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ABSTRACT

In this paper we study an anisotropic model of space — time with Finslerian metric. The observed anisotropy of the
microwave background radiation is incorporated in the Finslerian metric of space time.
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1-INTRODUCTION:

Recently in literature we have gone one paper published in physical letter respectively, B668(2008)453 and
B676(2009)173 under which the aouther has considered that in Finslerian manifold there exists a unique linear connection
known as Chern connection. It is torsion firness and metric compatibility, we are not agree with the result of the paper
because there are well known result published by H. Rund that in Finsler geometry there exits and infinite number of linear
connection defined by the same metric structure and that the Chern and Bernwald connection are not metric compatable.

cosmology and other reference of the same kind [ 1, 2 ,3 ].We are fully agreed with the theory expressed in the above
referred publication regarding as it is based on tangent bundle on space time manifold are positively with local Lorentz

violations which may be related with dark energy and dark matter models with variable O in cosmology. Certainly those
may be one of the most recent hidden connections between Finsler geometry and cosmology. Now in these days many
researchers are constructing suitable cosmological models with variable Lambada term including our own research group
[29-33]

Here in this paper we will study anisotropic model of General Theory of Relativity based on the frame work of Finsler
geometry.

2. BASIC ASSUMPTIONS & CONSIDERATION:
In 1984, Shibata [7] introduce the concept of B —change and defined as

Lx,y) = Lix,y) + B(xy)

Where, B is a one-form metric and L is any Finsler metric, and obtained very interesting result in his paper. The conformal
theory of Finsler spaces has been initiated by M. S. Knebelman [8] in 1929 and has been investigated in detail by many
authors [9, 10, 11, 12, 13] etc. This change is defined as

L = e*®L(x, y)
Where o(x) is a function of position only and known as conformal factor.
3-Generalization of result with different assumption:

In the present paper we generalize the above changes and defined a Randers conformal metric as

L=e"%+p (1)

Where, o = ,1aij (i )yi yj is a Riemannian metric, [ = bi ((}' is a one-form and o(x) is the conformal factor. If

o(x) = 0, then this change is reduces to simple Randers metric and for this metric Stavrions and Diakogiannis [16]
obtained the relationship between the anisotropic cosmological models of space time and Randers Finslerian metric. The
purpose of the present study is to obtain the relationship between the anisotropic cosmological models of space time with
above generalized Finslerian metric.

Let us consider an n- dimensional Finsler space (M ", L) and an adaptable 1-form ,B = bi (@xi onM". We shall use a
Lagrangian function on M", given by the equation:

<
L=e"“%+p€b,y' ®)
s " S . . . . -
Where b, ((/: @(X)b; The vector b; represents the observed anisotropic of the microwave background radiation.
A coordinate transformation on the total space TM is given by

i _ i g0 3= i ; Yo - P
X' =X e X g 7 =2y sy

ox/ ox! “)

F:TM ->R

By definition [4, 15] a Finsler metric on M is a function having the properties:

1. The restriction of F to TM is positively homogeneous of degree 1 with respect to {y °}.

F(x.ky)=kF &y XeR,

1 O°F?
2. The quadratic form on R" with the coefficients 9 = E 8y‘6yj (5)
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v # 0, with rank g; = 4.
X

Defined on TM, is non degenerate det

The Carton torsion coefficients Ci are given by

1
ik — E
The torsions and curvatures which we use are given by [4, 5, 15]:

|
Pijk = Cijk‘l y

C 6k g
Sjikh = Cikstsh _Cihstsk
Pihkj = Cijk\h _Chjk\i +Cr:erik\|yl _Cijr'Crkh\lyl
Silkh - ngSjikh

Pill<h =4 ! Pjikh

Differentiating equation (3) with respect to yi , the normalized supporting elements Ii E ai L

|, =0,L = e”(%ia+¢)((\§i

Where

3ia:6i\/aijyiyj

. 1 e - -
5ia=zlij(<)”+aij‘<)lj_

2a, y' Y,
aia_ 2161 _; as Yi = uyj
6i0:=L
o

From equation (12) and (13), we have
|, =6,L= e"@%ﬂp((:t;i

Where Ii = ai L is the normalized supporting element in the Finsler space F".

Differenting equation (24) with respect to y , the
.. Le"«j ar
h; =L0,0;L= 3 ——
o (94
205|Page
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(6)

™

®

(©)

(10)

(11)

is given by

(12)

(13)

(14)

normalized supporting element

(15)
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. o€ A2
o o
Where hiJ' = Laiai L is the angular metric tensor in the Finsler Space F".

3- Anisotropic cosmological model with Randers conformal of Finsler space:

The Lagrangian function on M", given by the equation:

L :eg«%l‘F@((Biyi
:\/aij (i Jiyj

a.
Where " is the Riemannian metric with signature (-, +, +. +).Because of the anisotropy, we must insert an additional
term to the Riemannian line element a. This term fulfill the following requirements:

0] It must give absolute maximum contribution for direction of movement parallel to the anisotropy axis.

(i) The new line element must coincide with the Riemannian one for the direction vertical to the anisotropic axis.
- oy

(iii) It must not symmetric with respect to replacement .

ﬂ:Q(}

We see that a term which satisfies the above conditions is

b, €

Where expresses this anisotropic axis.

6.
I
\ ~ . . B . . ~
Let bi (()_ (D(X)bi , Where the unit vector in the direction is bi ((’. Then gz)(X) plays the role of

“length” of the vector [ ‘(\, (p(X) e R - B is the Finslerian line element and a is Riemannian one.
I -

In order for the Finslerian metric to be physically consistent with General theory of relativity, it must have the same
signature with the Riemannian metric (-, +, +, +). We have

a=cdzr =cudt = pd €t = pdx a7

Where &~ ¢? and v: 3- velocity in Riemannian space- time. One possible explanation of the anisotropy axis

could be that it represents the resultant of spin densities of the angular momenta of galaxies in a restricted area of space (
bi(x) space like). It is known that the mass is anisotropically distributed for regions of space with radius < v light years

[4].

The Finsler metric tensor gj is

g; =h; +L1;
Le < yy; ] [e€ "4, "
g; = & —— %/ —J+¢‘(/bl
a a
Le"@ ~n g€ e"O
g; = + b€ b, + %D((’ﬁy, whyy 3y,
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eai%p(\ . R ﬂ 0()
T

<
glj jalj + Ig((,AbIbJ + b yl j yly] (18)
Letf()
}/ =
Where o (19)
_ j
yl aij y alj
Where we put and is the fundamental tensor for the Finsler space F". It will be easy to see that the
ij
det. Hg” H does not vanish, and the reciprocal tensor with components is given by
gl =yal +y'yl —ay 2 jbI+y b
(20)
_ a20€) O'(%Z 3
e +
o B4 on
g , g; b?=bp" b'=a'h, al a
Where ~ s the reciprocal tensor of ~" and , I And is the inverse matrix of . As it may
- . : m:bibl=0’i1 . . . o
be verified by direct calculation, where according whether s null, space like or time like. It must be
i Qi
noted, however, that if represents the velocity of a particle (time like) then is bound to be space like. this follows
.
from the fact that one possible value of Y is zero.
The Carton covariant tensor C with the components 1" is obtained as follows:
il .
C. =—0.0:
ijk 2 k Jij
Ml . Lea() 1 eo' (%0 ‘( A j
ak{ a;; + 0y — gyj—l—yibj g
o o
1 U(}p‘( ﬂea()
Cijk:_ b%akyj"'aky. , 35 YiY;j
2 o
U(]
€y -6y 3 )
14
< m, +h.m. +h.m
ijk Fﬂ k ki (22)
m. = 6 — Ba?y.
Where ! : 'B Y (23)
The Covariant indices j is replaced by k and k by s, we have
Cp. =2 Hm, +h.m +h.m
s = o W s T NM; +NgM,
(24)
- 1 R 7
jh _ ~h _ h h h
Cixd" =Cy =— le‘nmk"'hkmi"'hikm gnmk"’m g
2L (25)
m® =mm'
Where (26)

Replacing the covariant indices h by s, i by j and k by h in equation (25), we have
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J

s 1 s s
C, :Z I%fmh+hhmj +hjhm 7/ 2%11 m, +m th

(27)
Now,
Sjikh :Cilscjsh _Cihscjsk (28)
C,.C: =l|e:m +hom +h,m
iks ~ jh k'''s ks ' sit 'k
-1
S R 7 2 S
{ZL I%Smh+h m; +h;m 350 2%njmh+m h;, g}
c oo o T 2/hm,m; +m?h, h, +hemm, +h,mm,
O Al |+ hymem, +hymem; + 250, mim, (29)
Replacing k by h and h by k in equation (29), we get
c s - B 2/hmem; +m?hy hy +h.mm, +h,mm;
T4 | hymem, +hmm, +2sh, mom, (30)

Thus, equation (28), Equation (29) and equation (30) yields

B R
y/ m2 l%khjh _hihhjk j27mj P‘kmh _hihmk }mi lijmh _hhjmk
412 3
AL’ _+mj IQ{hmk —hym, }27mi l%jhmk _hjkmh B

m? I%khjh _hihhjk } QJ/_]-Injmhhik = QJ/_lInjmkhih i e7/_:|-Inkmihjh + Qy_lznimhhjk

Sjikh =

/4
Sjikh :E

-

Sjikh 4L2I] I%k jh hlhhjk j¢7’ 1H‘, F‘kmh by My }QV 1ﬂ1. I%]hmk h UL
(31)

Thus, S- curvature represents the measure of anisotropy of matter.

From equation (9), we have

Pihkj T Cijk\h _Chjk\i +Cf:jcrik\0 _CiJr'Crkh\O (32)

Differenting equation (22) with respect to covariant h, we get
3 h”‘h +hym, + hym,
Cijk/h = 2L I%m +thm +hk,m jZL h h
/h + jkmi\h + kimj\h

ij/h
Since

1 e\h
uk\h 2

(lj ] Le? 3 i _1 Ofeﬁ—eﬁa/h
Where \ 2L n 2Lo i 20 h 2 a?
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[ea

e
(Lj - a0
L)y«

Replacing i by h and h by i in equation (33), we get

1€,
Chjk/l ZE |

Equation (33) and Equation (34) gives

Iimk+hjkmh+hkhm j h{mk‘ +hlkmh‘ +hkhm‘ a4

(e
18

]/ {
Con ~Coi =0ay 5~ Rm,+h,m +h,m 4 I'|§mk‘h +hym,, +hem

ijk/h
(35)

«9(n\ is interchanging the indices and substitution.
Where -

From equation (33), we have

1o 17
Cijk\o :Cijk\hyh :E; lﬁﬂjmk +hjkmi +hkimj jz h%jmk\o +hjkmi\o +hkimj\o (36)

With the help of equation (27) and equation (36), we write

C/C i iIf’ﬂ'm +him. +h . m' \‘7/—_12%nm +m?h, W
hj ~rikjo — 2L " 'h h™'j jh jzaL iiaah jh A |
180 y
5 o Ieirmk +h,m; +hgm, } oL I-ﬂrmk\o 1 hrkmi\o +hkimr\o

eO'

, _
0 = g I%jmhmk +hpm;m, +2h,mm; +h, mm, +h, mm; +2h,mm; + mh; h,;

ciC

7 hymymy o +hym;m, o +hymm, o +hymm,, +h,m;m,,

+
2 =
BL° |+ hjhmkmi‘0 + hkimhm”O + hkimjmh‘0 +h,h;m

37

m=m'm,
Where

e“g
rhk\O i 4CZL

o i
. 22 .9@11{ m,m, +hjhmkm‘ +hgm, Mo +hlhhk,m

C/iCrvo —CiiC Hﬂolfﬂm m, +h,m,m; + h, mm; + hym,m; + m*h; h,

rik|0

e’
‘ 0

C C I’hk‘0:4aL

-C! ,C H(njlﬁﬂjhm m; +hgmym; +m hjhhk| _

rik|0

R (38)
4L Hmjh{ m,m, o +Njm, m; o +ham, m, +thhkI 9

The equation (32), equation (35) and equation (38) yields
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1 em 3y
Pihkj: 9«1 E; I%jmk +hjkmi +hkimj jz h%jmk\h +hjkmi\h "’hkimj\h
eO'
o 2 R4 _
. M%jlﬂﬂjhmkmi +hgmym, +m°hyhy jﬁgmjhgkmhmio +hjhmkmi‘0 +hkimhm”0 +h;,h;m 39)

4- Concluding Remarks:

Particular attention over the last decade has been paid on the so-called Finsler-Randers cosmological model [17].In
general metrical extensions of Riemann geometry can provide a Finslerian geometrical structure in a manifold which leads
to generalized gravitational field theories. During the last decade there is a rapid development of applications of Finsler
geometry in its FR context, mainly in the topics of general relativity, astrophysics and cosmology [18-28]. Keeping this in
mind in this paper we have considered the randers conformal metric to the general relativity. From the above section it is
clear that If o(x) = 0, then this change is reduces to simple Randers metric and GTR is well connected with Randers
metric. For this metric, we have also obtained the relationship between the anisotropic cosmological models of space time
with above generalized Finslerian metric which is shown in the equations derived in section 3
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