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ABSTRACT   

In this paper we study an anisotropic model of space – time with Finslerian metric. The observed anisotropy of the 
microwave background radiation is incorporated in the Finslerian metric of space time. 
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1-INTRODUCTION:     

Recently in literature we have gone one paper published in physical letter respectively, B668(2008)453 and    
B676(2009)173 under which the aouther has considered that in Finslerian manifold there exists a unique linear connection 
known as Chern connection. It is torsion firness and metric compatibility, we are not agree with the result of the paper 
because there are well known result published by H. Rund that in Finsler geometry there exits and infinite number of linear 
connection defined by the same metric structure and that the Chern and Bernwald connection are not metric compatable.  

 cosmology and other reference of the same kind [ 1, 2 ,3 ].We are fully agreed with the theory expressed in the above 
referred publication regarding as it is based on tangent bundle on space time manifold are positively with local Lorentz 
violations which may be related with dark energy and dark matter models with variable ᴧ in cosmology. Certainly those 
may be one of the most recent hidden connections between Finsler geometry and cosmology. Now in these days many 
researchers are constructing suitable cosmological models with variable Lambada term including our own research group 
[29-33] 

Here in this paper we will study anisotropic model of General Theory of Relativity based on the frame work of Finsler 
geometry.  

2.   BASIC ASSUMPTIONS & CONSIDERATION:  

In 1984, Shibata [7] introduce the concept of change and defined as 

    

Where,  is a one-form metric and L is any Finsler metric, and obtained very interesting result in his paper.  The conformal 

theory of Finsler spaces has been initiated by M. S. Knebelman [8] in 1929 and has been investigated in detail by many 
authors [9, 10, 11, 12, 13] etc. This change is defined as 

     

Where  is a function of position only and known as conformal factor. 

3-Generalization of result with different assumption: 

In the present paper we generalize the above changes and defined a Randers conformal metric as 

xeL                                          (1) 

Where, 
jii

ij yyxa   is a Riemannian metric, 
i

i yxb  is a one-form and  is the conformal factor. If 

, then this change is reduces to simple Randers metric and for this metric Stavrions and Diakogiannis [16] 

obtained the relationship between the anisotropic cosmological models of space time and Randers Finslerian metric. The 
purpose of the present study is to obtain the relationship between the anisotropic cosmological models of space time with 
above generalized Finslerian metric. 

Let us consider an n- dimensional Finsler space (M 
n
, L) and an adaptable  1-form  

i

i dxxb  on M 
n 

. We shall use a 

Lagrangian function on M
n
, given by the equation: 

    
i

i

x ybxeL ˆ                                                                                                               (3) 

Where ii bxxb ˆ)(   The vector ib̂  represents the observed anisotropic of the microwave background radiation.  

A coordinate transformation on the total space TM is given by 
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By definition [4, 15] a Finsler metric on M is a function 
RTMF :

 having the properties:     

1. The restriction of F to TM is positively homogeneous of degree 1 with respect to {y 
a
}. 
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 with the coefficients jiij
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 Defined on TM, is non degenerate
0det

j

i

x

x
, with rank gij = 4. 

The Carton torsion coefficients Cijk are given by  

                            
ijkijk gC 

2

1
                                                                                                  (6) 

The torsions and curvatures which we use are given by [4, 5, 15]: 
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Differentiating equation (3) with respect to y
i
 , the normalized supporting elements 

Ll ii


   is given by 

                      ii
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From equation (12) and (13), we have     

              i
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ii bx
y

eLl ˆ
                                                                                      (14) 

Where   
Ll ii


 is the normalized supporting element in the Finsler space F

n
. 

Differenting equation (14) with respect to y
j
 , the normalized supporting element   
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Where    
LLh jiij


   is the angular metric tensor in the Finsler Space F

n
. 

3- Anisotropic cosmological model with Randers conformal of Finsler space:                 

The Lagrangian function on M
n
, given by the equation: 

                     

i

i

x ybxeL ˆ
 

                                  

jii

ij yyxa
 

Where  
ija

  is the Riemannian metric with signature (-, +, +. +).Because of the anisotropy, we must insert an additional 
term to the Riemannian line element α. This term fulfill the following requirements: 

(i) It must give absolute maximum contribution for direction of movement parallel to the anisotropy axis. 

(ii) The new line element must coincide with the Riemannian one for the direction vertical to the anisotropic axis. 

(iii) It must not symmetric with respect to replacement

ii yy
. 

We see that a term which satisfies the above conditions is  

i

i yxb  

Where  

xbi

 expresses this anisotropic axis.  

Let  
ii bxxb ˆ)(  , where 

ib̂
the unit vector in the direction is xbi

. Then )(x  plays the role of 

“length” of the vector xbi
, Rx)( .  β is the Finslerian line element and α is Riemannian one.  

In order for the Finslerian metric to be physically consistent with General theory of relativity, it must have the same 
signature with the Riemannian metric (-, +, +, +). We have 

     

0dxctddtccd
                                                                         (17) 

Where 2

2

1
c

v
  and   v: 3- velocity in Riemannian space- time. One possible explanation of the anisotropy axis 

could be that it represents the resultant of spin densities of the angular momenta of galaxies in a restricted area of space ( 
bi(x) space like). It is known that the mass is anisotropically distributed for regions of space with radius ≤ 10

8
 light years 

[4]. 

 

The Finsler metric tensor   gij  is  
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Where          

xLe

                                                                                                                                         (19) 

Where we put     

j

iji yay

 and  

ija

 is the fundamental tensor for the Finsler space F
n
. It will be easy to see that the 

det. ijg
 does not vanish, and the  reciprocal tensor with components 

ijg
is given by 

ijjijiijij bybyyyag ˆˆ211

                                                                (20) 
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Where 

ijg
is the reciprocal tensor of 

ijg
 and

i

ibbb ˆˆ2

,    
j

iji bab ˆˆ
 And 

ija
 is the inverse matrix of 

ija
. As it may 

be verified by direct calculation, where 
1,0ˆˆ i

ibbm
   according whether

ib̂
 is null, space like or time like. It must be 

noted, however, that if   

iy
 represents the velocity of a particle (time like) then 

ib̂
 is bound to be space like. this follows 

from the fact that one possible value of 

i

i yb̂
  is zero.                  

The Carton covariant tensor C with the components 
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 is obtained as follows: 
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Where     
iii ybm 2ˆ
                                                                                                                                   (23) 

The Covariant indices j is replaced by k and k by s, we have 
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Where        

i

immm2

                                                                                                                                            (26) 

Replacing the covariant indices h by s, i by j and k by h in equation (25), we have 
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Replacing k by h and h by k in equation (29), we get 
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Thus,   equation (28), Equation (29)  and equation (30) yields 
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Thus, S- curvature represents the measure of anisotropy of matter. 

From equation (9), we have 
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Differenting equation (22) with respect to covariant h, we get 
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 Replacing i by h and h by i in equation (33), we get  
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Equation (33) and Equation (34) gives 
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Where        
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 is interchanging the indices and substitution.  
 

From equation (33), we have 
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The equation (32), equation (35) and equation (38) yields 
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4- Concluding Remarks: 

Particular attention over the last decade has been paid on the so-called Finsler-Randers cosmological model [17].In 
general metrical extensions of Riemann geometry can provide a Finslerian geometrical structure in a manifold which leads 
to generalized gravitational field theories. During the last decade there is a rapid development of applications of Finsler 
geometry in its FR context, mainly in the topics of general relativity, astrophysics and cosmology [18–28]. Keeping this in 
mind in this paper we have considered the randers conformal metric to the general relativity. From the above section it is 
clear that If , then this change is reduces to simple Randers metric and GTR is well connected with Randers 

metric. For this metric, we have also obtained the relationship between the anisotropic cosmological models of space time 
with above generalized Finslerian metric which is shown in the equations derived in section 3 
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