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ABSTRACT 

In this paper, we investigate the stability and superstability problems for Lie ∗-derivations associated with the 

generalized Jensen type functional eqution 

 𝑓  
 𝑥𝑖

n
i=1

𝑛
 +    𝑓  

   𝑥𝑖 −  𝑛 − 1 𝑥𝑗
n
i=1,   i≠j

𝑛
 = 𝑓(𝑥1)

𝑛

𝑗=2

 

on Lie ∁*-algebras. 
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INTRODUCTION 

The stability theory of functional equations mainly deals with the following equation: Is it true that the solution of a given 
equation differing slightly from an another given one must necessarily be close to the solution of the equation in the 
equation? A function equation is called stable if any approximately solution to the functional equation is near a true 
solution of that functional equation and is called superstable if every approximate solution is an exact solution to it.The 
study of stability problems of functional equations which had been proposed by Ulam [23] concerning the stability of 
group homomorphisms.The famous Ulam stability problem was partially solved by Hyers [8] for linear functional 
equation of Banach spaces. Later, the results of Hyers were generalized by Aoki [1], G𝑎 vruta [4], Rassias [22] and 

G𝑎 darin and Radu [2].  

Beginning around the year 1980, the stability problems of many algebraic, differential, integral, operatorial equations 
have been extensively investigated [9, 10, 13, 14, 22] and the references therein. Among of them, many research 
papers have been published about the generalized Hyer-Ulam-Rassias stability of homomorphisms and derivations in 
∁*-algebras and Lie algebras [3, 5, 6, 11, 12, 15, 16, 17, 19, 21]. 

A Lie algebra 𝐴 is a linear space over some field 𝐹 together with a binary operation  ⋅,⋅ ∶ 𝐴 × 𝐴 → 𝐴 called the Lie 

bracket, which satisfies the following axioms: 

 L1  𝛼𝑥 + 𝛽𝑦, 𝑧 = 𝛼 𝑥, 𝑧 + 𝛽 𝑦, 𝑧 ,    𝑧, 𝑥 + 𝛽𝑦 = 𝛼 𝑧, 𝑥 + 𝛽 𝑧, 𝑦 , 
 L2  𝑥, 𝑥 = 0, 
 L3  𝑥,  𝑦, 𝑧  +  𝑧,  𝑥, 𝑦  +  𝑦,  𝑧, 𝑥  = 0 

for all α, β ∈ 𝐹 and all 𝑥, 𝑦, 𝑧 ∈ 𝐴. 

Note that the bilinearity L1  and alternating (L2) properties imply anticommutativity, i.e.,  𝑥, 𝑦 = − 𝑦, 𝑥  for all 𝑥, 𝑦 ∈ 𝐴. 

A ∁*-algebras 𝐴 endowed with the Lie bracket [𝑥, 𝑦] =
𝑥𝑦−𝑦𝑥

2
 on 𝐴 is called a Lie ∁*-algebra. Let 𝐴 be a Lie ∁*-algebra. A 

ℂ-linear mapping 𝐷:𝐴 → 𝐴 is called a Lie derivation of 𝐴 if  

𝐷  𝑥, 𝑦  =  𝐷 𝑥 , 𝑦 + [𝑥, 𝐷 𝑦 ] 

for all 𝑥, 𝑦 ∈ 𝐴. In addition, if 𝐷 satisfies the additional condition 𝐷 𝑎∗ = 𝐷 𝑎 ∗ for all  𝑎 ∈ 𝐴, then it is called a Lie ∗-
derivations. 

Now, we consider a mapping 𝑓: 𝑋 → 𝑌 satisfying the following functional equation: 

𝑓  
 𝑥𝑖

n
i=1

𝑛
 +    𝑓  

   𝑥𝑖 −  𝑛 − 1 𝑥𝑗
n
i=1,   i≠j

𝑛
 = 𝑓 𝑥1                                     (1.1)

𝑛

𝑗=2

 

for all 𝑥𝑖 , 𝑥𝑗 ∈ 𝑋, where 𝑛 ∈  ℕ is a fixed integer with 𝑛 ≥ 2. Park and Rassias [20] proved the stability of homomorphisms 

and derivations in ∁*-algebras of the Jensen functional equation (1.1) for 𝑛 = 2.Gordji et al. [7] establish the stability of 

𝑛-Lie homomorphisms and Jordan 𝑛-Lie homomorphisms on 𝑛-Lie algebras associated with the equation (1.1). 

Motivated and inspired by the above works, in this paper, we investigate the stability and superstability problems for Lie 
∗-derivations associated with the generalized Jensen type functional equation (1.1) on Lie ∁*-algebras. The present 

theorems generalized and improve many existing results in the Park and Rassias [20]. 

STABILITY OF LIE ∗-DERIVATIONS 

Throughout this section, we assume that 𝑨 is a Lie ∁*-algebra with the norm || ⋅ ||.For convenience, we use the 

following abbreviation for any mapping 𝒇: 𝑨 → 𝑨, 

Δμ𝑓(𝑥1 , ⋯ , 𝑥𝑛) = 𝜇𝑓  
 𝑥𝑖

n
i=1

𝑛
 +    𝜇 𝑓  

   𝑥𝑖 −  𝑛 − 1 𝑥𝑗
n
i=1,   i≠j

𝑛
 − 𝑓 𝜇𝑥1 

𝑛

𝑗=2

 

for all 𝑥1 , ⋯ , 𝑥𝑛 ∈ 𝑋   𝑛 ≥  2   and μ ∈ T1 =   𝜆 ∈  ℂ ∶  𝜆 = 1 . 

To achieve our main in this section, we used the following lemma. 

Lemma 2.1. Let 𝑋 and 𝑌 be complex linear spaces. Suppose that 𝑓: 𝑋 → 𝑌 is a mapping such that (1.1). Then the 

mapping 𝑓 is additive. 

Proof.It follow from 

 𝑓 
   𝑥𝑖 −  𝑛 − 1 𝑥𝑗

n
i=1,   i≠j

𝑛
 = 𝑓  

𝑥1 −  𝑛 − 1 𝑥2 + ⋯+ 𝑥𝑛
𝑛

 + 𝑓  
𝑥1 + 𝑥2 −  𝑛 − 1 𝑥3 + ⋯+ 𝑥𝑛

𝑛
 +

𝑛

𝑗=2

 

⋯+ 𝑓  
𝑥1 + ⋯−  𝑛 − 1 𝑥𝑛

𝑛
  

that 
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𝑓   𝑠𝑗

𝑛

𝑗=1

 = 𝑓 𝑠1 + ⋯+ 𝑠𝑛 = 𝑓 𝑥1 = 𝑓 𝑠1 +  𝑓 𝑠𝑗  =  𝑓 𝑠𝑗  

𝑛

𝑗=1

                       (2.1)

𝑛

𝑗=2

 

for all 𝑠1 , ⋯ , 𝑠𝑛 ∈ 𝑋, where 𝑠1 =
 𝑥𝑖
𝑛
𝑖=1

𝑛
 and sj =

   𝑥𝑖− 𝑛−1 𝑥𝑗
n
i=1,   i≠j

𝑛
 for 𝑗 = 2,3,⋯ , 𝑛. Putting 𝑠𝑗 = 0 for 𝑗 = 3,4,⋯ , 𝑛 in (2.1), 

we have  

𝑓 𝑠1 + 𝑠2 = 𝑓 𝑠1 + 𝑓(𝑠2) 

for all 𝑠1 , 𝑠2 ∈ 𝐴. Thus the mapping 𝑓 is additive.∎ 

Theorem 2.2.Let 𝜑:𝐴𝑛 → [0,∞) and 𝜓:𝐴3 → [0,∞) be mappings such that 

 𝑛𝑚  𝜑  
𝑥

𝑛𝑚
, 0,⋯ , 0 < ∞,      

∞

m=0

lim
𝑚→∞

𝑛𝑚  𝜑  
𝑥1

𝑛𝑚
, ⋯ ,

𝑥𝑛
𝑛𝑚

 = 0, 

lim
𝑚→∞

𝑛2𝑚  𝜓  
𝑎

𝑛𝑚
,
𝑏

𝑛𝑚
, 0 = 0, lim

𝑚→∞
𝑛𝑚  𝜓  0, 0,

𝑐

𝑛𝑚
 = 0                                           (2.2) 

for all 𝑥1 , ⋯ , 𝑥𝑛 , 𝑎, 𝑏, 𝑐 ∈ 𝐴. Suppose that 𝑓: 𝐴 → 𝐴 is a mapping with 𝑓 0 = 0 satisfying 

|| Δ𝜇  𝑓 𝑥1 ,⋯ , 𝑥𝑛  || ≤  𝜑 𝑥1 , ⋯ , 𝑥𝑛 ,                                                                                       (2.3) 

|| 𝑓  𝑎, 𝑏  −  𝑓 𝑎 , 𝑏 −  𝑎, 𝑓 𝑏  + 𝑓 𝑐∗ − 𝑓 𝑐 ∗ || ≤  𝜓 𝑎, 𝑏, 𝑐                                 (2.4) 

for all 𝑥1 , ⋯ , 𝑥𝑛 , 𝑎, 𝑏, 𝑐 ∈ 𝐴  and all 𝜇 ∈ 𝑇1 .   Then there exists a unique Lie ∗-derivation 𝐷:𝐴 → 𝐴  which satisfies the 
functional equation (1.1) and the inequality 

|| 𝑓 𝑥 − 𝐷 𝑥  || ≤  𝑛𝑚  𝜑  
𝑥

𝑛𝑚
, 0,⋯ , 0                                                                           (2.5)

∞

m=0

 

for all 𝑥 ∈ 𝐴. 

Proof. Let us assume 𝑥1 = 𝑥, 𝑥2 = ⋯ = 𝑥𝑛 = 0 and 𝜇 = 1 in (2.3). Then we have 

 𝑛𝑓  
𝑥

𝑛
 − 𝑓 𝑥  ≤  𝜑 𝑥, 0,⋯ , 0 ,                                                                                              (2.6) 

for all 𝑥 ∈ 𝐴. Replacing 𝑥 by 
𝑥

𝑛 𝑗
 and multiplying 𝑛𝑗  both the sides of (2.6), 

 𝑛𝑗+1𝑓  
𝑥

𝑛𝑗+1
 − 𝑛𝑗𝑓  

𝑥

𝑛𝑗
  ≤ 𝑛𝑗𝜑  

𝑥

𝑛𝑗
, 0,⋯ , 0 ,                                                                            

for all 𝑥 ∈ 𝐴 and all integers𝑗 ∈ ℤwith 𝑗 = 0, 1, 2,⋯. Thus we have 

 𝑛𝑚𝑓  
𝑥

𝑛𝑚
 − 𝑛𝑘𝑓  

𝑥

𝑛𝑘
  ≤  𝑛𝑗

𝑚−1

𝑗=𝑘

𝜑  
𝑥

𝑛𝑗
, 0,⋯ , 0                                                             (2.7) 

for all 𝑥 ∈ 𝐴  and 𝑚 > 𝑘 ≥ 0.It follows from  𝑛𝑚  𝜑  
𝑥

𝑛𝑚
, 0,⋯ , 0 < ∞ ∞

m =0 of (2.2) that the sequence  𝑛𝑚  𝑓  
𝑥

𝑛𝑚
   is a 

Cauchy sequence. Since 𝐴 is a Lie ∁*-algebra, the sequence  𝑛𝑚  𝑓  
𝑥

𝑛𝑚
   converges. So we can define a mapping 

𝐷:𝑋 → 𝑌 by 

𝐷 𝑥 = lim
𝑚→∞

𝑛𝑚𝑓  
𝑥

𝑛𝑚
  

for all 𝑥 ∈ 𝐴. Moreover passing the limit as 𝑚 → ∞ with 𝑘 = 0 in (2.7), we have 

 𝑓 𝑥 − 𝐷(𝑥) =  𝑛𝑚𝑓  
𝑥

𝑛𝑚
 − 𝑓 𝑥  ≤   𝑛𝑗

∞

𝑗=0

𝜑  
𝑥

𝑛𝑗
, 0,⋯ , 0  

which implies the inequality (2.5) holds for all 𝑥 ∈ 𝐴. 

On the other hand, substituting (𝑥1 ,⋯ , 𝑥𝑛) by  
𝑥1

𝑛 𝑗
, ⋯ ,

𝑥𝑛

𝑛 𝑗
  in (2.3), we have  

  Δ𝜇  𝐷 𝑥1 , ⋯ , 𝑥𝑛  = lim
𝑚→∞

𝑛𝑚   Δ𝜇  𝑓  
𝑥1

𝑛𝑚
, ⋯ ,

𝑥𝑛
𝑛𝑚

  ≤ lim
𝑚→∞

𝑛𝑚𝜑  
𝑥1

𝑛𝑚
, ⋯ ,

𝑥𝑛
𝑛𝑚

 = 0                (2.8) 

for all 𝑥1 , ⋯ , 𝑥𝑛 ∈ 𝐴 and all 𝜇 ∈ 𝑇1.Let 𝜇 = 1 in (2.8). It follows from Δ1 𝑓 𝑥1 , ⋯ , 𝑥𝑛 = 0 that 
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𝐷 
 𝑥𝑖

n
i=1

𝑛
 +     𝐷  

   𝑥𝑖 −  𝑛 − 1 𝑥𝑗
n
i=1,   i≠j

𝑛
 = 𝐷 𝑥1 

𝑛

𝑗=2

 

for all 𝑥1 , ⋯ , 𝑥𝑛 ∈ 𝐴. From Lemma 2.1 that the mapping 𝐷 is additive. Letting 𝑥1 = 𝑥, 𝑥2 = ⋯ = 𝑥𝑛 = 0 in (2.3), we have 
 𝜇𝑓 𝑥 − 𝑓 𝜇𝑥  ≤  𝜑 𝑥, 0,⋯ , 0  for all 𝑥 ∈ 𝐴.  Thus  

 𝜇𝐷 𝑥 − 𝐷 𝜇𝑥  = lim
𝑚→∞

𝑛𝑚  𝜇𝑓  
𝑥

𝑛𝑚
 − 𝑓  𝜇

𝑥

𝑛𝑚
  ≤  lim

𝑚→∞
𝑛𝑚  𝜑  

𝑥

𝑛𝑚
, 0,⋯ , 0 = 0  

which implies 𝜇𝐷 𝑥 = 𝐷 𝜇𝑥 for all 𝑥 ∈ 𝐴 and all𝜇 ∈ 𝑇1 .  By the same reasoning as that the proof of Theorem 2.1 of [18], 
the mapping 𝐷 is ℂ-linear.  

Replacing (𝑎, 𝑏) by  
𝑎

𝑛𝑚
,
𝑏

𝑛𝑚
  and putting 𝑐 = 0 in (2.4), we have 

𝐷  𝑎, 𝑏  −  𝐷 𝑎 , 𝑏 −  𝑎, 𝐷 𝑏   

=  lim
𝑚→∞

𝑛2𝑚  𝑓  
 𝑎, 𝑏 

𝑛2𝑚  −  𝑓  
𝑎

𝑛𝑚
 ,

𝑏

𝑛𝑚
 −  

𝑎

𝑛𝑚
, 𝑓  

𝑏

𝑛𝑚
    

≤ lim
𝑚→∞

𝑛2𝑚  𝜓  
𝑎

𝑛𝑚
,
𝑏

𝑛𝑚
, 0 = 0                                                                                                  2.9  

for all 𝑎, 𝑏 ∈ 𝐴.Also, if we put 𝑎 = 𝑏 = 0 and substitute 𝑐 by 
𝑐

𝑛𝑚
 in (2.4), then  

𝐷 𝑐∗ − 𝐷 𝑐 ∗ = lim
𝑚→∞

𝑛𝑚  𝑓  
𝑐∗

𝑛𝑚
 − 𝑓  

𝑐

𝑛𝑚
 
∗

 ≤ lim
𝑚→∞

𝑛𝑚  𝜓  0, 0,
𝑐

𝑛𝑚
 = 0             (2.10) 

for all 𝑐 ∈ 𝐴.Thus it follows from (2.9) and (2.10) that𝐷 is a Lie ∗-derivation on 𝐴. 

Now let 𝐷′ : 𝐴 → 𝐴 be another additive mapping satisfying (2.5). Then we have 

 𝐷 𝑥 − 𝐷′(𝑥) = lim
𝑚→∞

𝑛𝑚  𝐷  
𝑥

𝑛𝑚
 − 𝐷′  

𝑥

𝑛𝑚
  ≤ lim

𝑚→∞
𝑛𝑗+𝑚  𝑛𝑗+𝑚  𝜑  

𝑥

𝑛𝑗+𝑚
, 0,⋯ , 0 

∞

j=0

 

for all 𝑥 ∈ 𝐴. So we can conclude that 𝐷 𝑥 = 𝐷′(𝑥) for all 𝑥 ∈ 𝐴. Thereforethe mapping 𝐷 is a unique Lie ∗-derivation on 

𝐴 satisfying (2.5), as desired. This complete the proof. ∎ 

Corollary 2.3. Let 𝑟(> 1) and 𝜃 be positive real numbers. Suppose that a mapping 𝑓: 𝐴 → 𝐴 satisfies 

|| Δ𝜇  𝑓 𝑥1 , ⋯ , 𝑥𝑛  || ≤ 𝜃  𝑥1 
𝑟 + ⋯+  𝑥𝑛 

𝑟 ,                                                               

 𝑓  𝑎, 𝑏  −  𝑓 𝑎 , 𝑏 −  𝑎, 𝑓 𝑏  + 𝑓 𝑐∗ − 𝑓 𝑐 ∗ ≤ 𝜃  𝑎 𝑟 +  𝑏 𝑟 +  𝑐 𝑟  

for all 𝑥1 , ⋯ , 𝑥𝑛 , 𝑎, 𝑏, 𝑐 ∈ 𝐴  and all 𝜇 ∈ 𝑇1 .   Then there exists a unique Lie ∗-derivation 𝐷:𝐴 → 𝐴  which satisfies the 
inequality 

|| 𝑓 𝑥 − 𝐷 𝑥  || ≤
𝑛𝑟𝜃  𝑥 𝑟

𝑛𝑟 − 𝑛
 

for all 𝑥 ∈ 𝐴. 

Proof. The proof follows Theorem 2.2 by taking  

𝜑 𝑥1, ⋯ , 𝑥𝑛 = 𝜃  𝑥1 
𝑟 + ⋯+  𝑥𝑛 

𝑟 and𝜓 𝑎, 𝑏, 𝑐 = 𝜃  𝑎 𝑟 +  𝑏 𝑟 +  𝑐 𝑟  

for all 𝑥1 , ⋯ , 𝑥𝑛 , 𝑎, 𝑏, 𝑐 ∈ 𝐴. This completes the proof.  ∎ 

In the followings corollary, we show that when 𝑓 is an additive mapping, the superstability for the inequalities (2.3) and 

(2.4) holds. 

Corollary 2.4.Let 𝐴,𝜑, 𝜓 be as in Theorem 2.2. If 𝑓: 𝐴 → 𝐴is an additive mapping with (2.5), then 𝑓 is a Lie ∗-derivation. 

Proof. It follows immediately from additivity of 𝑓 that 𝑓 0 = 0. Thus 𝑛𝑚  𝑓 𝑥 = 𝑓 𝑥𝑚𝑥  for all 𝑥 ∈ 𝐴 and 𝑚 ∈ ℕ and so 

𝑓 𝑥 = 𝑛𝑚𝑓  
𝑥

𝑛𝑚
  

for all 𝑥 ∈ 𝐴 and 𝑚 ∈ ℕ. Now it follows from Theorem 2.2 that 𝑓 is a Lie ∗-derivation on 𝐴. This completes the proof.  ∎ 

Next we prove another theorem in superstability of a Lie ∗-derivation on 𝐴 for the functional equation (1.1). 

Theorem 2.5. Suppose that there exist mappings 𝜑:𝐴𝑛 → [0,∞),𝜓:𝐴3 → [0,∞) and a constant 0 < 𝐿 < 1 such that  

𝜑  
𝑥1

𝑛
,⋯ ,

𝑥𝑛
𝑛
 ≤  

𝐿

𝑛
 𝜑 𝑥1 , ⋯ , 𝑥𝑛 , 𝜓  

𝑎

𝑛
,
𝑏

𝑛
, 0 ≤

𝐿

𝑛2  𝜑 𝑎, 𝑏, 0 , 𝜓  0, 0,
𝑐

𝑛
 ≤

𝐿

𝑛
 𝜑 0, 0, 𝑐 ,                 2.11  

for all 𝑥1 , ⋯ , 𝑥𝑛 , 𝑎, 𝑏, 𝑐 ∈ 𝐴. If 𝑓: 𝐴 → 𝐴 is a mapping satisfying (2.3) and (2.4), then there exists a unique  Lie∗-derivation 𝑓 

on 𝐴. 
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Proof. It follows from (2.11) that  

lim
𝑚→∞

𝑛𝑚  𝜑  
𝑥1

𝑛𝑚
, ⋯ ,

𝑥𝑛
𝑛𝑚

 = 0,   lim
𝑚→∞

𝑛2𝑚  𝜓  
𝑎

𝑛𝑚
,
𝑏

𝑛𝑚
, 0 = 0, lim

𝑚→∞
𝑛𝑚  𝜓  0, 0,

𝑐

𝑛𝑚
 = 0                                   (2.12) 

for all 𝑥1 , ⋯ , 𝑥𝑛 , 𝑎, 𝑏, 𝑐 ∈ 𝐴. Putting𝑥1 = ⋯ = 𝑥𝑛 = 0 and 𝜇 = 1 in (2.3), we obtain 𝑓 0 = 0.Replacing 𝑥1 = 𝑥 ,𝑥2 = ⋯ =
𝑥𝑛 = 0 and 𝜇 = 1 in (2.3), we have 

𝑓 𝑥 = 𝑛𝑚𝑓  
𝑥

𝑛𝑚
                    (2.13) 

for all 𝑥 ∈ 𝐴 and 𝑚 ∈ ℕ. It follows from (2.4) and (2.13) that 

 𝑓  𝑎, 𝑏  −  𝑓 𝑎 , 𝑏 −  𝑎, 𝑓 𝑏   =  𝑛2𝑚  𝑓  
 𝑎, 𝑏 

𝑛2𝑚  −  𝑓  
𝑎

𝑛𝑚
 ,

𝑏

𝑛𝑚
 −  

𝑎

𝑛𝑚
, 𝑓  

𝑏

𝑛𝑚
    

≤ 𝑛2𝑚  𝜓  
𝑎

𝑛𝑚
,
𝑏

𝑛𝑚
, 0 = 0                                                                                     (2.14) 

for all 𝑎, 𝑏 ∈ 𝐴. Taking the limit as 𝑚 → ∞ in (2.14) and using (2.12), we obtain 

𝑓  𝑎, 𝑏  =  𝑓 𝑎 , 𝑏 +  𝑎, 𝑓 𝑏   

for all 𝑎, 𝑏 ∈ 𝐴. Also, if we put 𝑎 = 𝑏 = 0 and substitute 𝑐 by 
𝑐

𝑛𝑚
 in (2.4), then  

 𝑓 𝑐∗ − 𝑓 𝑐 ∗ = 𝑛𝑚  𝑓  
𝑐∗

𝑛𝑚
 − 𝑓  

𝑐

𝑛𝑚
 
∗

 ≤   𝑛𝑚  𝜓  0, 0,
𝑐

𝑛𝑚
                       (2.15) 

for all 𝑐 ∈ 𝐴. Passing the limit as 𝑚 → ∞ in (2.15),  we conclude that𝑓 𝑐∗ = 𝑓 𝑐 ∗for all 𝑐 ∈ 𝐴. Therefore𝑓 is a Lie ∗-
derivation on 𝐴. This complete the proof.  ∎ 

Corollary 2.6. Let 𝑟, 𝑟𝑗  (𝑗 = 1,2,⋯ , 𝑛)  and 𝜃  be nonnegative real numbers such that 0 <  𝑟𝑗 ≠ 1.𝑛
𝑗=1 Suppose that 

𝑓: 𝐴 → 𝐴 

is a mapping such that  

|| Δ𝜇  𝑓 𝑥1 , ⋯ , 𝑥𝑛  || ≤ 𝜃   𝑥𝑗 
𝑟𝑗

𝑛

𝑗=1

                                                                                 (2.16)    

 𝑓  𝑎, 𝑏  −  𝑓 𝑎 , 𝑏 −  𝑎, 𝑓 𝑏  + 𝑓 𝑐∗ − 𝑓 𝑐 ∗ ≤ 𝜃  𝑎 𝑟 𝑏 𝑟 𝑐 𝑟  

for all 𝑥1 , ⋯ , 𝑥𝑛 , 𝑎, 𝑏, 𝑐 ∈ 𝐴 and all 𝜇 ∈ 𝑇1 .  Then 𝑓 is a Lie ∗-derivation on 𝐴. 

Proof.Putting𝑥1 = ⋯ = 𝑥𝑛 = 0 and 𝜇 = 1 in (2.16), we obtain 𝑓 0 = 0. Replacing 𝑥1  by 𝑥 and setting 𝑥2 = ⋯ = 𝑥𝑛 = 0 

and 𝜇 = 1 in (2.16), we have 

𝑓 𝑥 = 𝑛𝑚𝑓  
𝑥

𝑛𝑚
  

for all 𝑥 ∈ 𝐴 and 𝑚 ∈ ℕ. The remaining assertion goes through by the similar method to be the proof of Theorem 2.5. 

This completes the proof.  ∎ 

Remark. Suppose that 𝑓: 𝐴 → 𝐴 is a mapping with 𝑓 0 = 0 such that there exist mappings 𝜑: 𝐴𝑛 → [0,∞),𝜓: 𝐴3 → [0,∞) 
satisfying (2.3) and (2.4). Let 0 < 𝐿 < 1 be a constant such that 

𝜑  
𝑥1

𝑛
,⋯ ,

𝑥𝑛
𝑛
 ≤  

𝐿

𝑛
 𝜑 𝑥1 , ⋯ , 𝑥𝑛 , 𝜓  

𝑎

𝑛
,
𝑏

𝑛
, 0 ≤

𝐿

𝑛2
 𝜑 𝑎, 𝑏, 0 , 𝜓  0, 0,

𝑐

𝑛
 ≤

𝐿

𝑛
 𝜑 0, 0, 𝑐 ,  

for all 𝑥1 , ⋯ , 𝑥𝑛 , 𝑎, 𝑏, 𝑐 ∈ 𝐴. By the similar method as in the Theorem 2.5, we can show that there exists a unique Lie ∗-
derivation 𝐷:𝐴 → 𝐴 satisfying 

|| 𝑓 𝑥 − 𝐷 𝑥  || ≤
1

1 − 𝐿
 𝜑  𝑥, 0,⋯ , 0  

for all 𝑥 ∈ 𝐴. 
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