The Second Law, Gibbs FreeEnergy, Geometry, and Protein Folding
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The fundamental physical law of protein folding is the second law of thermodynamics. The key to solve protein
folding problem is to derive an analytic formula of the Gibbs free energy. It has been overdue for too long. Let U be a

monomeric globular protein whose M atoms (al, o ay ) are classified into hydrophobicity classes Hl, - H H
H > 2. For each conformation X = (Xl, Xy Xy ) of U, we apply quantum statistics to the corresponding single

molecule thermodynamic system T, to obtain Gibbs free energy G(X;U, En,) of protein folding in physiological
environment EnN,

H
: - 0a%s
G(XU,Eny) = oV () +d,0,AMy) + D o AMy )+ > ——A8
i=1 1<cacem A7E | X —Xg |
where V (Q,) is the volume of (), a region enclosed by the molecular surface M, d,, the diameter of a water
molecule, @, and @, ’s chemical potentials per unit volume and area, and A(M x) and A(M xi) the areas of M
and M, ={ze M, idiSt(Z,UajeHi B(X;,r;)) < dist(z,uajegHi B(X;, )} The GOXGU,Eny) andits
gradient VG (X; U, En N) not only reduce the protein structure prediction to a pure mathematical problem of finding

minimizers of an analytic function G(-;U, Eny): R* R, but also supply new insights in understanding the kinetics
of the protein folding process.
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Decades of experiments by many researchers proved that once the peptide chain of a natural protein is put in
correct environments it will spontaneously fold to its native structure. Therefore, the guiding fundamental physical law must
be the second law of thermodynamics. Anfinsen summarized this as the thermodynamic principle (he modestly called it
hypothesis) of protein folding, that the native structure has the minimum Gibbs free energy and only depends on the peptide
chain of the protein in physiological environment [1]. Thus, a cross section of complicated life phenomena, the protein
folding, is reduced to a physical problem and should and can be solved accordingly.

Theoretically, all problems such as structure prediction and mechanics of folding process will be answered once we
know the Gibbs free energy of protein folding, G(X;U,Eny), where X =(X,,-*+,X,,) € R*" is a conformation of a

protein U which has M atoms (al,---,aM) and X; eR?® is the atomic (nuclear) center of a;. According to

Anfinsen, the physiological environment En ; consists of elements such as “solvent, P H, ionic strength, presence of other

components such as metal ions or prosthetic groups, temperature, and other", [1]. We think that pressure belongs to the
other. In fact, because constant pressure and variant volume, the second law takes the version of minimum of Gibbs free

energy. We will derive G(X; U,En N) for a monomeric globular protein U via quantum statistical mechanics.

We start with the observable physical quantity, the electron density distribution function [2],
(1) = P(r; X) = N (spins)[dz, [z, - [z, ¥ (x; X)W(x; X) |

where ‘P(X; X) is the wave function of the Born-Oppenheimer approximation to the Hamiltonian of one molecule of U,

and N is the number of electrons in U.

Since in natural, nascent peptide chains already have their peptide bonds and covalent bonds in residues formed,
we will not discuss the bond lengths and angles. Instead, we assume that the values of those covalent bond lengths and

angles in X are very close to the standard bond lengths and angles.

To apply statistical mechanics, we have to create a thermodynamic system Tx tailor made for X. Tx is a

region in R® that contains P = ui'\ilB(Xi,ri) and its immediate environment, leaving everything in R3\T>< as the

heat bath. Here I, s are van der Waals radii (taking as constants) and B(Xi i I‘i) is the ball in R3 centered at X; of

radious I . Al state functions of T, will depend on the following: 1. the conformation X hence P, ; 2. the immediate

environment (En ) of P, inside Ty ; and 3. the peptide chain of the protein U. To be realistic, these are general
requirments for any attempting of creating a Gibbs free energy functon of protein folding.

Because of Tx is tailor made for X , requirment 1 is automatically satisfied. For reugirement 3, only monomeric

globular proteins can be assumed that in the immediate environment of Px there are no other large objects except water

molecules, hence here we consider only this class of proteins for the simplicity of environemnet. Note that the method itself
is general, only that for complicated environment the derived formula will also more complicated than that obtained here. For

the requirment 2, the dependence on the peptide chain of U is via the electronic density distribution function Py that

indicates how the P, will interact with the immediate environment, in our case, water. For which we need to discretize Py

with general knowledge of amino acids. It was well-known as early as the 1920’s that proteins are multi-polar or “bristling
with charges" as described in [3], resulting in different atomic groups have different hydrophobicity levels, say, there are

H > 2 hydrophobicity classes H1""1 HH . We can assign an atom @, into one hydrophobic class Hi if a,
belongs to an Hi atomic group. For example, we may assume that the classification is as in [4] where thereare H =5

classes, C,0/N,0 ,N ", 'S. Unlike in [4], we also classify every hydrogen atom into one ofthe H hydrophobicity classes.
The atomic space distribution of these hydrophobicity classes are highly depending on X and the peptide chain of U.

Exploiting these space distributions gives a way of applying the Py while not being able to calculate it.
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Figure 1: Molecular surface.

To describe the formula, we have to do some preparations. Rolling a probe sphere of radius I' on the boundary
surface 0Py of P, will produce a molecular surface M (X) [5], Figure 1. Let d,, be the diameter of a water molecule

and denote the molecular surface M, (X) as M, .
Iw

2

In general, any closed surface S R? will divide R® into three parts, R® = Q, USUQY, where Qg isa
bounded domain and Q% an un-bounded domain. 0 and Qf have a common boundary, 0Q¢ =0Qg =S . If
l\/lx has multiple connected components Si , lSiSm, such that S1 is the largest component, i.e., all other

components of M are contained in QS1 (this is the case that P, has m—1 cavites Qg , 1 =2,---,m, each is
1

Q’Si) and Q) = Q’Sl U(UiﬂQSi) 0 My

large enough to hold a water molecule), then denote €2, = Qsl N (N

is connected, then it is a closed surface. Thus, we always have
3 - ' — >
R =Q, UM, LQ, 0Q, =00, =M,, 1)
and R, cQ, =Q, UM,.

For any compact (closed and bounded) set U cR®, let dist(X,U) = min,w | X—2| be the distance
between the point X and the subset U . Define
R, ={xeR®:dist(x, M,)<d, \Q,, T,=Q, UR,.
The Rx is the first hydration shell surrounding P, , and Tx is the thermodynamic system tailor made for the
B(x;.r;).

conformation X . Define compact sets P, =, 4
jo

Ry ={xeR, :dist(x, Pxi ) <dist(x, R\R; )}, FIG2
and My, =M, "Ry, I =1,---,H . we will allow water and electrons enter or leave Ty ,so Ty isan open system.

Interaction of a water molecule with an atom of Hi will gain a Gibbs energy /¢; , the chemical potential. Let V; be

the average number of water molecules that can simultaneously touch M, in a unit area, then @, =V,4; is the
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chemical potential per unit area of M i - Moreover, since the curvature of M % is uniformly bounded for all conformations

of U, @, does not depend on X . Similarly we define M, and @, to be the chemical potentials of per electron and per
unit volume.

Theorem 1 Let U be a monomeric globular protein with M atoms (a,,--+,@,,) and

X= (Xl, ceey XM) be a conformation. Then in the physiological environment EnN

H
. - RISE
G(X;U,Eny) = 1, N, (X) + E 14N, (X) + A ),
§ i=1 Js;gs:sN Ay | X —Xg |
where (, is the electronic charge in the nucleus of @,, N,(X) and N,(X) mean numbers of electronsin T, and

water molecules in RXi respectively. The geometric version is

!
G(XU,Eny) = oV (@) +d,0,AM,) + Yo AM )+ Y — e
i=1

1chcpem A7 [ X —Xg |

Proof of Theorem 1:Since water molecules are very small comparing to U, we can apply the
Born-Oppenheimer approximation, fix Px and let all water molecules and electrons in Tx move. Then we will apply the

grand canonic ensemble of statistical mechanics to the open system Tx ;

Figure 2 Ry, may not be connected.

A water molecule is treated as a single particle centered at the oxygen nuclear position W € R® , and the covalent
bonds in it are fixed. In the Born-Oppenheimer approximation, only the conformation X is fixed, all particles, water
molecules and electrons in Tx , are moving.

Let W:(Wl,---,Wi,---,WN)eR3N be the nuclear centers of water molecules in Ry and

E= (el, AT PRRR eL) (S R?’L be electronic positions of all electrons in Tx . Then the Hamiltonian for the system Tx is
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R R R M hZ ) hZ N ) hZ
H=T+V=-3" v2_ -
; m, 2m 2Vi 2

i w i=1

L
Y Vi+V(X,W,E),

e i=1
where M; is the nuclear mass of atom &;, M, and M, are the masses of a water molecule and an electron; Viz is
Laplacian in corresponding R®; and V (X, W, E) is the potential.

We assume that a water molecule cannot occupy spaces in P, , thus by the design of T, , any W; in w
belongs to Ry . Consider all possible numbers N; of water molecules contained in R,;, 0 < z:lNi =N <o0. Let

Mg=0 and M;=> Nj and W, =Wy oWy W, )eRE . 1<i<H | and

j<i
W=(W,W,,---,W,) e HIHZIR)':'I denote the nuclear positions of water molecules in Ry . Similarly, consider all
possible numbers 0 < N, <oo of electrons in Ty . Let E= (el,ez,-u,eNe) eT;Ne denote their nuclear positions.
Denote N =(N,,---,N,,N,).

The potential V (X, W, E) can be decomposed as:
V(X,W,E) =V (X)+V,(W,E), 4)

where V (X) is independent of W and E . The Born-Oppenheimer approximation has the Hamiltonian (here we use
the definition in [6]):

H - 7l iMZH:VZ+i§:V2 +V, (W, E) 5)
X 2 mW = j me ~ v X ’ .

H N N
The eigenfunctions " (W, E) e Lg(HileXIi xTx®) =Hy . comprise an orthonormal basis of H, \ . Denote
their eigenvalues as E;(’N , then HXWiX'N = E;YNl/Iix’N :

Since N varies, we can adopt the grand canonic ensemble. The grand canonic density operator is given as ([7]
and [8])

bx - exp{_ﬁ|:|:lx _Z‘fliNi _ueNe _(D(X)jl}

where [ =1/(KT) . The grand partition function is

H

i
ﬁ{EX,N ”ij”eNe}

=

opl-p(X)] = Ye
According to [7], the entropy S(X) = S(T,) is
S(X) =—kTrace(ox In py) =—k(In py) = %{(ﬁﬂ —®(X) _Z‘/Ji<|\]i> _ﬂe<Ne>:|- (6)

The term <D(X) is the grand canonic potential ¢ in [8] and the macroscopic potential in [7], it is a state function with

variables T,V,,ul, -+, Uy, and L, . By the general thermodynamic equations [8]:

H
dd(X) = -SdT — PdV — > N,dz; — N,dg,,and
i=1
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AD(X) = O(X)(T, AV, 14, -+, 4y, , 14, ), Weseethat

d)(X)(I',V,,ul,---,yH,,ue)=—PV(X), (1)
where V (X) =V (Ty) isthe volume of T, .

We denote <N|> = N,;(X) the mean numbers of water moleculesin R,,, 1<i1<H, and <Ne> =N, (X)

the mean number of electrons in Tx . By (6) and (7), we have

() + PV (X)-TS(X) :ZH)tiNi(X)+ueNe(X)- ®

i=1

The mean (I:|x> contains all energies of T, except the Coulomb potential V (X). Thus the internal energy

U(X) is
U (X) =U(T,) = (H,) +V(X). ©)

Ingeneral, G=U + PV —TS. By (8), (9) and

V(X) ) Z quB

1cacpen 478y | X\ — X |,

GOGUEN,) = YN, (0-+ 4N, (X) +V (X)

=1ueNe(X)+Z‘/uiNi(x)+ Z ﬁ!

1cacpen 47Eq | Xp = Xg |
that is exactly (2).
Since every water molecule in RXi has contact with the surface MXi, Ni(X) is proportional to the area

A(M ;) . Therefore, there are v; >0, such that
V,A(M,;) = N;(X), 1<i<H. (10)
Let Py (X) be the electronic density distribution for N'= (N, Ny,-+-,N,,). By [2], N, = -[Tx Py (X)dX . There is
a Vyy >0 such that N, = LX Py n (X)X = vy V (Ty) . By the definition of T, and €, , we have roughly
V(T,\Q,) =d,A(M) . Then taking the mean we have
N (X) = (N) = (D WV (To)) = PV (T)
= vV (Ty) = VeV (Q) +V (T, \Q,)] = vV (Qy) +ved, A(My,). (12)

Substitute (10) and (11) into (2), letting @, =V A, , @, =V;L;, we derive (3). Theorem 1 is proved.
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G(X;U,Eny) were derived in [9, 10], only without the Coulomb potential V (X) . That is because the original

definition of Born-Oppenhemer [11] was applied instead of the one in [6], though mathematically they are equivalent,
physical explanations of internal energy are different.

To derive G(X;U, EnN) , we have to take a single conformation X and its immediate environment to form a

thermodynamic system Tx tailor made for X , against the intuition that statistics only deals with ensembles of
conformations. Indeed we also used ensemble, but ours is ensemble of water molecules and electrons, not conformations.
The emphasizing is on the interactions between a single conformation X and its immediate environment. The interaction is

expressed via the space distribution of hydrophobicity classes Hl, HH on Px- The space distribution is a
discretizing of the observable physical quantity P , the electronic distribution of electrons. Those hydrophobicity classes

Hi come from the general knowledge of amino acids. This single molecule treatment also emphases the 3-dimensional

geometric shape Px of X, such that X is no longer a structureless point of a phase space of tremendous huge
dimensions.

After over 20 years of single molecule experiments, see for example, [12, 13], the emerging of a single molecule
theory of protein folding should be anticipated. In fact, theoretically directly applying fundamental physical laws to study
protein folding is overdue for too long. And, against claims that protein folding is a practical field that does not need theory, it

is much in need and need urgently. For example, because of G(X; U, EnN) is not known, ab initio structure prediction is
lagged behind homologous prediction. With the analytic G(X; U, EnN) , ab initio structure prediction becomes a pure

mathematical problem of finding minimizers X, € R of an analytic function G(~;U, Eny): R™ >R

G(Xy;U,Eny) = mi3r1M G(X;U,En), (12)

XeR

it Xy is aglobal minimizer. If X, is only a local minimizer, then it is still stable and satisfies
VG(X\;U,Eny) =. (13)

Moreover, in solving (12) we can use the rotatable dihedral angles (I)X = (¢1,---,¢D) as variables,
G(X;U,En,) =G(d,;U,En,). The advantages are that all bond lengths and angles are kept invariant, see [9].
Formulas of the gradient VG(CDX;U, EnN) are integrals on the molecular surface M x » see [9]. They are integrable
and with packages of molecular surface, for example, [14], can be calculated precisely.

Lacking of theoretical guiding caused decades of misconceptions of protein folding problem. For example, the
protein folding problem is artificially split into three parallel problems: 1. Folding code; 2. Structure prediction; 3. Kinetic

process [15, 16]. They are treated separately as if no intrinsic relations could unify them. Absentof G(X;U,En,,) is the

reason. In fact, code of protein folding in the meaning of the universal genetic code, does not exist [16]. Instead of code, the
Gibbs free energy formula that governs the protein folding according the second law of thermodynamics, should be pursued.
It not only provides physical basis and mathematical tools for ab initio structure prediction, but its gradient, the force

—VG(X;U,En,) also gives a way of applying fundamental physical law to the kinetics of protein folding. With
G(X;U,Eny) and —VG(X;U,Eny), the three parts of protein folding problem will be treated uniformly.
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