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ABSTRACT 

Alfven waves are important in a wide variety of areas like astrophysical, space and laboratory plasmas. In cometary 
environments, waves in the hydromagnetic range of frequencies are excited predominantly by heavy ions. We, therefore, 
study the stability of Alfven waves in a plasma of hydrogen ions, positively and negatively charged oxygen ions and 
electrons. Each species has been modeled by drifting distributions in the direction parallel to the magnetic field; in the 
perpendicular direction the distribution is  simulated with a loss cone type distribution obtained through the subtraction of 

two Maxwellian distributions with different temperatures.  We find that for frequencies 
*

cH
    ( 

* and  cH
  being 

respectively the Doppler shifted and hydrogen ion gyro-frequencies ), the peak growth  rate  increases with increasing 

negatively charged oxygen ion densities. On the other hand, for frequencies  
* ,

cO cO
     (

cO
 being the oxygen 

ion gyro-frequencies) the region of wave growth increases with increasing negatively charged oxygen ion densities.  
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INTRODUCTION 

Hydromagnetic wave activity has been observed in distinct space environments: in the distant magnetotail [1], in the 
magnetosheath [2], upstream of the earth’s [3] and other planets’ bow shocks [4] and upstream of interplanetary shocks 
[5] especially near comets. Specifically, Alfvenic turbulence has been detected in the magnetic field [6,7] and in the 
electron distribution [8] at comet Giacobini-Ziner by the ICE spacecraft. Similar turbulence has also been detected by 
Giotto [9] and Vega [10] spacecrafts at comet Halley. In addition to these observations, Alfvenic turbulence has also been 
observed in the solar wind protons and alpha particles, where the fluctuations were not only seen in the plasma velocity as 
expected for simple Alfven waves, but also in the density and temperature as Giotto approached comet Halley [11]. 

Since the anticipation of Ip and Axford [12] on theoretical grounds, of low frequency hydromagnetic turbulence upstream of 
a comet, possible excitation mechanisms emphasizing proton (or heavier) ion beams with Maxwellian [13] or drifting [14] 
velocity distributions have been studied. While these studies were restricted to parallel propagation, oblique propagation 
has also been considered [15]. In particular, Gary and Sinha [16] studied the stability of electromagnetic waves, below the 
proton cyclotron frequency, propagating parallel or anti-parallel to a uniform magnetic field, while Brinca and Tsurutani [17] 
studied numerically the oblique behavior of low frequency electromagnetic waves excited by cometary new born ions. 
Later, Killen et al [18] studied the excitation of obliquely propagating magnetosonic waves using a distribution function that 
represented a ring beam in the parallel direction and a delta function in the perpendicular direction, while Cao et al [19] 
investigated the oblique behavior of left circularly polarized electromagnetic waves driven by a ring of gyrotropic ions, 
again modeled by delta function distributions. Thus in the analytical studies cited above, the thermal spreads of the 
particle distribution functions in the perpendicular directions were not considered. Besides, where applicable, these studies 
were confined to a plasma composition of hydrogen ions and electrons with only positively charged oxygen ions as the 
heavy ion component. However, negatively charged ions in three broad mass peaks of 7 – 19, 22 – 65 and 85 – 110 amu 
have also been observed in the coma of comet Halley. Of the many ionic components, negatively charged oxygen (O

-
) 

was unambiguously identified [20]. 

In general, a cometary environment contains hydrogen and new born heavier ions with relative densities depending on the 
distances from the nucleus, and each isolated beam capable of exciting instabilities. A model of the solar wind permeated 
by dilute, drifting ring distributions of electrons, hydrogen ions and positively charged oxygen ions with finite thermal 
spreads, was used to study numerically the electromagnetic waves excited by cometary new born ions [21]. In this model, 
the modes excited in the hydromagnetic frequency range were predominantly fed by the positively charged heavier 
oxygen ions. 

We have therefore studied the stability of Alfven waves in a plasma of hydrogen ions, positively and negatively charged 

oxygen ions and electrons. It is found that for frequencies 
*

cH
    (

*  and cH
  being respectively the Doppler 

shifted and the hydrogen ion-gyro frequencies), the growth rate increases with increasing negative oxygen ion densities. 

But, for frequencies 
* ,

cO cO
     (

cO
  being the oxygen ion gyro-frequencies) it is the region of wave growth that 

increases with increasing negatively charged oxygen ion densities.  

THE ELEMENTS OF THE DIELECTRIC TENSOR 

As mentioned above, we are interested in the stability of Alfven waves in a plasma of hydrogen ions (H+), positively and 
negatively charged oxygen ions (O+ and O- respectively ) and electrons (e), with each species being modeled by drifting 
distributions in the direction parallel to the magnetic field and other ring, simulated by a loss-cone type distribution 
obtained through the subtraction of two Maxwellians with different temperatures . This distribution function is given by [21] 
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In the above swV and tsV  are respectively the velocity of the solar wind and thermal velocity of species ‘s’ ( = H+, O+, O- 

or e ); α is the pitch angle.  
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The elements of the dielectric tensor ( , , , )i jD i j x y z  required for the derivation of the dispersion relation of Alfven 

waves are well known and hence will not be given here [22, 23]. 

We substitute (1) and (2) into these expressions and carry out the dv  integrations using the plasma dispersion function 

[24] 
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and the dv  integrations using the basic form [25]  
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The final expressions for the elements of the dielectric tensor are: 
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wave vectors perpendicular and parallel to  the magnetic field. Also In are  the modified Bessel functions of order   n.  The 
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THE DISPERSION FORMULA 

The elements ( , , , )
i j

D i j x y z  can be used to form the dielectric tensor, which is given by 
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Equation (17) is the dispersion formula that will be used in the derivation of the dispersion relations.  

Expressions for the tensor elements 

We now derive explicit expressions for the elements of the dielectric tensor. We use the asymptotic expansion for the 

plasma dispersion function which is given by 
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term and the modified Bessel functions in (13) and (14) were expanded as a power series and terms of the order of 
2L  

and above were neglected. The contributions were as follows: 1n    ion terms to xxD ; n = 0 electron and ion terms 

and 1n    ion terms to yyD ; 1n    electron and ion terms to xyD ; 1n    ion terms to xzD ; n = 0 electron and 
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ion terms and 1n    ion terms to zyD ; 1n    ion terms to yzD  and the n = 0 electron terms to zzD . The simplified 

final expressions for the tensor elements are: 
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In expressions (18),  j = H, O+ or O-.  Also xz zxD D  and  xy yxD D   

RESULTS 

Waves in the frequency range  
cHcOcO

 *,  

In this subsection we consider the stability of Alfven waves in the frequency range 
*,

cO cO cH
       . The 

tensor elements (18) were re-derived for this frequency range; they were then substituted into the dispersion formula (17) 
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which was then solved for typical parameters observed around comet Halley. These parameters are [11, 20, 21]: 
H

n   = 

6.4 cm
-3

, 
O

n   = 0.5 cm
-3

, eT  = 1× 10
6
 K, 

H
T   = 9 × 10

5
 K, 

1400 ,swV km s  
O O

T T  =  1.2 × 10
3
 K and B0 = 

0.6 g. The stability of the waves were studied as a function of the propagation angle θ , the density of negatively charged 

oxygen ions 
O

n   and the parameters as and bs that describe the distribution functions. 

 

Fig. 1: Plot of the normalized growth rate (with respect to cH
 ) versus  LH

rk  in the frequency range 

*,
cO cO cH

        for 6.4
H

n   cm
-3

, 1.8, 1.2s sa b  , 0.5
O

n    cm
-3

 , 0.4
O

n    cm
-3

 

61 10 ,o

eT K   
59 10 o

H
T K    and 

31.2 10 o

O O
T T K    as a function of the propagation angle.   

Curve (a) is for a propagation angle θ =1
0
, curve (b) for θ = 2

0
, curve (c) for θ = 5

0
, curve (d) for θ = 9

0
 while curve 

(e) is for parallel propagation. It may be noted that the values for curve (e) have been divided by 10 to fit into the 
figure. 

Figure 1 is a plot of the growth rate (all growth rates have been normalized with respect to 
cH

  ) versus normalized wave 

number 
LH

k r   as a function of the propagation angle θ, for 
H

n   =  6.4 cm
-3

, On  = 0.5 cm
-3

, 
O

n   = 0.4 cm
-3

, eT  = 1 × 

10
6
 K, 

H
T   = 9 × 10

5
 K, 

O O
T T   = 1.2 × 10

3
 K , bs = 1.2 and as = 1.5 bs. Curve  (a) is for a propagation angle θ =1

0
, 

curve (b) for θ = 2
0
, curve (c) for  θ = 5

0
, curve (d) for  θ = 9

0
 while curve (e) is for parallel propagation. It may be noted 

that the values for curve (e) have been divided by 10 to fit into the figure. Thus the growth rate is a maximum for θ = 0
0
. 

For near parallel angles, as can be seen from the figure, the wave growth decreases both in magnitude as well as wave 
number range. The shift towards higher wave numbers with increasing θ does not occur indefinitely; beyond 5

0
 the region 

of wave growth occurs within the wave number region of 5
0
 and also decreases rapidly. 

We study the stability of the wave as a function of the negative oxygen ion density in figure 2. Thus the growth rate has 

been plotted against normalized wave number 
LH

k r   for  
H

n   =  6.4 cm
-3

,   On  = 0.5 cm
-3

 as a function of  
O

n    ; the 

propagation angle θ  = 1
0
 while the other parameters are the same as in figure 1. Curve (a) is for 0

O
n   ,  curve (b)  for 

0.2
O

n     cm
-3

  and   curve (c)  for  0.4
O

n     cm
-3

. We find that the growth rate increases with increasing  
O

n   

density. 
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Fig. 2: Plot of the normalized growth rate (with respect to cH
 ) versus  LH

rk  in the frequency range 

*,
cO cO cH

         as a function of the negatively charged oxygen density for a propagation angle of 

θ = 1
0
. Curve (a) is for 0

O
n   ,  curve (b) is for 0.2

O
n     cm

-3  
and curve (c)  for  0.4

O
n     cm

-3
,  the other 

parameters are the same as in figure 1. 

 

 

 

Fig. 3: Plot of the normalized growth rate (with respect to cH
 )  versus  LH

rk  in the frequency range 

 
cHcOcO

 *,   as a function of the parameter bs, the densities being  H
n   =  6.4 cm

-3
,  On  
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= 0.5 cm
-3

, On  =  0.4 cm
-3

 and  propagation angle θ =1
0
 . The temperatures remain unchanged from the previous 

figures. Curve (a) is for bs = 1.3, curve (b) for bs = 1.7 and curve (c)  for bs = 2.0 , with .5.1 ss ba   

The perpendicular component of the distribution function ( )sf v 
 in (2) reduces to a Maxwellian distribution when bs = 0;  

for bs ≠ 0, (2) simulates  a loss cone distribution. It would thus be interesting to study the effect of bs on the stability of the 

Alfven wave. Figure (3) is thus a plot of the growth rate versus  the normalized wave number   
LH

k r   as a function of  

bs , the parameters being 
H

n   = 6.4 cm
-3

, On   = 0.5 cm
-3

, On   = 0.4 cm
-3

, propagation angle θ =1
0
, while the 

temperatures remain unchanged from the previous figures. Curve (a) is for bs = 1.3, curve (b) for bs = 1.7 and curve (c) for 

bs = 2.0 with 1.5 .s sa b  As is evident from the figure the wave growth region shifts towards lower 
LH

k r    as  bs 

increases. 

Waves in the frequency range  
cOcO

 ,*  

In this subsection we consider of waves of frequency  
* ,

cO cO
     (and hence 

*

cH
    also); the waves are 

thus of extremely low frequency. The tensor elements (18) were rederived in this frequency regime, substituted into the 
dispersion formula (17) and solutions obtained for the same parameters as in the previous subsection. 

 

Fig. 4: Plot of the normalized growth  rate (with respect to cH
 ) versus 

LH
k r   in the frequency range 

,
cO cO

     for 6.4
H

n   cm
-3

, 1.8, 1.2s sa b  , 0.5
O

n    cm
-3

, 0.4
O

n   cm
-3

, 
61 10 ,o

eT K   

59 10 o

H
T K    and 

31.2 10 o

O O
T T K     as a function of the propagation angle. Curve (a) is for a 

propagation angle θ =1
0
, curve (b) for θ = 6

0
, curve (c) for θ = 8

0
 while curve (d) is for parallel propagation. It may 

be noted that the values for curve (d) have been divided by 10. 

Figure (4) is a plot of the growth rate versus 
LH

k r   as a function of the propagation angle θ, the species densities being  

H
n   =  6.4 cm

-3
,  On   =  0.5 cm

-3
,  On  =  0.4 cm

-3
, bs = 1.2, as = 1.5 bs; the temperatures remaining unchanged. Curve 

(a) is for θ =1
0
, curve (b)  for θ = 6

0
, curve (c)  for θ = 8

0
 while curve (d) is for θ = 0

0
. As in figure 1, the values of curve (d) 

were divided by 10. The maximum growth rate is again for parallel propagation. However, for oblique propagation, the 
growth rates are small for low values of propagation angles (θ =1

0
),  they reach a maximum for θ = 6

0
 and decrease 

thereafter. 
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The variation of the growth rate was also studied as a function of the 
On 

 density.   Figure (5) is a plot of the growth rate 

versus 
LH

k r   with   the propagation angle θ = 5
0
, bs = 1.2, as = 1.5 bs; the temperatures again remaining unchanged. 

Curve (a) is for 0
O

n   ,  curve (b) is for 0.2
O

n     cm
-3

  and   curve (c)  for  0.4
O

n     cm
-3

. We find that the range 

of wave growth increases with increasing On   density. 

 

Fig. 5: Plot of the normalized growth  rate (with respect to cH
 ) versus 

LH
k r   in the frequency range 

,
cO cO

     as a function of the negatively charged oxygen density for a propagation angle of θ = 5
0
 . Curve 

(a) is for 0
O

n   , curve (b) for 0.2
O

n    cm
-3  

and curve (c) for 0.4
O

n     cm
-3

, the other parameters are the 

same as in figure 4. 

Finally, the variation in the growth rate with the parameters as and bs were similar to that in figure 3.  

DISCUSSION 

New born heavier ions picked up by the solar wind are generally believed responsible for hydromagnetic turbulence 
observed around comets. Of the many heavy ions, one that has been studied extensively has been opositively charged 
oxygen [21]. 

The mechanism of the instability has been envisioned as follows: the new born ions are picked into cycloidal orbits which 
combines gyration along with a drift perpendicular to the magnetic field. In the frame of reference moving with the solar 
wind, the ions are gyrating and also moving sunward along the magnetic field. This motion, parallel to the magnetic field, is 
believed to be the source of free energy ultimately responsible for the observed hydromagnetic turbulence [26]. 

The results of our study are generally supportive of this mechanism. Specifically, in figure 1 we have a situation where the 
growth rate is a maximum for parallel propagation and falls off rapidly with increasing angles of propagation. Figure 2, 
where the growth rate increases with increasing negative oxygen ion densities, also endorses the proposed mechanism 

since the free energy available increases with increasing 
O

n  densities. 

As mentioned above, the particle distribution function perpendicular to the magnetic field simulates a loss cone distribution 

for 0sb  . Thus increasing bs makes available fewer particles as a source of free energy . This would explain the slight 

decrease in the growth rate of the wave as bs increases (for waves in the frequency range 
*,

cO cO cH
        

(figure 3) and similarly for waves in the frequency range 
* ,

cO cO
    ; not shown).  

We next consider waves in the frequency range 
* ,

cO cO
    .  As in figure 1, the growth rate is again a maximum 

for parallel propagation. However, unlike the case of figure 1, there is a secondary maximum at oblique propagation.  This 
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could be due to the fact that we are now dealing with lower frequency waves and have two ions of the same mass which 
could effectively interact with the wave. 

Finally, in figure 5, though the peak growth decreases slightly with increasing On  , the range of  the instability increases 

and hence the explanation given in connection with figure 2 would be applicable here too. 

CONCLUSIONS 

We have, in this paper, studied the stability of the Alfven wave in a plasma composed of hydrogen ions, positively and 
negatively charged oxygen ions and electrons. All species of particles were modeled by distribution functions that could be 
separated into a drifting Maxwellian distribution in the  direction parallel to the magnetic field; in the perpendicular direction 
the distribution function is of the loss-cone type obtained by subtracting two Maxwellian distributions. The peak value of 

the growth rate increases with increasing 
O

n  for higher frequencies ; while for low frequencies , the growth region 

increases with increasing 
O

n  .   
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