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ABSTRACT 

In this paper we study the geometry of 
nY  space and applications of this space to general theory of relativity. In 

nY  

space we obtained analog Ricci - Jacobi identity;  We  study the hypersutface 
nY 1

 in 
nY  space; the geodesic lines 

equation have been researched; we introduced analog of Darboux theory in case of 
nY  space, so it was shown the  

tensor   can be presented as the sum of two tensors symmetrical and antisymmetrical with property 

[ ]

1
= .

2

i p q j

ij pqg S       We discussed some partial cases gravitational and electromagnetic interaction, and their 

connection to geometry structure; we considered stronger electromagnetic field in 
nY  space. We derived the general field 

equations (electromagnetic and gravitational) from the variation principle. 
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INTRODUCTION 
1. For describing objective reality we have some 4-dimentional key scientific theories: classical mechanics, 

general relativity, quantum physics, Maxwell’s electromagnetic theory [8-10], Yang–Mills theory and the Standard Model. 
All this theory have many applications and were made many experiments that prove it correctness except general 
relativity, of cause we have some phenomenon that convenient explain by this theory, like gravitational lensing, black 
holes and gravitational wave, but all these  phenomenon can be study by another methods, such if we have two objects 
orbiting a common center of mass (or any other pulsating massive object) and we assume finite interaction speed then we 
obtain correct low for gravitational wave by classical mechanics. According to Albert Einstein [9] idea general relativity had 
to be the theory that united electromagnetic and gravitational interactions, but at present days classical theory of general 
relativity don’t include Maxwell’s theory as a natural part (we can’t count electromagnetic theory in Riemann space as 
electromagnetic-gravitational theory, because if we assume space without mass we can’t obtain Maxwell’s theory in the 
absence of mass), so in reality theory of general relativity is only classical mechanics theory with finite interaction speed, 
with electromagnetic amendment. 

There were many attempts to build higher dimensional theory, that could describe electromagnetic and 
gravitational interactions consubstantialy, but the problem is open. We believe that the problem can be solved in four 
dimensional continuum so we don't discuss higher dimensional theory and we only will give resume Einstein–Cartan [4-9, 
17, 18] theory which didn't solve the problem. 

2. Preliminary consideration and the Einstein–Cartan theory. The Einstein–Cartan theory [4-10, 17, 18]  is a 

theory of gravitation similar to general relativity, but with presumption that the affine connection has vanishing 
antisymmetric part (torsion tensor), so that the torsion can be coupled to the intrinsic angular momentum (spin) of matter, 
much in the same way in which the curvature is coupled to the energy and momentum of matter. The theory was first 
proposed by Elie Cartan in 1922 [4, 5] and developed in the following years then Tom Kibble afresh it in the 1960s, and 
1976. Next, in 1982 Penrose has shown that torsion appears when spinors are allowed to be recalled by a complex 
conformal factor. Then in 1995, the theory has been generalized by F.W. Hehl. 

https://en.wikipedia.org/wiki/Classical_Mechanics_(Goldstein_book)
https://en.wikipedia.org/wiki/Gravitational_lensing
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The space-time in Einstein–Cartan theory is four dimensional metric-affine space with a connection that is metric, 
originally Albert Einstein [8, 10] studied the space that was compound of Riemann and affine spaces (it’s so call Einstein 
theory of gravitation with teleparallelism, where he considered two connections one without and with torsion and he 
postulated that torsion is associated with electromagnetism like metric with gravity).  

According to Andrzej Trautman [18]: “The Einstein-Cartan theory is a viable theory of gravitation that differs very 
slightly from the Einstein theory; the effects of spin and torsion can be significant only at densities of matter that are very 
high, but nevertheless much smaller than the Planck density at which quantum gravitational effects are believed to 
dominate”, so modern Einstein–Cartan don’t try to unite electromagnetic and gravitational theory, but rather make some 
amendments to gravitational theory. The field equations of Einstein–Cartan theory come from exactly the same approach 
as in general relativity, except that a general asymmetric affine connection is assumed rather than the symmetric Levi-
Civita connection (i.e., space-time is assumed to have torsion in addition to curvature).  

Essential problems Einstein–Cartan theory emerged originally in early A. Einstein works devoted gravitation 
theory with teleparallelism and concern with space-time structure Einstein–Cartan space. The Einstein–Cartan space has 
compound structure of Riemann [13] and affine four-dimensional space-time, but A. Einstein assumed that in this space 

exists “the local n-bein consists of n orthogonal unit vectors with components 
a

ih  with respect to any Gaussian coordinate 

system” or  “distant parallelism” with ik ia kag h h , (the space with such geometrical structure is differ from 
nY  - spaces) 

and one of the variants of gravitational theory in space with teleparallelism [2, 9].  

The Einstein–Cartan theory is different from theory of teleparallelism but related, then was attempt to improve this 
theory in “the new teleparallel theory of gravity” with space-time that has a quadruplet of parallel vector fields as the 
fundamental structure and these parallel vector fields generated the metric tensor (A. Einstein worked on this idea also).  

The crucial idea, this theory, was the introduction of a tetrad field, i.e., a set 1 4{y , , y }  of four vector fields 

defined on all of  set M such that for every p M , the set 1 4{y ( ), , y ( )}p p  is a basis of 
pT M , where 

pT M , 

denotes the fiber over p  of the tangent vector bundle TM . Hence, the four-dimensional space-time manifold M , must 
be a parallelizable manifold. The tetrad field was introduced to allow the distant comparison of the direction of tangent 
vectors at different points of the manifold, hence the name distant parallelism. But this attempt was not successful. We 

believe that problem arose due the space structure, so we introduced space 
nY  with different geometrical structure. 

The natural approach to obtaining field equations are derived them by varying Einstein action with respect to the 
metric and torsion independently. Principle of least action is one of natural way to obtain field equations and it unified the 
gravitational theory with Maxwell theory, but it is not the only one.  

The variation principle of least action can be formulated in the form:  m gW W   0 , where mW  and gW  - 

action respectively for matter and field values, and we are varying metric and torsion. The scalar density can be taken as 

 n m ik

ik im knR S S g g  , and we postulate that all the variations of the integral  n m ik

ik im knR S S g gdV   are zero 

(analog of this scalar density was introdused in A. Einstein workes). As result we obtain the field equations, this is the 
general schem for obtaining field equations from principle of least action, result depends on what function we take like 
Lagrangian and what variables we count independent in many cases its obvious. 

 In modern Einstein – Cartan theory, they consider Lagrangian in more complicated form, for example 

1 1

2 2

a ij i j i

a ij i i jL L g t s EX             , but  complication of scalar density in variation principle of 

least action don’t bring any novelty in theory and don’t solve the problem of obtaining field equations that discrabed 
gravitational and electromagnetic fields from one point of view.  

On the other hand,  acoding to A. Einstein “there should be a consensus about the consubstantiality of the 
gravitational and electromagnetic field”  and more essential is to obtain the theory that discribes electromagnetic and 
gravitational field togather and from one point of view.     

Now, to make the our discussion more tangible, we will gave concise description of the geometrical structure of 
nY  space, develop the geometry of hypersurfaces 

nY 1
 [22, 23].   

The remainder of this paper is organized as follows. In Section 1 consider the geometrical structure of 
nY 1

space and consist of four subsection dedicated to: general geometry, geodesic, theory of hypersurfaces, identities in 
accordance; Section 2 discusses the field equations and its application to gravitational theory, consist of two subsection 
empirical approach and deriving the  field equations from the variation principle in accordance; conclusions.         

1. The geometry of 
nY  space 

https://en.wikipedia.org/wiki/Affine_connection
https://en.wikipedia.org/wiki/Levi-Civita_connection
https://en.wikipedia.org/wiki/Levi-Civita_connection
https://en.wikipedia.org/wiki/Torsion_tensor
https://en.wikipedia.org/wiki/Riemann_curvature_tensor
https://en.wikipedia.org/wiki/Teleparallelism
https://en.wikipedia.org/wiki/Teleparallelism
https://en.wikipedia.org/wiki/Einstein_field_equation
https://en.wikipedia.org/wiki/Principle_of_least_action
https://en.wikipedia.org/wiki/Maxwell_theory
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1.1. Structure of 
nY  - space. Let be n  - dimensional continuum equipped with a field twice covariant 

symmetric tensor which is non-degenerate ( )ikg M , where | |ikDet g  0   and ik kig g , this metric tensor is chosen 

arbitrarily, but in addition to conditions laid above we demand that manifold was sufficiently smooth. 

The connection ( )i

jk M  is a geometric object on a manifold and is subjected to the law of the transformation 

from one coordinate system 
ix  to another 

ix   by the formula: 

i j k i i
i i

j k jk i j k j k i

x x x x x

x x x x x x

 


     

    
   

     

2

,         (1.1) 

where the functions 
i

jk  are sufficiently smooth. 

Always below we would not require the symmetry of connection. And so if the metric ikg  is well defined, then a 

geometric object 
i

jk  subject to certain requirements, but still there is some freedom in the choice of connection of the 

space, more precisely, we need to define a torsion tensor: 

i i i

jk jk kjS    ,                                         (1.2) 

then the geometric object 
i

jk  that is generated the connection is determined uniquely. The object 
p

kl , which generate 

space connection, is completely determined by two tensors ikg  and 
m

ikS . Therefore the connection 
p

kl  is the sum of a 

geometric object 
p

kl  which is composed of derivatives of the metric tensor ikg  and tensor  
p

klL  is compiled of ikg  and 

the tensor
m

klS , by formula 
p p p

kl kl klL    .  

The main assumption is that a scalar product of two any vectors in parallel transportation along an arbitrary path 
does not change.                                        

Next we introduce the notation and from the last formula we see that  

 , , ,

p pi

kl ik l li k kl ig g g g   
1

2
                (1.3) 

is geometric object  

 p p pi m m

kl kl km li lm kiL S g g S g S  
1 1

2 2
             (1.4) 

is tensor. 

Remark .  It is not difficult to prove the relation:  

,

p ip

pl ip l l

g
g g

xg


  



1 1

2
, where det ikg g . 

Then, we consider the difference of first general derivatives: 

; ; , ;

k

i l l i i l l i il ku u u u S u    . 

Similarly, we obtained the difference: 

; ; ; ; ;

p q

i l k i k l kli p kl i qu u R u S u                                       (1.5) 

where 
p

kliR  is curvature tensor. Similarly, we have 

; ; ; ; ;

i i i p q i

l k k l klp kl qu u R u S u                                           (1.6) 

here we notated: 

http://en.wikipedia.org/wiki/Smooth_manifold
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, ,

p p p p q p q

ikl li k lk i qk li qi lk                                                      (1.7) 

is a tensor like the Riemann curvature tensor, composed of the metric tensor and its derivatives. 

p p q p q

ikl qk li qi lkZ L L L L   is tensor                                                 (1.8) 

, ,

p p p p q q p p q q p

ikl li k lk i qk li li qk qi lk lk qiL L L L L L          is tensor.               (1.9) 

Then we get: 

; ;

p p p q p p q p q q p p q p q

ikl li k lk i li qk qi lk lq ik lk qi qk li lq kiL L L L L L L L                 

; ;

p q q q p q q p p p q p p q q p p q p q

qk li li qk qi lk lk qi li k lk i li qk qi lk lk qi qk li lq ikL L L L L L L L L L L L L L L S            , 

since, the absolute derivatives have tensor character it is tensor. 

If we denote:  

p p p

ikl ikl iklZ   ,                                                                 (1.10) 

then we get 

; ;

p p p p q p q p q

ikl li k lk i lq ik qi lk qk liL L L S L L L L      ,                                 (1.11) 

or 
p p p

ikl ikl iklR    .  

Remark. Since, torsion tensor is antisymmetric, we have identities: 
i p i p

jp ki pk ijS S S S  and ;i p

ip jkS S  0  then we 

obtain the equation: 
i p i p i p

jp ki kp ij ip jkS S S S S S   0 . 

1.2. The geodesics in 
nY  space. Definition (geodesic).  A geodesic by definition is a curve whose tangent 

vectors remain parallel when they are transported along this curve.  

Theorem 1.  So that not isotropic line in 
nY  space was geodesic it is necessary and sufficient that a variation of 

the arc of the line s  was equaled to 

t i
j p k

ij pk

t

dx
s g S dx x

dt
  

2

1

. 

Theorem 2. For that true Riemannian space with a connection 
p

kl  has shared geodesic lines with 
nY  space 

with connection 
k

ij  with torsion tensor 
k

ijS ,  it is necessary and sufficient that the connections to be differed by tensor: 

 k k k l k l

ij ij i jl j ilP S S
n

    


1 1

2 1 . 

Remark. In  work of A. Einstein “Unified field theory based on riemannian metrics and distant parallelism” 

definition of geodesic is different, there  geodesic defined as the shortest in sense of riemannian metrics.       

1.3. The theory of hypersurfaces 
nY 1

 in 
nY . We assume that hypersurfaces 

nY 1
 with coordinates is 

embedded in 
nY  space with coordinates. The hypersurface can be defined by a system of equations: 

 ,...,i i nx x y y  1 1
, 

where the rank of the matrix 

ix

y
 
 
 

 is equal to n1 . The metric tensor of 
nY 1

 is calculated by the formula:  

https://en.wikipedia.org/wiki/Tangent_space
https://en.wikipedia.org/wiki/Tangent_space
https://en.wikipedia.org/wiki/Tangent_space
https://en.wikipedia.org/wiki/Parallel_transport
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i j

ij

x x
a g

y y
  

 


 
,                     (3.1) 

and the torsion tensor of  
nY 1

  by definition: 

i j q
p

pq ij

x x x
T a g S

y y y

 

   

  


  
.                    (3.2) 

By this two tensors a  and  T 

  one could fully defined the geometry of the 
nY 1

 space by itself, without 

embedded space 
nY .  

The connection of 
nY 1

 can be calculated by: 

  , , ,G a a a a a T a T T    

                
1

2
.         (3.3) 

Let =
i

i x

y
 





 and at each point of  

1nY 
 we build the rapper consisting of the vectors 

1 1,..., ,i i i

n  
, where 

1 1,...,i i

n  
 linearly independent tangent vectors and 

i  normal vector, defined since the metric exists. Since the normal 

and any tangent vector is orthogonal we have = 0i k

ikg   , and write decomposition: 

;

i i

     .            (3.4) 

Here   is tensor, second fundamental tensor of hypersurfaces 
nY 1

. Due to, the existence of metric, we have 

obtained by differentiating 
i j

ijg    0  by  : 

;

i j

ijg      .                (3.5) 

Similarly, by differentiating 
i j

ijg   1  by  , we obtain: 

;

i i ia 

            .                  (3.6) 

Further, we obtain: 

; ; ; ; ;

i i i k l p i i

klpR R T 

                          

   ; ;

i ia a 

                   .          (3.7) 

Equation (3.7) is multiplying by 
j

ijg  , we have: 

 k l p i

iklpR R                  .      (3.8) 

Similarly, we derive a formula: 

 ; ; ; ; ; ; ;

i i i k l p i i

klpR T a a  

                          .                   (3.9) 

We contract (3.7) with 
j

ijg  , then: 

; ;

k l p i

iklpR T

                  . 

Formula (3.9) is multiplying by 
j

ijg  , we concluded that: 
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; ;

k l p i

iklpR T

                   

we can represent this formula like  

; ;

i k l p

iklpR T

                  . 

Thus, we have the two types of formulas. Formula (3.8) does not contain the torsion tensor explicitly, but it is 

counted in the tensor  . In the formula (3.9) the torsion tensor of the hypersurface 
1nY 

 present explicitly and in the 

form of coefficients of  , and appears in the calculation of the covariant derivative. 

We denote     symmetrical tensor ; ;

i j

ijg     and we have 

; ;

i j i j i j

ij ij ijg g a a g a a      

                                  , 

or  

  ; ; , ,

, , , ,

i j i i k l j j q p

ij ij lk pq

i j j i k l i j q p i j k l q p

ij ij lk ij pq ij lk pq

g g

g g g g

      

       

        

           

    

       
 

so we see, that asymmetrical part vanished.  

We denote 
1

2
M a

 , we have  

,a a Ma a a     

             2  

then 

 a a a
a

 

    


      , 

 a a a
a

 

    


      0 , 

M a
a

  


   2 0  

and we obtain   

M a
a

  


  2 . 

We calculate  

 
; ; ; ; ; ;

; ; ; ;

a a a a

a a a

   

               

  

          

         

      

     

   
 

and 

 ; ; ; ;

; ; .

i k l p

iklp

i k l p

iklp

a R T a a

R a T a a a

   

               

    

            

           

          

      

    
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Tensor   can be associated with square of angle between normal and adjacent normal dy dy d 

  2
. 

So, let in space 
nY  with coordinates 

1,..., nx x  given the system of non degenerate equations  1 1= ,...,i i nx x y y 
 so 

is determined the hypersurface 
1nY 
 and the metric and torsion of 

1nY 
 and since the connection of  

1nY 
. We can 

considered the hypersurface like 
1nY 
 space and so we obtain all internal (intrinsic) geometry structure of 

1nY 
, but 

formulas  1 1= ,...,i i nx x y y 
 define more, then internal (intrinsic) geometry structure of  

1nY 
, they define external 

geometry of 
1nY 
 (imbedding) as well. External geometry or “how the hypersurface 

1nY 
 is imbedded” define by one of 

tensors   or   which determinate position of hypersurface in 
nY  space. As example, internal (intrinsic) geometry 

1nY 
 we considered  geodesic in 

1nY 
. 

Geodesic on 
1nY 
. According to definition geodesic on 

1nY 
 determined by formula  

2

2
= .

d y dy dy
G

ds ds ds

  


  

Let a curve: 1 2= ( ), [ ; ]y y      . We calculate the variation of length of geodesic S  of the curve S : 

 

 = = 2
dy dy dy dy dy dy dy dy

a a D a D a D
d d d d d d d d

       

   
       

 
 

 

    

 

 =
dy dy dy

D G y
d d d

  
 

 
  

  

 

 =
y d dy

D y G y
d d d

 
  




 

  
  

 

 =
y dy dy

D D T y
d d d

  
 






  
  

where denotes D  the absolute differential at the parameter curves of the family at a constant value  , and D  is 

absolute differential displacement d  curve at a constant parameter of the family, then  

 = 2 ,
i j i j p

j k

ij ij pk

dx dx dx x dx
g g D S x

dt dt dt dt dt


 
   

   
   

 

 

 
2 2

1 1

=
dy dy

s a D y a T dy y
ds d

 
 

   

  
 

  


    

 

 
2 2 2

1 1 1

dy dy dy
D a y a D y a T dy y

ds ds d

  
  

    

   
  

  


 
  

 
    

since the ends of the variable curve are fixed 
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2

1

= ,
dy dy

s a T dy y a D y
d ds

 


   

  


  


 
 

 
  

suppose considered curve has a fixed length (analytically = 0s ), then we obtain:  

 
2

1

= = 0.
dy dy

s a T dy y a D y
d ds

 


   

  


  


 
 

 
  

By the fundamental lemma of calculus of variations, it follows:  

 = 0.
dy dy

a T dy a D
d ds

 
 

  


  

The variation of the length of the geodesic is:  

 
2

1

= .
t

t

dy
s a T dy

d


 

 
  

We remark, that the geodesics on 
1nY 

 which are determined by connection  G

  don’t depending on terms 

that contain tensor  T 

 . 

Now, we can construct a semi-geodesics coordinate system in any point of 
1nY 

, but we can’t integrate it.  

Application of tensor  .  Now we will repeat ours reasoning scheme of construction of hypersurface and 

attempt more completely to understand the structure of imbedding space 
nY . In space 

nY  with coordinates 
1,..., nx x  

we have the system of nondegenerate equations  1 1= ,...,i i nx x y y 
 which is determined the hypersurface 

1nY 
, 

then we calculate the metric and torsion of 
1nY 
 by formulas (3.1) and (3.2), and connection by (3.3). Then we studied 

some tensors 
1 1,.., ,i i i

n  
 and obtained tensor  , which is similar to the second tensor of Riemannian hypersurface 

but not symmetrical = .i p q j

ij pqg S          

From theory of surface in 
3R , we know, that covariant derivative of second tensor of any enough smooth surface 

is symmetrical tensor, on another hand, as we can see from ; ;

k l p i

iklpR T

                   tensor ;   

is not symmetrical.  

Formula = i p q j

ij pqg S          shows that external properties of geometry (imbedding) of hypersurface 

can be associated with tensor   and torsion 
i

pqS  of imbedding space 
nY  is influenced not only tensor T 

  but also 

  and  . 

We associate with 
1nY 
 some coordinate system in 

nY , which denote by 
1 1,..., ,n nu u u

 by the rule  

 
1 1 1 1= ,..., = , = ,n n nu y u y u z 

 

with new metric ikg  defined by = ,g a 
  = 0ng 

 , =1nng . Where z  is a geodesic line directed along 
i  - the 

normal to hypersurface. 

Since the rank of the matrix 

ix

y
 
 
 

 equal 1n  suppose that > 0
x

rank
y





 
 
 

 then exist the solution of 

system of equations  

  1 1 1 1= ,..., ,nx x y y 
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 .....,  

  1 1 1 1= ,..., ,n n nx x y y  
 

which we denote by  

 
1 1 1 1 1= = ( ,..., ),nu y y x x 

 

 .....,  

 
1 1 1 1 1= = ( ,..., ),n n n nu y y x x   

 

and  

 
1 1= = ( ,..., , )n n nu z z x x x

 

herewith cometric tensor 
ikg  equals  

 = .ik i k i kg a

      

Remark. Whereas all ours researches have local character we will mark some remark about Taylor series. Let 
i  is infinitesimal vector on the hypersurface 

1nY 
, we can represent it as an infinite sum of terms - Taylor series and 

contract this infinitesimal vector with 
j

ijg  . 

 ; ; ;

1 1
= ....

2 6

j i j i j i

ij ij ijg g Du Du g Du Du Du    

             

since ;= i j

ijg      and ; ; ;= j i

ijg        can be written as 

 ;

1 1
= ....

2 6

j i

ijg Du Du Du Du Du    

         

where =Du du G u du    

  and G define by (3.3). 

Definition. If .... = 0

   for all ... , then we will call tensor   apolar with tensor .... . 

We present tensor   in the form of sum two tensors symmetrical ( ) ; ;

1
= ( )

2

j i i

ijg         and 

antisymmetrical [ ] ; ;

1
= ( )

2

j i i

ijg          , ,

1
( )

2

j i i

ijg         with property [ ]2 = .i p q j

ij pqg S       

We denote ; = ( 1)a n F

     and 
( )

( ); = H

    , here tensor 
( )  is constructed from minors of 

tensor ( )  multiplied by C . It is easy to see  ; ;
= ( 1)a n F a 

    
   , but connection G

  isn’t 

symmetrical, so ;    isn’t symmetrical at  . 

By applying equality = 1a a n

   we have two equality 

 ;( ) = 0,a a F

      

 
( )

( ); ( )

1
( ) = 0.

( 1)
H

C n



     

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Therefore we obtained two tensor 
; a F      and ( ); ( )

1

( 1)
H

C n
    


 which are apolar with a  

and 
( )  correspondingly. 

Tensor ( ); ( )

1

( 1)
H

C n
    


, which is apolar with tensor 

( )  (we find constant from apolarity 

condition ), can be symmetrized (in case of space 
nR  that tensor called Dаrbоuх's tensor) and written in the form  

 ( ); ( ) ( ) ( )

1
= ( )

( 1)
H H H

C n
              


 

it thrice covariant symmetric tensor of the third order, defined on the hypersurface. 

By using the tensor  , we can write the third degree equation  

( ); ( ) ( ) ( )

1
= ( ) 0

( 1)
dy dy dy dy dy dy H H H dy dy dy

C n

        

               


, 

( ); ( ) ( ) ( )

1
( )

( 1)
dy dy dy H H H dy dy dy

C n

     

            


, 

it is easy to see that here symmetry isn’t essential, we can rewrite   

;

3

( 1)
dy dy dy dy dy H dy

C n

     

    


. 

1.4. Identities. These identities are analogical to A. Einstein identities which were obtained in his theory of 

teleparallelism, so: 

; ,ji kp js i kp js i q

sk p qp skH g g S g g S S   

; .jp kp js i

sk iF g g S  

Next we assume that ;

i

pq pq iF S  and we calculate: 

; ;

ji ji kp js q kp js t i kp js t i kp js i t

i i sk pq ips tk ipk st ipt skH F g g S F g g R S g g R S g g R S     .    (4.1) 

Then, we are denoting 
p

ip iS   and since
p q

ij pqS S  0 , we are obtaining: 

; , ,

p

ij p i j j iS    . 

If ;

p

ij pS  0 , then , ,i j j i   0  and hence 
p

ipS  can be expressed in terms of the partial derivative of the scalar 

 
,

lnp

ip i i
S    . System (4.1) can be rewritten: 

;

ji kp js t i kp js t i kp js i t

i ips tk ipk st ipt skH g g R S g g R S g g R S   ,  
ijF  0 . 

We can write the tensor 
ijk pj qk i pk qi j pi qj k

pq pq pqC g g S g g S g g S    and from this follows at once, that this 

tensor is antisymmetric in any pair of indices.  

We consider  

; ; ,

ikj ijk ijk j kpq k jpq q pkj

i i i pq pq pqC C C S C S C C      
1 1

2 2
, 

and  
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  ,
,

lnjk kj jk ijk ikj

i
i

H H F C g C      . 

We multiple by g  , have 

    ,
,

lnjk kj jk ijk ikj

i
i

g H H F g C g C           
 

, 

   
,

jk kj jk ijk

i
g H H F gC       . 

We differentiated the last equality, in view of the antisymmetry of the tensors and we obtained the equality:   

  
,

jk kj jk

k
g H H F     0 . 

2. The field equations 

2.1. Empirical approach. The geometrical theory above was developed only with geometrical and logical origins 

without any additional assumption or physical hypotheses, below we will make such assumptions.  

We won’t use principle of least action for deriving field equations based on 
nY  space and we don’t try to develop 

“Unified field theory” here (we make it in next section), but we analyze possible applications geometrical theory and make 
some physical hypotheses. First of we discuss some partial cases. 

  Newtonian gravitational theory bases on latent assumption that geometry physical world is flat and can be 

describe by Galilean metric, so if we consider degenerated 
nY  space i.e. space where tensors 

i

jkS  0  and 
p

iklR  0  

then in this space we can develop all Newton-Hilbert-Maxwell theory. 

We remind that according to Albert Einstein proposal: the free falling gravitating massive bodies follow geodesic 
line. If we postulate this proposal we can obtain some results of Newton theory as a consequence. We have another 

important assumption of Albert Einstein that the geodesic equation of motion can be derived from the field equations for 
empty space. 

In Einstein-Hilbert theory, the metric tensor can be thought of as a generalization of the Newtonian gravitational 

potential. If we consider 
nY  space   where tensor 

i

jkS  0  and tensor  
p

iklR  can be nonzero then we can obtain Einstein- 

Hilbert-Maxwell theory, for example Schwarzschild solution and Einstein- Maxwell electromagnetic field equations in form 

;

ik i

kF J  and , , , 0ij k ki j jk iF F F    where exists a 4-potential iA  such that ; ;ij i k k iF A A  .  So, the field 

equations yield equations, that correspond to the Newton gravitation theory and to Maxwell’s electromagnetic field theory. 

So in cases when 
nY  space degenerate we obtain well-known field theory.  

Now, we consider pure electromagnetic field in 
nY  space presume we stand far enough from mass but there is 

strong enough electromagnetic field, or we can think that electromagnetic field much stronger that gravitational field and 
we can neglect gravitational component.  We start from identity (4.1) in the form 

; ; 0ji ji kp js q

i i sk pqH F g g S F   , 

the most simple possible field equations will be conditions for the tensor 
p

ijS . We obtain the field equations: 

0ikH  , 

0ikF  . 

We denote ; ;ik i k k iF F F   and 
log

0i i
F

x





  


, then we have we obtained the equality: 

  
,

jk kj jk

k
g H H F     0  

https://en.wikipedia.org/wiki/Gravitational_potential
https://en.wikipedia.org/wiki/Gravitational_potential
https://en.wikipedia.org/wiki/Gravitational_potential
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which is derived from presumption of 
log

0i i i
F

x





  


 and ; ;ik i k k iF F F  , here we assumed 

 
,

lnp

ip i i
S    , 

i i  .  

The form of Maxwell’s equations is , , , 0ij k ki j jk iF F F    is similar to equation  

ijk pj qk i pk qi j pi qj k

pq pq pqC g g S g g S g g S    0  

so it could be postulate as a new electromagnetic field equation, but it is partial case of 

  
,

jk kj jk

k
g H H F     0 . 

So, if there isn’t a gravitational field, that means the 
ikg  is Minkowski metric and there is an electromagnetic 

field, that means the nonzero 
i

jkS . The torsion can be finding from field equations (presumption that the space has 

Minkowski metric is too strong since field equations have to be solve together and the metric tensor is included in all field 
equations, but we simplify situation).  

From pure mathematical point of view we can consider the surface S. At point A on S construct a tangent plane 
P. We choose an arbitrary infinitesimal square ABCD in the plane P with vertex A. From point A on the surface S will draw 
the geodesic in the direction of AB. We pass along it the distance corresponding parameter equal to the length of AB, get 
to point B'. Similarly, from A on S draw geodesic towards AD, get into D'. We perform a parallel transportation of vector AD 
to point B' along the geodesic AB' and draw of geodesic B' along the transportation of this vector, we reach the point C'. 
Similarly, the vector AB will be move parallel along the AD' and along the transported vector from D' draw geodesic get to 
C''. If torsion is zero, then C '= C'', and geodesic square up to small higher-order will be closed, otherwise not. In our case, 

due to the presence of the metric, the length of the gap can be calculated. Let this gap denote by 
k , then 

k k i j

ijS A B   2
 , where the parallelogram 

iA  and 
jB   shrinks to a point at   0 . In this case, we can write the 

square of the length: 
p i j q k l

pq ij klg S A B S A B  
2 4

. These considerations are true only up to the second order relative 

to the length of square side. If we want more strict result we must consider the component of curvature tensor. Next, this 
example is true only when length of square side tends to zero i.e. remains very small in other words in general it is a local 
property.  

We are going to discuss physical interpretation of this example. The physical properties of the space-time are 
defined by the presence of matter (electromagnetic fields and mass) in this space and from the viewpoint of mathematics 
are described by the geometrical structure of space (torsion and metric tensors). The empty space (without matter) is 
corresponded the geometric structure of Euclidean space (torsion tensor and curvature tensor are identically equal to 
zero). Similarly gravitation (mass and without electromagnetic fields) is corresponded the geometric structure of 
Riemannian space (torsion tensor is identically equal to zero). And similarly the electromagnetism (electromagnetic fields 
without mass) in corresponded the geometric structure of space with connection (curvature tensor is identically equal to 
zero). In the last two cases the result is conditional (not strict) because the matter division by the mass and field is 
conditional. 

Metric and torsion tensors are calculated from the differential equations of the field. Hence torsion as the 
curvature arises from the physical features of the distribution of matter in space-time. Roughly, the same way as the 
masses leads to curvature space-time, electromagnetism leads to appearance of torsion. But on the other hand from the 
mathematical point of view if we assume that the space-time embedded in Euclidean space of higher dimension then the 
appearance of torsion can be explained by violation of the smoothness embedding. Therefore, we can conditionally 
determine the torsion and curvature by violation of smoothness regardless of the dimension and embedment. 

The question then arises: Where we can observe this phenomenon? Though the answer is simple in any system, 
where electromagnetic field strong enough to change structure of space and bring non zero torsion, but the problem is that 
in such system appear phenomena bounded with energy and momentum and as consequevce the curvature of space, so  
for research torsion of space-time, we have to reduce the factors that leading to curvature of space-time and evaluate the 

torsion of space-time. Although, the square of the length of space-time 
p i j q k l

pq ij klg S A B S A B  
2 4

 limits to zero 

when   0  the effects in three-dimensional world can be very essential, it depends on electromagnetic field.           

2.2. The field equations from the variation principle. We will derive the field equations from the variation 

principle of least action, by varying the function 
i

jkS  and ikg  independently. 

We form the scalar density as  n m ik

ik im knR S S g g   and postulate that all the variations of the integral:  

https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Momentum
https://en.wikipedia.org/wiki/Curvature
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  n m ik

ik im knR S S g gdV    

 with respect to 
i

jkS  and ikg  as the independent variables are zero (at the boundaries they do not vary) 

 ( ) = 0ik n m ik

ik im knR g g S S g g dV    . 

Now, we obtain some preliminaries results. For variation the second term we have formula  

 ( ) = ( ) ( ),n m q p q p l

im kn kl i il k pqS S S S S     

and 

 = ( ) ( ) .n m ik q p q p l ik

im kn kl i il k pqS S g gdV S S S g gdV        

Recalling that =j j j

ik ik ikP L   where 
j

ikP  are function only of ikg  and tensor 
j

ikL  are function of 
i

jkS  and ikg  we have 

( ) = ( )j j

ik ikL  . Then, it easy to obtain  

 
1

( ) = ( ) ( ).
2

j p q j jq p jq p l

ik i k l il k kl i pqL g g g g S         

We can rewrite 

 , , , ,

1
= ( ) ( )

2

n nm n n n m n m

ik in k nm i k ik ik n mk in mk inR S g g P L P P P L       

 .n m n m n m n m n m n m

mk in mk in mn ik mn ik mn ik mn ikL P L L P P P L L P L L       

and 

 
, ,= ( ( ) ( ) ( ) ( )ik ik n ik n

ik k in n ikR g gdV g g S g g L          

 [ ( ) ( ) ( ) ( )n m m n m n n m

mk in in mk in mk mk inP L P L L L L L         

 ( ) ( ) ( ) ( )] ) .n m m n n m m n ik

mn ik ik mn mn ik ik mnP L P L L L L L g g dV         

Then we calculate  

   , , ,

1
= 2( ) ( ) ( )

2

n m ik pk q pq ip nq

ik im kn k l l n ilR S S g gdV g g g g g g g g            

 ,( ) [pk nq ik q p p mq n mq p

n kl lk i mk il mk nl ig g g g g g P P g g P g g         

 
p q m nq p p nq q p p mq n mq p

il k in ml k in kl lk i mk il mk nl iP P g g P g g L L g g L g g           

 
n p q n mq p n mq p

ln i k mn il k mn kl iP P g g P g g        

 
p q m pq p q n p q n mq p

ik l ik ml ik l ln i k mn il kP P g g P L L g g           

 ( )] ( ) = 0.n mq p p q m pq p q q p q p l

mn kl i ik l ik ml ik l kl i il k pqL g g L L g g L S S S dV            

By using the principle of variational calculus, we have the field equations  

 , , ,2( ) ( ) ( )pk q pq ip nq

k l l n ilg g g g g g g g        

 ,( ) [pk nq ik q p p mq n mq p

n kl lk i mk il mk nl ig g g g g g P P g g P g g         
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p q m nq p p nq q p p mq n mq p

il k in ml k in kl lk i mk il mk nl iP P g g P g g L L g g L g g           

 
n p q n mq p n mq p

ln i k mn il k mn kl iP P g g P g g        

 
p q m pq p q n p q n mq p

ik l ik ml ik l ln i k mn il kP P g g P L L g g           

 ( )] = 0.n mq p p q m pq p q q p q p

mn kl i ik l ik ml ik l kl i il kL g g L L g g L S S           

and we can rewrite  

 , , , ,2( ) ( ) ( ) ( )pk q pq ip nq pk nq

k l l n il n klg g g g g g g g g g g g          

 [ 3 2 2q pm p mq n mq pk n pq n mq p

lm lm mk nl ln mn lg P g P g P g g g P g P g         

 2 p q ik m pq ik q kp p mq n mq pk n pq

ik l ik ml lk ml mk nl lnP g P g g g L g L g L g g g L g        

 2 2 2 ] = 0.n p mq p q nm m pq ik q pn

mn l nm l ik ml nlL g L g L g g g S g       

So we obtained the first system of field equations by variation of the torsion tensor. 

Remark. We could transform it by using formulas , , ,= = =ik ik

l ik l ik ll

g
g gg g gg g

x





 and 

, , ,

1
( ) = ( )

2

ik ik ik pq

l l pq lg g g g g g g   , then thay would be free from g . 

We will derive the field equations from the variation principle of least action, but now by varying the function ikg . 

We form the scalar density as  n m ik

ik im knR S S g g   and postulate that all the variations of the integral by 

varying the function ikg  are equal zero. 

By standard calculations, we have:  

   =j l ik ik ik

ik il kj ik ikR S S g gdV R g g R g g          

  ,ik n m ik n m ik

ik im kn im kng g R S S g g S S g g dV         

and  

 
1

= .
2

ik pq ik

ik pq ikR g g R g g g g     

Similarly, we obtain:  

 
1

= .
2

n m ik n m pq ik

im kn pm qn ikS S g g S S g g g g     

Now we compute 
ik

ikg g R  directly by using the definition, thus obtain two types of summands, the first have the 

standard form      
, , ,

=ik l ik l ik l il p

ki kl ki lpl i l
g g g g          and by Stokes' theorem turns into zeros. The term of 

the second type exists due to the absence of symmetry connection and then we express the connection coefficients via 
the metric and torsion, after a calculation, we obtain: 

  = =ik ik p q p q

ik qk ip qp ikg R g       

 
1

= (2 2 2 =
4

ik pn m s pn qt m s pn m s pn m s

is kn pm km is qn pt is pm kn ks pm ing g g S S g g g g S S g g S S g g S S     
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1

= (4 2 2 2
4

m n m n pn m s pn m s

im kn nk im is nk pm ms pk inS S S S g g S S g g S S     

 2 2 2 ) .pn qt m s pn m s pn m s ik

km is qn tp is pm kn ks pm ing g g g S S g g S S g g S S g    

Thus, we have:  

  
1

=
2

n m ik

ik im kn ik ikR S S g gdV R g R


   


   

 
1

(2
2

m n m n pn m s pn m s

im kn nk im is nk pm ms pk inS S S S g g S S g g S S      

 )pn qt m s pn m s pn m s

km is qn tp is pm kn ks pm ing g g g S S g g S S g g S S     

 
1

= 0.
2

n m n m pq ik

im kn pm qn ikS S S S g g g g dV


  


 

Then we obtain the conclusions: 

 
1 1

(2
2 2

m n m n pn m s pn m s

ik ik im kn kn im is nk pm ms pk inR g R S S S S g g S S g g S S       

 
1

) = 0.
2

pn qt m s pn m s pn m s n m pq

km is qn tp is pm kn ks pm in pm qn ikg g g g S S g g S S g g S S S S g g      

We have obtained the system of field equations where ikg  and 
j

ikS  are unknown functions, these equations 

must be solved together. They determine the metric tensor and torsion tensor of space-time for a given arrangement of 
energy and matter in the space-time. 

It is a set of non-linear partial differential equations with regard to ikg  and 
j

ikS . The solutions of these E.Q. are 

the components of the metric and torsion tensors. These metric and torsion together describe the structure of the space-
time including the inertial motion of objects and electromagnetic fields in the space-time. 

Conclusions 

In this paper we compared Einstein – Cartan theory with electro-gravitational theory base on 
nY  space (precisely 

on Y 4
) and developed electro-gravitational theory base on Y 4

. For convenience we gave concise resume Einstein–

Cartan theory and described the geometrical structure of 
nY  space, and development of geometry hypersurfaces in 

nY . 

We have studied some special cases of the theory of field equations in Y 4
. We derived from the variation principle the 

general field equations (electromagnetic and gravitational) base on Y 4
 space.  

For further develop this theory needs more experiments for couple physical phenomena with mathematical 
predictions. 
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