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The fundamental physical law of protein folding is the second law of thermodynamics. The key to solve protein 

folding problem is to derive an analytic formula of the Gibbs free energy. It has been overdue for too long. Let U  be a 

monomeric globular protein whose M  atoms ),,( 1 Maa   are classified into hydrophobicity classes HHH ,,1  , 

2H . For each conformation ),,,(= 21 MxxxX   of U , we apply quantum statistics to the corresponding single 

molecule thermodynamic system XT  to obtain Gibbs free energy )En,;( NX UG  of protein folding in physiological 

environment En
N
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where )( XV  is the volume of X , a region enclosed by the molecular surface XM , wd  the diameter of a water 

molecule, e  and i ’s chemical potentials per unit volume and area, and )( XMA  and )( iMA X  the areas of XM  

and ))},(,(dist)),(,(dist:{= jj
i

H
j

jj
i

H
j

i rBrBMM xzxzz aaXX   . The )En,;( NX UG  and its 

gradient )En,;( NX UG  not only reduce the protein structure prediction to a pure mathematical problem of finding 

minimizers of an analytic function RRU  MG 3:)En,;( N
, but also supply new insights in understanding the kinetics 

of the protein folding process.  
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Decades of experiments by many researchers proved that once the peptide chain of a natural protein is put in 
correct environments it will spontaneously fold to its native structure. Therefore, the guiding fundamental physical law must 
be the second law of thermodynamics. Anfinsen summarized this as the thermodynamic principle (he modestly called it 
hypothesis) of protein folding, that the native structure has the minimum Gibbs free energy and only depends on the peptide 
chain of the protein in physiological environment [1]. Thus, a cross section of complicated life phenomena, the protein 
folding, is reduced to a physical problem and should and can be solved accordingly. 

Theoretically, all problems such as structure prediction and mechanics of folding process will be answered once we 

know the Gibbs free energy of protein folding, )En,;( NX UG , where 
M

M

3

1 ),,(= RxxX   is a conformation of a 

protein U  which has M  atoms ),,( 1 Maa   and 
3Rix  is the atomic (nuclear) center of ia . According to 

Anfinsen, the physiological environment En N  consists of elements such as “solvent, p H, ionic strength, presence of other 

components such as metal ions or prosthetic groups, temperature, and other", [1]. We think that pressure belongs to the 
other. In fact, because constant pressure and variant volume, the second law takes the version of minimum of Gibbs free 

energy. We will derive )En,;( NX UG  for a monomeric globular protein U  via quantum statistical mechanics. 

We start with the observable physical quantity, the electron density distribution function [2],  

 );(=)( XX rprp  ,);();(dddspins)(= *

32 XXN N xx     

 where );( Xx  is the wave function of the Born-Oppenheimer approximation to the Hamiltonian of one molecule of U , 

and N  is the number of electrons in U . 

Since in natural, nascent peptide chains already have their peptide bonds and covalent bonds in residues formed, 
we will not discuss the bond lengths and angles. Instead, we assume that the values of those covalent bond lengths and 

angles in X  are very close to the standard bond lengths and angles. 

To apply statistical mechanics, we have to create a thermodynamic system XT  tailor made for X . XT  is a 

region in 
3R  that contains ),(= 1= ii

M

i rBP xX   and its immediate environment, leaving everything in XTR \3
 as the 

heat bath. Here ir s are van der Waals radii (taking as constants) and ),( ii rB x  is the ball in 
3R  centered at ix  of 

radious ir . All state functions of XT  will depend on the following: 1. the conformation X  hence XP ; 2. the immediate 

environment (En N ) of XP  inside XT ; and 3. the peptide chain of the protein U .  To be realistic, these are general 

requirments for any attempting of creating a Gibbs free energy functon of protein folding.  

Because of XT is tailor made for X , requirment 1 is automatically satisfied. For reuqirement 3, only monomeric 

globular proteins can be assumed that in the immediate environment of XP  there are no other large objects except water 

molecules, hence here we consider only this class of proteins for the simplicity of environemnet. Note that the method itself 
is general, only that for complicated environment the derived formula will also more complicated than that obtained here. For 

the requirment 2, the dependence on the peptide chain of U  is via the electronic density distribution function Xp  that 

indicates how the XP  will interact with the immediate environment, in our case, water. For which we need to discretize Xp  

with general knowledge of amino acids. It was well-known as early as the 1920’s that proteins are multi-polar or “bristling 
with charges" as described in [3], resulting in different atomic groups have different hydrophobicity levels, say, there are 

2H  hydrophobicity classes HHH ,,1  . We can assign an atom ka  into one hydrophobic class iH  if ka  

belongs to an iH  atomic group. For example, we may assume that the classification is as in [4] where there are 5=H  

classes, C, O/N, O


, N


, S. Unlike in [4], we also classify every hydrogen atom into one of the H  hydrophobicity classes. 

The atomic space distribution of these hydrophobicity classes are highly depending on X  and the peptide chain of U . 

Exploiting these space distributions gives a way of applying the Xp  while not being able to calculate it. 
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Figure  1:  Molecular surface. 

 To describe the formula, we have to do some preparations. Rolling a probe sphere of radius r  on the boundary 

surface XP  of XP  will produce a molecular surface )(XrM  [5], Figure 1. Let wd  be the diameter of a water molecule 

and denote the molecular surface )(

2

X
w

dM  as XM . 

In general, any closed surface 
3RS  will divide 

3R  into three parts, SS S =3R , where S  is a 

bounded domain and S  an un-bounded domain. S  and S  have a common boundary, SSS ==  . If 

XM  has multiple connected components iS , mi 1 , such that 1S  is the largest component, i.e., all other 

components of XM  are contained in 
1

S  (this is the case that XP  has 1m  cavities 
i

S , mi ,2,=  , each is 

large enough to hold a water molecule), then denote )(= 1
1 i

SiS  X  and )(= 1
1 i

SiS  X . If XM  

is connected, then it is a closed surface. Thus, we always have  

 ,==,=3

XXXXXX MM R  (1) 

 and 
XXXX MP  = . 

For any compact (closed and bounded) set 
3RU , let ||min=),(dist zxx z UU  be the distance 

between the point x  and the subset U . Define  

 .=,\}),(dist:{= 3

XXXXXX xx RTRR  wdM  

The XR  is the first hydration shell surrounding XP , and XT  is the thermodynamic system tailor made for the 

conformation X . Define compact sets ),(= jj
i

H
j

i rBP xaX  ,  

 FIG2)},\,(dist),(dist:{= i
i

i PPP XXXXX xxx RR  

and ii MM XXX R= , Hi ,1,=  . We will allow water and electrons enter or leave XT , so XT  is an open system. 

Interaction of a water molecule with an atom of iH  will gain a Gibbs energy i , the chemical potential. Let i be 

the average number of water molecules that can simultaneously touch iM X  in a unit area, then iii  =  is the 
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chemical potential per unit area of iM X . Moreover, since the curvature of XM  is uniformly bounded for all conformations 

of U , i  does not depend on X . Similarly we define e  and e  to be the chemical potentials of per electron and per 

unit volume.  

Theorem 1  Let U  be a monomeric globular protein with M  atoms ),,( 1 Maa   and 

),,(= 1 MxxX   be a conformation. Then in the physiological environment NnE  

)()(=)E,;(
1=

XXX N ii

H

i

ee NNnG  U ,
||4 0<1 BA

BA

NBA

qq

xx 
 

 
(2) 

where Aq  is the electronic charge in the nucleus of Aa , )(XeN  and )(XiN  mean numbers of electrons in XT  and 

water molecules in iXR  respectively. The geometric version is  

)()(=)E,;( XXNX MAdVnG ewe  U .
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 Proof of Theorem 1:Since water molecules are very small comparing to U , we can apply the 

Born-Oppenheimer approximation, fix XP  and let all water molecules and electrons in XT  move. Then we will apply the 

grand canonic ensemble of statistical mechanics to the open system XT . 

 

Figure  2:  iXR  may not be connected. 

 

A water molecule is treated as a single particle centered at the oxygen nuclear position 
3Rw , and the covalent 

bonds in it are fixed. In the Born-Oppenheimer approximation, only the conformation X  is fixed, all particles, water 

molecules and electrons in XT , are moving. 

 

Let 
N

Ni

3

1 ),,,,(= RwwwW   be the nuclear centers of water molecules in XR  and 

L

Li

3

1 ),,,,(= ReeeE   be electronic positions of all electrons in XT . Then the Hamiltonian for the system XT  is  
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 where im  is the nuclear mass of atom ia , wm  and em  are the masses of a water molecule and an electron; 
2

i  is 

Laplacian in corresponding 
3R ; and ),,( EWXV  is the potential. 

We assume that a water molecule cannot occupy spaces in XP , thus by the design of XT , any iw  in W  

belongs to XR . Consider all possible numbers iN  of water molecules contained in 
iXR ,  <=0

1=
NNi

H

i
. Let 

0=0M  and jiji NM  
=  and i

N
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 , Hi 1 , and 

i
N

i

H

iN XWWWW R 1=21 ),,,(=   denote the nuclear positions of water molecules in XR . Similarly, consider all 

possible numbers  <0 eN  of electrons in XT . Let e
N

e
N

3

21 ),,,(= XeeeE T  denote their nuclear positions. 

Denote ),,,(= 1 eH NNN N . 

The potential ),,( EWXV  can be decomposed as:  

 ),,()(=),,( EWXEWX XVVV   (4) 

 where )(XV  is independent of W  and E . The Born-Oppenheimer approximation has the Hamiltonian (here we use 

the definition in [6]):  
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 The eigenfunctions NXXX

NX
EW ,1=

2

0

, =)(),( HTR e
N

i
N

i

H

ii L   , comprise an orthonormal basis of 
NX,H . Denote 

their eigenvalues as 
iE NX, , then 

NX

NX

NX

X

,

,

, =ˆ
i

i

i EH  . 

Since N  varies, we can adopt the grand canonic ensemble. The grand canonic density operator is given as ([7] 

and [8])  
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where )1/(= kT . The grand partition function is  
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According to [7], the entropy )(=)( XX TSS  is  

 XXXX  ˆln=)ˆlnˆ(Trace=)( kkS .ˆˆ)(ˆ1
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 The term )(X  is the grand canonic potential   in [8] and the macroscopic potential in [7], it is a state function with 

variables HVT  ,,,, 1  , and e . By the general thermodynamic equations [8]:  

 and,dddd=)(d
1=

eeii

H

i

NNVPTS   X  
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 weseethat),,,,,,)((=)( 1 eHVT  XX   

 

 ),(=),,,,,)(( 1 XX PVVT eH     (7) 

 where )(=)( XX TVV  is the volume of XT . 

We denote )(=ˆ Xii NN   the mean numbers of water molecules in 
iXR , Hi 1 , and )(=ˆ Xee NN   

the mean number of electrons in XT . By (6) and (7), we have  
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The mean  XĤ  contains all energies of XT  except the Coulomb potential )(XV . Thus the internal energy 

)(XU  is  

 ).(ˆ=)(=)( XX XX VHUU T  (9) 
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 that is exactly (2). 

Since every water molecule in iXR  has contact with the surface iM X
, )(XiN  is proportional to the area 

)( iMA X
. Therefore, there are 0>i , such that  

 .1),(=)( HiNMA iii XX  (10) 

 Let )(, xNXp  be the electronic density distribution for ),,,(= 1 He NNN N . By [2], xxNX
X

d)(= ,pNe T . There is 

a 0>,NX  such that )(=d)(= ,, XNXNX
X

xx T
T

VpNe  . By the definition of XT  and X , we have roughly 

)(=)\( XXX MAdV wT . Then taking the mean we have  

 )(ˆ=)(ˆ=ˆ=)( ,, XNXXNXX TT VVNN ee    

 )]\()([=)(= XXXX  TT VVV ee  ).()(= XX MAdV wee    (11) 

 Substitute (10) and (11) into (2), letting eee  = , iii  = , we derive (3). Theorem 1 is proved. 



ISSN: 2347-3487 
 

284 | P a g e                        J a n u a r y  0 3 ,  2 0 1 4  

)En,;( NX UG  were derived in [9, 10], only without the Coulomb potential )(XV . That is because the original 

definition of Born-Oppenhemer [11] was applied instead of the one in [6], though mathematically they are equivalent, 
physical explanations of internal energy are different. 

To derive )En,;( NX UG , we have to take a single conformation X  and its immediate environment to form a 

thermodynamic system XT  tailor made for X , against the intuition that statistics only deals with ensembles of 

conformations. Indeed we also used ensemble, but ours is ensemble of water molecules and electrons, not conformations. 

The emphasizing is on the interactions between a single conformation X  and its immediate environment. The interaction is 

expressed via the space distribution of hydrophobicity classes 1H ,  , HH  on XP . The space distribution is a 

discretizing of the observable physical quantity Xp , the electronic distribution of electrons. Those hydrophobicity classes 

iH  come from the general knowledge of amino acids. This single molecule treatment also emphases the 3-dimensional 

geometric shape XP  of X , such that X  is no longer a structureless point of a phase space of tremendous huge 

dimensions. 

After over 20 years of single molecule experiments, see for example, [12, 13], the emerging of a single molecule 
theory of protein folding should be anticipated. In fact, theoretically directly applying fundamental physical laws to study 
protein folding is overdue for too long. And, against claims that protein folding is a practical field that does not need theory, it 

is much in need and need urgently. For example, because of )E,;( NX nG U  is not known,  ab initio structure prediction is 

lagged behind homologous prediction. With the analytic )En,;( NX UG ,  ab initio structure prediction becomes a pure 

mathematical problem of finding minimizers 
M3RNX  of an analytic function RRU  MG 3:)En,;( N

 

 ),En,;(min=)En,;(
3

N

X

NN XX UU
R

GG
M

 (12) 

 if NX  is a global minimizer. If NX  is only a local minimizer, then it is still stable and satisfies  

 .=)En,;( NNX UG  (13) 

 Moreover, in solving (12) we can use the rotatable dihedral angles ),,(= 1 D X  as variables, 

)En,;(=)En,;( NXNX UU GG . The advantages are that all bond lengths and angles are kept invariant, see [9]. 

Formulas of the gradient )En,;( NX UG  are integrals on the molecular surface XM , see [9]. They are integrable 

and with packages of molecular surface, for example, [14], can be calculated precisely. 

Lacking of theoretical guiding caused decades of misconceptions of protein folding problem. For example, the 
protein folding problem is artificially split into three parallel problems: 1. Folding code; 2. Structure prediction; 3. Kinetic 

process [15, 16]. They are treated separately as if no intrinsic relations could unify them. Absent of )En,;( NX UG  is the 

reason. In fact, code of protein folding in the meaning of the universal genetic code, does not exist [16]. Instead of code, the 
Gibbs free energy formula that governs the protein folding according the second law of thermodynamics, should be pursued. 
It not only provides physical basis and mathematical tools for  ab initio structure prediction, but its gradient, the force 

)En,;( NX UG  also gives a way of applying fundamental physical law to the kinetics of protein folding. With 

)En,;( NX UG  and )En,;( NX UG , the three parts of protein folding problem will be treated uniformly. 
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