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Abstract 

In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of 
nonlinear evolution equations. The validity and reliability of the method are tested by its applications to some nonlinear 
evolution equations which play an important role in mathematical physics. 
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1- Introduction 

No one can deny the important role which played by the nonlinear partial differential equations in the description of many 
and a wide variety of phenomena not only in physical phenomena, but also in plasma, fluid mechanics, optical fibers, solid 
state physics, chemical kinetics and geochemistry phenomena. So that, during the past five decades, a lot of method was 
discovered by a diverse group of scientists to solve the nonlinear partial differential equations. Such methods are tanh - 
sech method [1]-[3], extended tanh - method [4]-[6], sine - cosine method [7]-[9], homogeneous balance method [10, 11], 

F-expansion method [12]-[14], exp-function method [15, 16], trigonometric function series method [17],  
𝐺′

𝐺
  -expansion 

method [18]-[21], the exp (-φ (ξ))-expansion method [22]-[24],extended Jacobi elliptic function method [25]-[28], the exp (-
φ (ξ))-expansion method [26]-[28] and so on. The objective of this article is to apply an extended Jacobian elliptic function 
expansion for finding the exact traveling wave solution of the nonlinear Phi- Four equation which play an important role in 
mathematical physics. 

The rest of this paper is organized as follows: In Section 2, we give the description of an extended Jacobian elliptic 
function expansion. In Section 3, we use this method to find the exact solutions of the nonlinear evolution equations 
pointed out above.  In Section 5, we give the physical interpretations of the solutions. In Section 5, conclusions are given. 

2- Description of method 

Consider the following nonlinear evolution equation 

P u, ut , ux , utt , uxx , … . .  = 0,    (2.1) 

since, P is a polynomial in u(x, t) and its partial derivatives. In the following, we give the main steps of this method  

Step 1. We use the traveling wave solution in the form 

u x, t = u ξ , ξ = x − ct,  (2.2) 

 

where c is a positive constant, to reduce Eq. (2.1) to the following ODE: 

 

p u, u′, u′′, u′′′, … . .  = 0, (2.3) 

 

where P is a polynomial in u (ξ) and its total derivatives, while 𝑢′ =
𝑑𝑢

𝑑𝜉
 . 

Step 2.Making good use of ten Jacobian elliptic functions we assume that (2.3) have the solutions in these forms: 
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With  
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(2.5) 

Where𝑠𝑛𝜉, 𝑐𝑛𝜉, 𝑑𝑛are the Jacobian elliptic sine function, thejacobian elliptic cosine function and the Jacobian elliptic 

function of the third kind and other Jacobianfunctions which are denoted by Glaisher's symbols and are generated by 
these three kinds of functions, namely: 
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(2.6) 

those have the relations 

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1, 1, 1 ,

, 1 , 1 ,

sn cn dn m sn ns cs

ns m ds sc nc m sd nd

   

    

     

     
 

 

(2.7) 

with the modulus m (0 < m < 1). In addition we know that 
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(2.8) 

The derivatives of other Jacobian elliptic functions are obtained by using Eq. (1.8). Tobalance the highest order linear term 
with nonlinear term we define the degree of u asD[u] = n which gives rise to the degrees of other expressions as 
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(2.9) 

According the rules, we can balance the highest order linear term and nonlinear term in Eq. (2.3) so that n in Eq.(2.4) can 
be determined.In addition we see that when 𝑚 ⟶ 1 ,  𝑠𝑛𝜉, 𝑐𝑛𝜉, 𝑑𝑛𝜉   degenerate as 𝑡𝑎𝑛ℎ𝜉, 𝑠𝑒𝑐ℎ𝜉, 𝑠𝑒𝑐ℎ𝜉 respectively, 

while when therefore Eq.(2.5) degenerate as the following forms 
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(2.10) 

Therefore the extended Jacobian elliptic function expansion method is more general than sine-cosine method, the tan-
function method and Jacobian elliptic function expansion method. 

Application 

Here, we will apply, an extended Jacobian elliptic function expansion method described in Sec.2 to find the exact traveling 
wave solutions and the solitary wave solutions of the nonlinear Phi- Four equation[32, 33]. We consider the nonlinear Phi- 
Four equation. 
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𝑢𝑡𝑡 − 𝛼𝑢𝑥𝑥 − 𝑢 + 𝑢3 = 0, (3.1) 

whereα and β are real constants. By using the wave transformation u ξ = u x, t ,  since 

 ξ = x − t ,we get: 

 1 − 𝛼 𝑢′′ − 𝑢 + 𝑢3 = 0. (3.2) 

Balancing between the highest order derivatives and nonlinear terms appearing in Eq. (3.2) 𝑢3𝑎𝑛𝑑 𝑢′′ ⇒ 𝑚 = 1 . So that, 
by using Eq. (2.4) we get the formal solution of Eq. (3.2) 

𝑣 𝜉 = 𝑎0 + 𝑎1𝑠𝑛𝜉 + 𝑏1𝑐𝑛𝜉. (3.3) 

Substituting Eq. (3.5) and its derivative into Eq. (3.2) and collecting all term with the same power of 

𝑠𝑛3, 𝑠𝑛2𝑐𝑛, 𝑠𝑛2 , 𝑠𝑛𝑐𝑛, 𝑠𝑛, 𝑐𝑛, 𝑠𝑛0 we get: 

 
 
 
 

 
 
 

 1 − 𝛼  2𝑎1𝑚
2 +  𝑎1

3 − 3𝑎1𝑏1
2 = 0,

 1 − 𝛼  2𝑚2𝑏1 +  3𝑎1
2𝑏1 − 𝑏1

3 = 0,

 3𝑎0𝑎1
2 − 3𝑎0𝑏1

2 = 0,
 6𝑎0𝑎1𝑏1 = 0,

 1 − 𝛼  −𝑚2𝑎1 − 𝑎1 −  𝑎1 +  3𝑎0
2𝑎1 + 3𝑎1𝑏1

2 = 0,

 1 − 𝛼  −𝑏1 −  𝑏1 +  3𝑎0
2𝑏1 + 𝑏1

3 = 0,

− 𝑎0 +  𝑎0
3 + 3𝑎0𝑏1

2 = 0,

  (3.4) 

Solving above system by using maple 16, we get: 

Case1: 

𝛼 =
2 𝑚2 − 1 

2𝑚2 − 1
, 𝑎0 = 𝑎1 = 0, 𝑏1 = ±𝑚 

2

2𝑚2 − 1
. 

Thus the exact traveling wave solution is  

𝑢 𝜉 = ±𝑚 
2

2𝑚2 − 1
 𝑐𝑛 𝜉 . (3.5) 

When  𝑚 ⟶ 1  we get: 

𝑢 𝜉 = ± 2 𝑠𝑒𝑐ℎ 𝜉 . (3.6) 

Case2: 

𝛼 =
𝑚2 − 4

𝑚2 − 2
, 𝑎0 = 0, 𝑎1 = ±𝑚 

1

2 −𝑚2 , 𝑏1 = ±𝑚 
2

2𝑚2 − 1
. 

Thus the exact traveling wave solution is  

𝑢 𝜉 = ±𝑚 
1

2 −𝑚2 𝑠𝑛 𝜉 ± 𝑚 
2

2𝑚2 − 1
 𝑐𝑛 𝜉 . (3.7) 

When  𝑚 ⟶ 1  we get: 

𝑢 𝜉 = ±𝑡𝑎𝑛ℎ 𝜉 ±  2 𝑠𝑒𝑐ℎ 𝜉 . (3.8) 

Case3: 

𝛼 =
2 + 𝑚2

1 + 𝑚2 , 𝑎0 = 0, 𝑎1 = ±𝑚 
2

𝑚2 + 1
, 𝑏1 = 0. 

Thus the exact traveling wave solution is  

𝑢 𝜉 = ±𝑚 
2

𝑚2 + 1
𝑠𝑛 𝜉 . (3.9) 

When  𝑚 ⟶ 1  we get: 

𝑢 𝜉 == ±𝑡𝑎𝑛ℎ 𝜉 . (3.10) 
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 Note That: 

All the obtained results have been checked with Maple 16 by putting them back into the original equation and found 
correct. 

 

Figures: 

When  x = −2π. .2π, t = −2π. .2π 



I S S N  2 3 4 7 - 3 4 8 7  
V o l u m e  1 1 ,  N u m b e r  8  

 J o u r n a l  o f  A d v a n c e s  i n  P h y s i c s  

C o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h                                                                                                             3589 | P a g e 
 



I S S N  2 3 4 7 - 3 4 8 7  
V o l u m e  1 1 ,  N u m b e r  8  

 J o u r n a l  o f  A d v a n c e s  i n  P h y s i c s  

C o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h                                                                                                             3590 | P a g e 
 

 

3- Conclusion 

An extended Jacobian elliptic function expansion method has been applied in this paper to find the exact traveling wave 
solutions and then the solitary wave solutions of the nonlinear Phi- Four equation. Let us compare between our results 
obtained in the present article with the well-known results obtained by other authors using different methods as follows: 
Our results of the nonlinear Phi- Four equationare new and different from those obtained in [32,33], and figures show the 
solitary traveling wave solution ofthe nonlinear Phi- Four equation. We can conclude that an extended Jacobian elliptic 
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function expansion method is a very powerful and efficient technique in finding exact solutions for wide classes of 
nonlinear problems and can be applied to many other nonlinear evolution equations in mathematical physics. Another 
possible merit is that the reliability of the method and the reduction in the size of computational domain give this method a 
wider applicability 
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