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Abstract:In this paper, we investigate new generalized Hyers-Ulam stability results for ),,(  -derivations on Lie 
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 by using the fixed point and direct methods.  
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1  Introduction 
The theory of finite dimensional complex Lie algebras is an important part of Lie theory. Lie algebras have many 

applications in physics and connections with other parts of mathematics. With an increasing amount of theory and 
applications concerning Lie algebras of various dimensions, it is becoming necessary to ascertain which tools are 
applicable for handling them. The miscellaneous characteristics of Lie algebras constitute such tools and have also found 
applications in Casimir operators [1], derived, lower central and upper central sequences, the Lie algebra of derivations, 
radicals, nilradicals, ideals, subalgebras [11], [20] and megaideals [19]. These characteristics are particularly crucial when 
considering possible affinities among Lie algebras. Recently, some authors have studied the stability problems of some 
functional equations in the setting of Lie algebras.  

The stability problem concerning the stability of group homomorphisms of functional equations was originally 
introduced by Ulam [24], in 1940, as follows: 

 Let ,*)( 1G  be a group and ),,( 2 dG   be a metric group with the metric ),( d . Given 0> , does there 

exist a 0>)(  such that if a mapping 21: GGh   satisfies the inequality <))()(),*(( yhxhyxhd   for all 

1, Gyx  , then there is a homomorphism 21: GGH   with <))(),(( xHxhd  for all 1Gx ? 

 If the answer is affirmative, we would say that the equation of a homomorphism )()(=)*( yHxHyxH   is  

stable. The famous Ulam stability problem was partially solved by Hyers [10] for linear functional equation of Banach 

spaces. Later, the results of Hyers were generalized by Aoki [2], G a


vruta [8] and Rassias [23]. C a


dariu and Radu [4] 

applied the fixed point method to investigation of the stability for a Jensen functional equation. They could present a short 
and a simple proof, which is different from the direct method initiated by Hyers in 1941, for the generalized Hyers-Ulam 
stability for a Jensen functional equation. In 2008, Novotny and Hrivnak [15] investigated generalizing the concept of Lie 
derivations via certain complex parameters and obtained various Lie and established the structure and properties of 

),,(  -derivations of Lie algebras.  

A 
*C -algebra A  endowed with the Lie product 

2
=],[

yxxy
yx


 on A  is called a  Lie 

*C -algebra 

(see [16]). Let A  be a 
*C -algebra. A C -linear mapping AA :D  is called a ),,(  -derivation of A  if 

there exist C ,,  such that  

 )](,[]),([=]),([ yDxyxDyxD    

for all Ayx,  (see [15]).  

Let k  be a fixed positive integer. We recall that a mapping BA:  having the domain A  and the 

codomain ),( B  that are both closed under addition is called a  contractively subadditive mapping if there exists a 

constant L  with 1<<0 L  such that  

 ))()(()( yxLyx    

and an  expansively superadditive mapping if there exists a constant L  with 1<<0 L  such that  

 ))()((
1

)( yx
L

yx    

for all Ayx , . A mapping BA:  is called a  homogeneous of degree k  if  

 )(=)( xx k  

for all Ax . Also, if there exists a constant L  with 1<<0 L  such that a mapping BAn :  satisfies  

 ),,,,,,(),,,,,,( 111111 niinii xxxxxLxxxxx  
    

for all Axxxxx nii  ,,,,,, 111   and positive integer  , then we say that   is a n -contractively 

subhomogeneous mapping if 1=  and   is an n -expansively superhomogeneous mapping if 1=  . Note that 

  satisfies the properties  
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 ),,()(),,( xxLxx n      

Now, we consider a mapping YXf :  satisfying the following functional equation:  
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 (1.1) 

 for all Xxx ni ,,  where 
Zmn,  are fixed integers with nmn  1  2, . 

We observe that, in case 1=m , the equation (1.1)  yields the following Cauchy additive equation:  
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Also, we observe that, in case nm = , the equation (1.1)  yields the following Jensen additive equation:  
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Therefore, the functional equation (1.1)  is a generalized form of the Cauchy-Jensen additive equation and thus every 

solution of the equation (1.1)  may be analogously called the  general ),( nm -Cauchy-Jensen additive equation. 

Let X  and Y  be linear spaces. For each 
Zm  with nm 1 , a mapping YXf :  satisfies the 

equation (1.1)  for all 2n  if and only if )(=(0))( xAfxf   is Cauchy additive, where 0=(0)f  if nm < . 

In particular, we have )(1)(=)1)(( xfmnxmnf   and )(=)( xmfmxf  for all Xx .  

Recently, Asgari et al. [3] established the generalized Hyers-Ulam-Rassias stability of the ternary homomorphisms 

and ternary derivations between fuzzy ternary Banach algebras associated to the functional equation (1.1) . Rassias et 

al. [21] proved the generalized Hyers-Ulam stability of homomorphisms and derivations in 
*C -ternary algebras associated 

with the functional equation (1.1) . Also, Gordji et al. [9] investigated the stability of ),,(  -derivation on Lie 
*C

-algebras. For more details about the stability for various types of derivations, refer to [6], [12], [13], [14], [18] and [22]. 

In this paper, using some strategies from [9], [15] and [21], we investigate new stability of ),,(  -derivations 

on Lie 
*C -algebras associated to the general ),( nm -Cauchy-Jensen type additive functional equation (1.1)  by using 

the fixed point and direct methods.  

Throughout this paper, let A  be a Lie 
*C -algebra, }/20:{=1

1/ o

i

o
n neT    and 

 Z1= mn  be a fixed positive integer with 2n  and nm 1 . For any mapping AA :f , we define  
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2 Stability of ),,(  -derivations on Lie *C -algebras 

In this section, we give some new generalized Hyers-Ulam stability results for 
),,( 

-derivation on Lie 
*C

-algebras associated to the equation 
0=),,( 1 nxxf   via two methods.  

 

 2.1. Fixed point method 

Let us recall that a mapping 
)[0,: 2 Xd

 is called a  generalized metric  on a nonempty set X  if (1)  

0=),( yxd
 if and only if 

yx =
; (2)  

),(=),( xydyxd
; (3)  

),(),(),( zydyxdzxd 
 for all 

Xzyx ,,
. 

The following fixed point theorem proved by Diaz and Margolis [7] plays an important role in proving our theorem: 

Theorem 2.1 [7]  Suppose that 
),( d

 is a complete generalized metric space and :T  is a 

strictly contractive mapping with Lipshitz constant L . Then, for each x , either 
 =),( 1xTxTd nn

 for all 

nonnegative integers 0n  or there exists a natural number on
 such that  

(1)  <),( 1xTxTd nn

 for all onn 
; 

(2)
  the sequence 

}{ xT n

 is convergent to a fixed point 
*y

 of T ; 

(3) *y
 is the unique fixed point of T  in the set 

}<),(:{=  yxTdy o
n

; 

(4)
),(

1

1
*),( Tyyd

L
yyd




 for all 
y

.  

Theorem 2.2 Assume that there exist a contractively subadditive mapping 
)[0,: nA

 and a 

2-contractively subhomogeneous mapping 
)[0,: 2 A

 with the constant 1<L  such that a mapping 

AA :f
 satisfies the following conditions:  

 ),,,(),,( 11 nn xxxxf     (2.1) 

 ),()](,[]),([]),([ yxyfxyxfyxf    (2.2) 

 for all 
Ayxxx n ,,,,1 

 and 

1

1/
o

nT
 and for some 

C ,,
. Then there exists a unique 

),,( 
-derivation AA :D  which satisfies the equation 

(1.1)
 and the following inequality:  

 ),,(

)1)(1(

1
)()( xx
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m

n
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 for all Ax .  
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xxx n =,,1 

 and 
1=

 in 
(2.1)

, we have  
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 for all Ax , where 1= mn . 

Let   be a set of all mappings from A  into A  and introduce a generalized metric on   as follows:  

 }.Aforall),,()()(:)[0,{inf=),(  xxxCxhxgChgd   

 Then 
),( d

 is a generalized complete metric space ([5]). We consider the mapping :T  defined by  

 )(
1

=))(( xgxTg 


 

for all 
g

 and Ax . Let 
hg,

 and 
)[0,C

 be an arbitrary constant with 
Chgd <),(

. 
Then we have  

 ),,(),,())(())(( xxLCxx
C

xThxTg  


  (2.6) 

 for all Ax , which means that  

 
),(),( hgLdThTgd 

 

for all 
hg,

. Then T  is a strictly contractive self-mapping on   with the Lipschitz constant L . It follows 

from 
(2.5)

 that  
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Thus, from Theorem 2.1, there exists a mapping D , which is a unique fixed point of T  in the set 

}<),(:{=1  gfdg
, such that  
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 for all Ax  since 
0=),(lim fTd k

k  . Again, from Theorem 2.1, we have  
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 and so the inequality 
(2.3)

 holds. From 
(2.1)

, 
(2.7)

 and a contractive subadditive mapping of 


, it 
follows that  

 0,=),,(lim),,(
1

lim),,( 111 n
k

k
n

kk

k
k

n xxLxxfxxD  

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 which gives 
0=),,( 1 nxxD   for all 

Anxx ,,1 
, 

1

1/
o

nT
. If we put 

1=
 in 

(2.9)
, then D  

is additive. Also, letting 
xx =1  and 

0===2 nxx 
 in 

(2.9)
, we have 

)(=)( xDxD 
. By the same 

reasoning as is the proof of Theorem 2.1 of [17], the mapping D  is 
C

-linear. 
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It follows from the linearity of D  and 
(2.2)

 that  
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 for all 
Ayx,

 and for some 
C ,,

. Then we have  

 
)](,[]),([=]),([ yDxyxDyxD  

 

for all 
Ayx,

 and for some 
C ,,

. Therefore, D  is a unique 
),,( 

-derivation on a Lie 
*C

-algebra A  satisfying 
(2.3)

. This complete the proof.  

Theorem 2.3 Assume that there exist an expansively superadditive mapping 
)[0,: nA

 and a 

2-expansively superhomogeneous mapping 
)[0,: 2 A

 with the constant 1<L  such that a mapping 

AA :f
 satisfies 

(2.1)
 and 

(2.2)
. Then there exists a unique 

),,( 
-derivation AA :D  which 

satisfies the equation 
(1.1)

 and the following inequality:  

 ),,(
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L
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 for all Ax .  

Proof. It follows from 
(2.4)

 and an expansively superadditive mapping of 


 that  
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 for all Ax . 

Let   and d  be same as in the proof of Theorem 2.2. Then 
),( d

 is a generalized complete metric space. 

We consider the mapping :T  defined by  

 )(=))((



x

gxTg  

for all 
g

, Ax . Thus we have ),(),( hgLdThTgd   for all 
hg,

 and, by 
(2.11)

,  
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It follows from Theorem 2.1 that there exists a mapping D , which is a unique fixed point of T  in the set 

}<),(:{=1  gfdg
, such that  
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 and so the inequality 
(2.10)

 holds. The remaining assertion goes through in the similar method to the 
corresponding part of Theorem 2.2. This complete the proof.  

 From Theorems 2.2 and 2.3, we have the following:  

Corollary 2.4 Let 
Rsr,

 with 
21,  sr

 and   be positive real numbers. Suppose that a mapping 

AA :f
 satisfies the following conditions:  
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-derivation AA :D  which satisfies the equation 
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 and the following inequality:  
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 for all Ax .  

Proof. The proof follows from Theorems 2.2 and 2.3 by taking 
r

i

n

in xxx  1=1 =),,(    and 

)(=),(
ss

yxyx   for all 
Ayxxx n ,,,,1 

. Then we can choose 
11)(=  rmnL

 if 1<r  

and 
rmnL  11)(=

 if 2>r , respectively, and so we can obtain the desired result.  

Corollary 2.5 Let 
Rir  with 

1=
1=
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n

i
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, s  with 2s  and   be positive real numbers. 

Suppose that a mapping 
AA :f

 satisfies the following conditions:  

 ,),(
1=

11
ir

i

n

i
n xxxf    (2.15) 

 22)](,[]),([]),([
ss

yxyfxyxfyxf    (2.16) 
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 for all 
Ayxxx n ,,,,1 

 and for some 
C ,,

. Then there exists a unique 
),,( 

-derivation 

AA :D  which satisfies the equation 
(1.1)

 and the following inequality:  
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

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


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



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


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2;>2,>,

))1(1)((
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)1)(1)((

)()(

sr

mnmn
m

n

x

sr

mnmn
m

n

x

xDxf

r

r

r

r





 (2.17) 

 for all Ax .  

Proof. Putting 
ir

i

n

in xxx  1=1 =),,(    and )(=),( 22

ss

yxyx   for all 

Ayxxx n ,,,,1 
 and choosing 

11)(=  rmnL
 if 1<r  and 

rmnL  11)(=
 if 1>r , respectively, we 

obtain the desired result by Theorems 2.2 and 2.3.  

2.2. Direct method 

In this subsection, we apply the direct method to investigate the new generalized Hyers-Ulam stability results for 

),,( 
-derivations on Lie 

*C -algebras associated with the equation 
(1.1)

.  

Theorem 2.6 Assume that there exist a contractively subadditive mapping 
)[0,: nA

 and a 

2-contractively subhomogeneous mapping 
)[0,: 2 A

 with the constant 1<L  such that a mapping 

AA :f
 satisfies 

(2.1)
 and 

(2.2)
. Then there exists a unique 

),,( 
-derivation AA :D  which 

satisfies the equation 
(1.1)

 and the following inequality:  

 ),,(

)1)(1(

1
)()( xx

Lmn
m

n
xDxf 









  (2.18) 

 for all Ax .  

Proof. If we replace x  by xj  and divide 
j  both sides of 

(2.5)
, then we have  

 ),,(
1)()(

1

1

xx

m

n
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j

j
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













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








 

 for all Ax . Thus we have  
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1
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=
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n
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xfxf j
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
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


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


  (2.19) 

 for all Ax  and 
Zkl,

 with 0> kl , which implies that the sequence 









l

lxf



 )(
 is a Cauchy 
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sequence for all Ax  and so it converges. Thus we can define a mapping AA :D  by 

l

l

l

xf
xD



 )(
lim=)(   for all Ax . Then we have  

 

0,=),,(
1
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),,(
1

lim),,(

1
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n
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l
l

n
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l
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


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 (2.20) 

 which gives 
0=),,( 1 nxxD   for all 

Anxx ,,1 
 and 

1

1/
o

nT
. If we put 

1=
 in 

(2.20)
, then 

the mapping D  is additive. Letting 
xx =1  and 

0===2 nxx 
, we have 

)(=)( xDxD 
. By the same 

reasoning as is the proof of Theorem 2.1 of [17], D  is 
C

-linear. Further, we have  
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 for all 
Ayx,

. So, we have 
)](,[],[=],[ yDxyDxyxD  

 for all 
Ayx,

 and for some 

C ,,
. Letting l  in 

(2.19)
 with 0=k , we can find that the mapping D  is a 

),,( 
-derivation on 

a Lie 
*C -algebra A  satisfying 

(2.18)
. 

Next, let BA  :D  be another 
),,( 

-derivation on A  satisfying 
(2.18)

. Then we have  
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 for all Ax . Thus we can conclude that 
)(=)( xDxD 

 for all Ax . This complete the proof.  

Theorem 2.7 Assume that there exist an expansively superadditive mapping 
)[0,: nA

 and a 

2-expansively superhomogeneous mapping 
)[0,: 2 A

 with the constant 1<L  such that a mapping 

AA :f
 satisfies 

(2.1)
 and 

(2.2)
. Then there exists a unique 

),,( 
-derivation AA :D  which 

satisfies the equation 
(1.1)

 and the following inequality:  

 ),,(

)1)(1(

)()( xx

Lmn
m

n

L
xDxf 









  (2.21) 

 for all Ax .  

Proof. The proof is similar to that of Theorem 2.6.  
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Corollary 2.8 Let 21,
 be positive real numbers. Suppose that a mapping 

AA :f
 satisfies  

 ,),( 111  nxxf   (2.22) 

 2)](,[]),([]),([   yfxyxfyxf  (2.23) 

 for all 
Ayxxx n ,,,,1 

 and for some 
C ,,

. Then there exists a unique 
),,( 

-derivation 

AA :D  which satisfies  
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 (2.24) 

 for all Ax .  

 Remark.Let 
)[0,: nA

 and 
)[0,: 2 A

 be mappings such that  

 
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for all 
Ayxxx n ,,,,1 

, where 1= mn . Suppose that 
AA :f

 is a mapping which satisfies 

(2.1)
 and 

(2.2)
. By similar method to the proof Theorem 2.6, we can show that there exists a unique 

),,( 

-derivation AA :D  which satisfies 
(1.1)

 and  
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 for all Ax . 

For the case 
r

i

n

in xxx 
1=1 =),,(    and )(=),(

ss
yxyx    (where 

 ,
 are positive real numbers and 

Rsr,
 with 

2<1,< sr
), there exists a unique 

),,( 
-derivation 

AA :D  satisfying  
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for all Ax .  
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