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ABSTRACT 

The steady mixed convection flow from a moving vertical plate in a parallel free stream is considered to investigate the 
combined effects of buoyancy force and thermal diffusion in presence of thermal radiation as well as Newtonian heating 
effects. The governing boundary layer equations are transformed into a non-dimensional form by a group of non-similar 
transformations. The resulting system of coupled non-linear partial differential equations is solved by an implicit finite 
difference scheme in conjunction with the quasi-linearization technique. Computations are performed and representative 

set is displayed graphically to illustrate the influence of the mixed convection parameter ( ), Prandtl number (Pr), the 

ratio of free stream velocity to the composite reference velocity ( ) and the radiation parameter (R) on the velocity and 

temperature profiles. The numerical results for the local skinfriction coefficient ( 
1/2ReL fC ) and surface temperature 

(  ,0WG  ) are also presented. The results show that the streamwise co-ordinate   significantly influences the flow 

and thermal fields which indicate the importance of non-similar solutions. Also, it is observed that the increase of mixed 

convection parameter   causes the increase in the magnitude of velocity profile about 65% for lower Prandtl number 

fluids (Pr=0.7), while it decreases in the temperature profile about 30%. Present results are compared with previously 
published work and are found to be in excellent agreement.  
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1. Introduction 

The phenomenon of boundary layer behavior over a moving plate in a parallel free stream has more important practical 
applications such as the aerodynamic extrusion of plastic sheets, the cooling of an infinite metallic plate in a cooling bath, 
the boundary layer along material handling conveyers, the boundary layer along a liquid film in condensation processes, 
paper production etc. Tsou et al. [1] have showed experimentally that the flow and heat transfer problem from a 
continuously moving surface is a physically realizable one and studied its basic characteristics. Chappidi and Gunnerson 

[2] have studied the laminar boundary layer in two cases wU U  and wU U   separately and formulated two sets of 

boundary value problems. Afzal et al. [3] formulated a single set of boundary conditions by employing the composite 

reference velocity wU U U  , where wU  is the moving plate velocity and U
is the free stream velocity, instead of 

considering wU  and U
 separately,  irrespective of whether wU U  or wU U  . Lin and Haung [4] were analyzed 

for horizontal isothermal plate moving in parallel or reversibly to a free stream where similarity and non-similarity equations 
are used to obtain the flow and thermal fields. Sparrow and Abraham [5] used the relative velocity model where only one 
of the participating media is in motion. Karwe and Jaluria [6] presented numerical simulation of thermal transport 
associated with a continuously moving flat sheet in material processing. The steady laminar flow and heat transfer 
characteristics of a continuously moving vertical sheet of extruded material are studied close to and far downstream from 
the extrusion slot by Al-sanea [7]. Soundalgekar and Murty [8] have discussed the effects of power law surface 
temperature variation on the heat transfer from a continuous moving surface with constant surface velocity. More recently, 
Cortell [9] extended the work of Afzal et al. [3] by taking viscous dissipation effect in the energy balance. The effects of 
transpiration on the flow and heat transfer over a moving permeable surface in a parallel stream are analyzed by Ishak et 
al. [10]. The development of the boundary layer on a fixed or moving surface parallel to a uniform free stream in presence 
of surface heat flux has been investigated by Ishak et al. [11]. Patil et al. [12] have examined the role of internal heat 
generation or absorption effects on the flow and heat transfer over a moving vertical plate. In this study, authors have 
considered the steady flow and heat transfer characteristics.   

The comprehensive analysis on steady mixed convection flow due to a moving semi-infinite vertical plate in a parallel free 
stream with thermal diffusion is also important to be investigated and such studies are yet to appear in the literature.  
Furthermore, steady mixed convection flows do not necessarily posses similarity solutions in many flow patterns. The 
nonsimilarity in such flows may be due to the free stream velocity or due to the curvature of the body or due to the surface 
mass transfer or even possibly due to all these effects. A solution is called self-similar if a system of partial differential 
equations can be reduced to a system of ordinary differential equations. If the similarity transformations are only able to 
reduce the number of independent variables, then the transformed equations are called as semi-similar and the 
corresponding solutions are the semi-similar solutions. Therefore, as a step towards the eventual development of studies 
on steady mixed convection flows it is important as well as useful to investigate the combined effects of buoyancy and 
thermal diffusion on a steady mixed convection flow along a semi-infinite vertical plate.  

The objective of this study is to analyze the simultaneous effects of buoyancy and thermal diffusion on a mixed convection 
flow from a semi-infinite vertical plate in presence of thermal radiation and Newtonian heating effects. The plate is 
supposed to move parallel to the free stream velocity. The coupled non-linear partial differential equations governing the 
flow have been solved numerically using an implicit finite difference scheme in combination with the quasi-linearization 
technique [13-17]. The results are revealing that interesting features of flow and heat transfer phenomena. 

 2. Mathematical formulation  

We consider the steady laminar viscous and incompressible mixed convection boundary layer flow along a semi-infinite 

vertical plate moving with velocity WU  in the x- direction subjected to Newtonian heating effects. The x-axis is taken along 

the plate in the vertically upward direction and the y- axis is taken normal to it. A schematic representation of the physical 
model and co-ordinates system is depicted in Fig. 1. The buoyancy force arises due to the temperature difference in the 
fluid. The fluid is considered to be gray; absorbing-emitting radiation but non-scattering medium and the Rosseland 
approximation [18] is used to describe the radiative heat flux in the x- direction is considered negligible in comparison to 
the y- direction. All thermo-physical properties of the fluid in the flow model are assumed constant except the density 
variations causing a body force in the momentum equation. The Boussinesq approximation is invoked for the fluid 
properties to relate density changes, and to couple in this way the temperature field to the flow field (Schlichting and 
Gersten [19]). Under these assumptions, the dimensional equations of conservation of mass, momentum and energy 
governing the steady mixed convection boundary layer flow over a moving vertical plate are given by 
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where all the physical quantities is mentioned in the Nomenclature. 

The physical boundary conditions are given by 
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The radiation heat flux 
rq under Rosseland approximation Brewster [18], we take 
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where SB  is the Stefan-Boltzmann constant and Ra  is the Rosseland  mean spectral absorption coefficient. 

We assume that the temperature difference within the flow are sufficiently small such that 
4T can be expressed as a linear 

function of temperature. We now expand 
4T in a Taylor series about T as follows: 

   
24 4 3 24 6T T T T T T T T                        (6) 

Neglecting higher order terms in the above equation beyond the first degree in (T - T∞), we get, 

4 4 33 4T T T T  
                                                                           (7) 

In view of Eqs. (5) and (7), the Eq. (3) becomes 
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where )/( pCk    is the thermal diffusivity. 

We now introducing the following transformations: 
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(9)                                                                                                          

where   is the stream function, which is defined as yu  /  and xv  / .  Substituting transformations 

(9) into Eqs. (1) - (2) and (8), we find that Eq. (1) is identically satisfied and Eqs. (2) and (8) reduce to 
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The corresponding non-dimensional Boundary conditions: 
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Lh Ls /Re 2/1  (see Merkin [20]). Further,   is the mixed convection parameter and    is the ratio of free stream 

velocity to the composite reference velocity parameter, which are defined as 
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where 
3 2/Gr g T L   is the Grashof number referring to the wall temperature and Re /L U L   is the local 

Reynolds number. It should be mentioned that 0  (  TxTw )( ) corresponds to the assisting flow, 0  

(  TxTw )( ) corresponds to opposing flow and 0  (  TxTw )( ) corresponds to the forced convection flow case. 

We also notice that 1  corresponds to a fixed (static) plate, while 0 corresponds to a moving plate, respectively. 

It may be remarked that a single constant, “Pr/(1+R)” known as “Preffective” [21], can display the effects of radiation (R) and 
Prandtl number (Pr) when the sole interest is to study the effects of radiation (R) and Prandtl number (Pr) for a wide range 
of parameter values. In such situation a single parameter “Pr/(1+R)” known as “Preffective” [21] could serve the purpose for 
the whole range of parameter values. Since the present study concerned about the effect of Newtonian heating only for air 
(Pr = 0.7) and water (Pr = 7.0), numerical results are presented by indicating known Pr values of air (Pr = 0.7) and water 
(Pr = 7.0). 

The main physical quantities of interest are the skin friction coefficient 
1/2ReL fC  and the wall temperature  ,0WG  . 

These quantities are defined respectively, as 

1/2 1/2 1/2Re ( ,0), ( ,0) 1 ( ,0)L f wC F G G            .                                                     (14) 

3. Method of solution 

The set of coupled non-linear partial differential Equations (10) – (11) under the boundary conditions (12), represent a 
non-linear two point boundary value problem for partial differential equations which is solved numerically using an implicit 
finite difference scheme in combination with the quasi-linearization technique [13-17]. An iterative sequence of linear 
equations is carefully constructed to approximate the non-linear Eqs. (10) – (11) under the boundary conditions (12) 
achieving quadratic convergence and monotonicity of the sequence of solutions. 

Applying the quasi-linearization technique [13-17], the non-linear coupled partial differential equations (10) - (11) are 
replaced by the following sequence of linear partial differential equations: 
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                                                   (15)         
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The coefficient functions with iterative index i are known and the functions with iterative  

index (i+1) are to be determined. The corresponding boundary conditions are given by: 
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The resulting sequence of linear partial differential equations (15) and (16) were discretisized using second order central 

difference formula in  - direction and backward difference formula in  - direction. In each iteration step, the equations 

were then reduced to a system of linear algebraic equations, with a block tri-diagonal structure which is solved using 
Varga’s algorithm [22]. To ensure the convergence of the numerical solution to the exact solution, step 

sizes  and  are optimized and the results presented here are independent of the step sizes at least up to the fourth 

decimal place. A convergence criterion based on the relative difference between the current and previous iteration values 
is employed. The solution is assumed to have converged and the iteration process is terminated when the difference 
reaches i.e.  
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                     Max         1 1
4, 10
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4. Results and discussion 

The comprehensive numerical parametric study was conducted and results are reported in terms of graphs. This is done 
to illustrate special features of solutions. The computations have been carried out for various values 

of  Pr 0.7 Pr 7.0  ,  0.25 5.0    ,  0.1 0.9   ,  0.0 1.0R R  , and  0 1   . The edge 

of the boundary layer    has been taken between 8.0 and 18.0 depending on the values of the parameters. Afzal et al. 

[3] have discussed only self-similar solutions where all solutions along streamwise direction were made congruent using 
similarity transformations. Governing equations were finally reduced to a set of ordinary differential equations. In such 
cases, single asymptotic solution will not be able to represent all physical solutions. Further, it is reported by many other 
investigators also that there are dual solutions with different asymptotic nature. In contrast, authors have captured non-
similar solutions at each streamwise location by solving coupled set of partial differential equations. In this investigation, 

authors have observed a single non-similar solution at each streamwise location. It may be noted that     = 0 is a singular 

point while obtaining the non-similar solutions and results are valid only for    > 0. Further,    = 0 results are obtained 

separately and compared with the existing results in literature as displayed in Table 1. Also, results show an excellent 
agreement with the results reported by earlier investigators. 

 In order to verify the correctness of the present investigation, steady state results of heat transfer rate  0G
    are 

compared with the results previously reported by Tsou et al. [1], Soundalgekar and Murty [8], and Patil et al. [12]. Some of 

the comparisons are presented in Table 1 and are found to be in excellent agreement. 

 The effects of Prandtl number (Pr) and buoyancy (mixed convection) parameter    on velocity and temperature profiles 

    , , ,F G     as well as skin friction coefficient and wall temperature   1/2Re , ,0L f WC G  when  = 0.5, R 

= 0.5 and 1  are displayed in Figs. 2 - 5. The influence of buoyancy assisting force  0  shows the significant 

overshoot in the velocity profiles  ,F    near the plate for lower Prandtl number (Pr) fluids (air, Pr = 0.7) while for 

higher Prandtl  number (Pr) fluids (water, Pr = 7.0), the velocity overshoot is not observed as shown in Fig. 2. The 

magnitudes of the velocity overshoot increases with the buoyancy parameter  0  while it decreases as Prandtl 

number (Pr) increases. The physical reason is that the buoyancy force    effect is more in lower Prandtl number (Pr) 

fluid (air, Pr = 0.7) due to the lower viscosity of the fluid enhances the velocity profile within the stretching boundary layer 

as the assisting buoyancy force   acts like a favourable pressure gradient and hence, the velocity overshoot occurs. 

For higher Prandtl number (Pr) fluids (water, Pr = 7.0), the overshoot is not present because higher Prandtl number (Pr) 

fluids implies more viscous fluid which have less impact on the buoyancy parameter   . For example,   = 0.5, R = 1.0 

and Pr = 0.7 when 5  , the velocity profile  ,F    is enhanced approximately by 65% for lower Prandtl number 

fluids as compared to the higher Prandtl number fluids. The effect of buoyancy opposing force on velocity and temperature 

profiles is also presented in Figs. 2 and 3 by a representative negative value of   0.25  to limit the number of lines 

in the figures. It is worthy to note from the Fig. 2 that for opposing buoyancy flow ( < 0), the buoyancy opposing force 

reduces the magnitude of the velocity significantly within the moving boundary layer for low Prandtl number fluid (Pr = 0.7, 

air) as well as for high Prandtl number fluid (Pr = 7.0, water). The influence of buoyancy parameter    has relatively 

less influence on the temperature profiles  ,G   , as shown in Fig. 3. Furthermore, Fig. 3 also show that the effect of 

higher Prandtl number fluids (water, Pr = 7.0) results into a thinner thermal boundary layer since the higher Prandtl 
number (Pr) fluids (water, Pr = 7.0) have lower thermal conductivity. Figures 4 and 5 represent the influence of mixed 

convection parameter  and Prandtl number on the skin friction coefficient and wall 

temperature   1/2Re , ,0L f WC G  . Skin friction coefficient increases with the increase of buoyancy 

parameter   while wall temperature  ,0WG  decreases. The physical reason is that the buoyancy force 

 0  implies favorable pressure gradient, and the fluid gets accelerated, which results in thinner momentum and 
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thermal boundary layers. Further, when Prandtl number Pr increases from 0.7 to 7.0, the wall temperature  ,0WG  as 

well as skin friction coefficient  1/2ReL fC decrease, as shown in Figs. 4 and 5. For example, when  = 0.5, R = 0.5 

and 1  ,  1/2ReL fC increases approximately about 281% and 299% as  increases from 1.0 to 5.0 for Pr = 0.7 and 

for Pr = 7.0 (see Fig.4), respectively. Furthermore, Figure 5 shows that wall temperature  ,0WG  decreases 

approximately about 5% and 11%, respectively, for Pr = 0.7 and for Pr = 7.0 when increases from 1.0 to 5.0.  

Figure 6 displays the effect of   (the ratio of free stream velocity to the composite reference velocity) and the thermal 

radiation parameter R on the velocity profile  ,F    with  = 1.0,  = 1 and Pr = 0.7. The velocity is strongly 

depending on   because it occurs in the governing momentum equation as well as in the boundary condition for the 

velocity profile  ,F   . It has been observed that the magnitude of the velocity profile within the moving boundary layer 

increases with the increase of , while it decreases as R increases from R = 0.0 to R  = 1.0. The physical reason is that 

the assisting buoyancy force due to thermal gradients as well as increase in  act likes a combined favorable pressure 

gradient which accelerates the fluid for uniform motion. The effect of radiation is to decrease the rate of energy transport to 
the fluid, thereby decreasing the temperature and velocity of the fluid.  

Figure 7 illustrates the role of stream wise coordinate   and thermal radiation parameter R on the temperature 

profile  ,G   when   = 0.5, 1.0  and Pr = 0.7. The temperature profile  ,G   is decreasing with stream wise 

co-ordinate   as it increases from 0 to 1. Also, the temperature profile  ,G   is to decrease with thermal radiation 

parameter for both at 0  and 1  . This clearly indicates that an increase in stream wise coordinate  acts as a 

decelerating pressure gradient and thus fluid flows slower. As a result,  ,G   decreases. In particular, for example;   

= 0.5, 1.0  , R = 0.2 and Pr = 0.7 at 6.0  , the temperature profile  ,G    is reduced approximately by 46% as 

 increases from 0.0 to 1.0. 

 5. Conclusions 

A numerical study is performed for the problem of steady mixed convection flow over a moving vertical plate in a parallel 
free stream in the presence of Newtonian heating applied at the wall and the thermal radiation. We draw the following 
conclusions in the investigation: 

 Mixed convection parameter  enhances the skin friction coefficient while the surface temperature is reduced. 

 From the computed results, it is found that in presence of buoyancy force  0  , the velocity profile exhibits 

velocity overshoot 65% more for lower Prandtl number (Pr = 0.7) as compared to the magnitude of the 
velocity overshoot for higher Prandtl number (Pr = 7.0) fluid. 

 The effect of thermal radiation leads to a fall in the momentum and thermal boundary layers. Further, it is noted 
that the thermal radiation parameter to increase the surface temperature.  

 The magnitude of the velocity profile within the moving boundary layer increases about 45% with the increase of 
 (the ratio of free stream velocity to the composite reference velocity) from 0.1 to 0.9, while it decreases 

about 30% as R increases from R = 0.0 to R  = 1.0. 

 The temperature profile  ,G   decreases with stream wise co-ordinate   when it increases from 0 to 1. 
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Nomenclature                                                                        

  fC           local skin-friction coefficient 

  pC           specific heat at constant pressure  1 1J K kg 
 

 
f             dimensionless stream function 

  F             dimensionless velocity 

  
g            acceleration due to gravity  2ms  

  G            dimensionless temperature 

 Gr           local Grashof number due to temperature 

  L            characteristic length  m  

 R             radiation parameter 

 xNu
 
        local Nusselt number 

 Pr            Prandtl number     

 
ReL          local Reynolds number 

 T             temperature  K  

 
T            ambient temperature  K  

  u             velocity component in the x  direction  1ms  

 v              velocity component in the y direction  1ms  

 
,x y          Cartesian coordinates  m  

Greek symbols 

             thermal diffusivity  2 1m s  

             volumetric coefficients of the thermal expansion  1K 
 

,           transformed variables 

              mixed convection parameter             

             dynamic viscosity  1 1kg m s 
 

              kinematic viscosity  2 1m s  

             density  3kg m
 

             streamfunction  2 1m s  

Subscripts  

,w          conditions at the wall and infinity, respectively 

,           denote the partial derivatives with respect to these variables, respectively 
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Table 1. Comparison of -  0G for 0  , 0  , R = 0, 0   and selected values of Pr , 

the plate being isothermal ( WT = constant) to previously published work. 

 
Pr 0.7 1.0 2.0 7.0 10.0 100.0 

Tsou et al. [1] 0.3492 0.4438 -- -- 1.6804 5.545 

Soundalgekar and 
Murty [8] 

0.3508 -- 0.6831 -- 1.6808 -- 

Patil et al. [12] 0.35004 0.44401 0.68314 1.38625 1.68011 5.54610 

Present work 0.35005 0.44403 0.68316 1.38627 1.68013 5.54612 

 

 

Fig. 1. Schematic diagram and co-ordinates system 
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