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Abstract

In this work, the Fredholm integral equation (FIE) with logarithmic kernel is investigated from the contact problem in the
plane theory of elasticity. Then, using potential theory method (PTM), the spectral relationships (SRs) of this integral

equation are obtained in some different domains of the contact. Many special cases and new SRs are established and
discussed from this work.
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INTRODUCTION

Many problems in the half-plane of elasticity, deformation in physics and engineering are reduced to an integral
equation of the first kind; see Popov [1], Covalence [2], and Alexandrov [3]. In other words, different methods are
established for solving the FIE with discontinuous kernel. These methods are: Cauchy method [4], potential
theory method [5, 6], orthogonal polynomial methods [7, 8], Fourier transformation method [9, 10] and Krein’s
method [11, 12]. The FIE with logarithmic kernel is investigated from the contact problem in two dimensional

problem, in the theory of elasticity from an infinite strip; occupying the region 0 < y < h made of material
satisfies the stress relations, lies without fraction on a rigid support. A rigid rectangular stamp is impressed into
the boundary of the strip Y = h by constant force P whose eccentricity of application is € . Then, using Airy
function and Fourier integral forms, Abdou et al. in [12], represented the plane contact problem, in a half-plane,
as a FIE of the first kind with logarithmic kernel.

Here, the PTM is used to obtain a boundary value problem (BVP) in two dimensional domain. Moreover the properties of
Chebyshev polynomials of the first, second kind and the elliptic Jacobi functions are used. Then, by considering the
equivalence condition between the differential equation and the integral equation we obtain many different SRs inside and
outside the domain of contact (domain of integration). The importance of using spectral relationships in contact problems
in the theory of elasticity can be found in Refs. [13-17].

1. Fredholm integral equation:
Consider the following FIE:

j‘k(xﬂjgjq(f)d§:m9(5+ax —f (X)) (1)

where the kernel is defined by

k(x —é:j:T(L(w)jcos(%wjdw, L(m)_M )

A S " 2w+sinh 20

Here, X ,f,(o are the dimensionless variables; while A = — is a dimensionless parameter characterizing the strip
a

thickness. It should be noted that as A — 00, the integral equation takes the form:

i 1 2

~fq(y) Inﬁer dy =g (x), (g(x)=ﬂ0(5+ax & (x));dzln—) (3)
X —y a

In the remainder part of this paper, we will obtain the solution of the FIE (3) in the form of SRs in different domains and

discuss it.

2. Solution of integral equation

Here, we use the PTM to obtain the SRs for the FIE of the first kind in different domains. For this purpose, consider the
integral operator

1t +d |g(t)dt =f (x) (4)

under the condition
j #(t)dt =P (5)

where, we will consider the following cases:

ML ={(x,y)eL:x|<ay =0}, (QL={(x,y)eL:[x|>ay =0}

6
(3)L={(X,y)eL:b£|x|Sa,y=O} (6)
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2.1. Thefirst case (1) of equation (6):

Using the potential theory method, see Abdou et al. [18], we have

AW (y)=0 A= ((y)eiLy)
W (x,y)|y:0=f (x)+P (=In|x|+d) (x e{L}) )

W (x,y)=0 asr —o, r=yx2+y?

with the equivalence condition
—n¢(x)=|yim{sgny.[%—ﬁP5(x )ﬂ (x e{L}). (8)

where 5(X ) is the Dirac-delta function.

To obtain the solution of (7), we use the transformation mapping function:

7 =%w(§)=g(§+(1), {=E+in=pe’ ()

A useful method in engineering mathematics is using a conformal mapping to transform complicated region into a simpler
one, for this reason, we use equation (9). The transformation (9) maps the region in X —Y plane into the region outside

the unit circle 7, such that o' (é’) does not vanish or becomes infinite outside the unit circle . The parametric equations

of (9) are
a 1 as 1 a 18" an 1
X :E[p+;jcosﬁz?(1+ﬁ), y =§[p—;]8m9=?(1—w) (10)

Using the transformation (9), we get

1 2 o 1 2
==L(p*+2p%c0s20+1) 2, st. 2=Pasp>0 (11)
r a r a
The mapping (9) maps the upper and lower of the interval (x,y)e[—a,a] into the lower and the upper of the

semicircle p =1, respectively. Moreover the point Z = o0 will be mapped onto the point{ =0.

Using the transformation (9) in the BVP (7) we have

& 18 18

AW (p,0)=0 A= 29, =9

(p<l-r<0<r)

W (0,0)=0 (p=0) (12)
W (1,0)=f0(0)—P(In(§+dD £,(0)=f (acosd)  3(p=1)
Also, the equivalence condition becomes
¢(acosd)=[rasin 9]_1{P +%L_1 (13)

Here, we assume
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W (p,6)=W (g(p+£jcosa,g(p—£jsin0j, (14)
2 Yo 2 Yol
to solve the BVP of (12), we assume
W (p,0)=> X (p)cosnd (15)
n=0

Differentiating (15) with respect to p and @, then introducing the result to satisfy the first equation of (12), and noting that,

when I’ — o0, we have p —> 0. Therefore, the solution of the formula (12) can be adapted in the form
W (p,0)=> A, p"cosng (16)
n=0

Where, with the aid of the second and third formulas of (12), we have

17 17
Aozz‘[fo(e)de, Anzzj;fo(e)cosn@de 17)

=T

Using the previous results in (13), we obtain

(7asing)™ n=0, 0<f<x

g(acosf)= 1
( ) \ n=12,..

(18)
ncosné.(zasino)

a

a k L 7| In 2+d 4 n=
Ia[ln [x 1t|+d};a2(atjz g ”Tnéxj('a D 0 (19)

n a

X
Introducing (18) into (4), and noting the definition of CP of the first kind, T | [—j =C0osSNné , we obtain

n>1x|<a.

The formula (19) represents the SRs for the FIE of the first kind with logarithmic kernel, where we assume the known
X

function, in (4), f (X )=Tn (—J
a

2.2. The second case (2) of equation (6):

In order to obtain the SRs of (19) for|X | >a, we obtain from (10) that X >afor @ =0and X <aford =,

therefore, we have

|x|—a\,’x2—a2
p:—

" , (|x |> a) (20)

Solving the BVP (12), under the condition (20), then using (17) we have the following SRs:
_ 2_ a2
T (tj In{zxxza1+d n=0 |x|>a
a n| o~ a
1][In 1 +d} ) gt -
AR

—t‘ \/az _t2 1

Z[H (x)+(-1)" H (~x )NX‘XZ“""} n=12,..

(21)

n

Where, H (X )is the Heaviside function, see Whittaker et al. [19].
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The conformal mapping (9), for|X | 2 a maps the half plane, y > 0, into the semi-circle {p >1,0<0< 72'}, and the half
planey <0 into {p <1,0<0< 72'} Hence, we deduce that, outside the interval, the case for X >a (X < —a) are
corresponding in § -plane tod >1, ({ < —1), while inside the interval L the case for X >a (X < —a)is

corresponding to 0 < £ <1, (—1< ¢ < 0) . Therefore, the solution of the BVP (7) for 77 > O takes the form

_y |COSAS
Wo(sr)=e {sinﬂg (2>0), o2
WO(‘f’n) =W (%[14— Iz inzj’%(l_ Z inz j} (_OO<§<°°’77>O)'

. . ow
Moreover, the term of equivalence relation of (8) qul take the form

oW 2 & L W, _af, 1
A G &

Using the separation of variable method, with the aid of (22), in the BVP (7) and the equivalence relation (8), we can
obtain

X cos(2p.(t)) . | cos(2p.(x))
_‘ ot ){t sin(Ap, (t ))dt 7 {sgn x sin(2p, (x)) (24)

where

()= p(X)=E (2>0[x|>a) (25)
The formula (24) leads us to assume the general integral operator
2( a2
Kg=— Inj|—|¢, (t)dt 26
¢ ”U_m +Un —4.(t) (26)

Hence, with the aid of (26), and for the interval L = {y =0,—a<X <a} in Z - plane, which transformed into the
semi-circle {p =10<60< 72'} in ¢ - plane, we have the following SRs:
cos(/l—xj
cos(Ap, (t A2
o @(t){ (. ”dt]:ie 2 | @7)
waury [0

tsin(4p, (t)) p)

%{jw +Iln

sin(%(],(—a<x <a,A>0).

2.3. Thethird case (3) of equation (6):

When b <X <a, we will seek the solution of the BVP (7) by using the transformation mapping

z=sn[K—/In§,kj, (&=pe'’ ¢ =¢£+in) (28)
VA
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The transformation mapping (28), Z =X + iy , is called the Jacobi elliptic transformation. The three basic functions of

the elliptic functions are denoted CN (U Kk ),du (u .k )and sn (u .k )Where K is known as the elliptic modulus. They

arise from the inversion of the elliptic integral of the first kind

(O<k2<1) (29)

r dt
ZF(W)ZI—W'
o v1—Kk “sin“t
Where, K =mod U is the elliptic modulus and g=am (u,k )is the Jacobi amplitude. The Jacobi elliptic function are
periodic in K (k )and K’ (k ) where K (k ) is the complete elliptic integral of the first kind, K' (k ) =K (k/),

andk ' = N1-k % is the complementary elliptic modulus (see Whittaker et al. [19]), where

K:K(k):j at : (k =9J (30)

o\/(l—tz)(l—kztz) a

Also, the Jacobi elliptic integral of the first kind is defined

K/:K(kl):I\/(l—t ?)(1-kt?) o\/ )(1- kt) (k/: 1_k2) Y

The transformation mapping (28) maps the region of the interval (b £|x|£a,y :O) in Z -plane, Z =X +1y , into the

!—.7\—\._\

. 4 k.
closedring p, < p<p;~, p, €Xp —ﬂF in £ - plane.

Moreover, the transformation mapping (28) maps the region outside the plane Imz >0 to the region outside the semi-
ring {po <p<p,t0<6< 72'} , or inside the semi-ring {po <p<pl,-r<0< 0} . Also, the point Z =00, will be mapped

to {=-1in ¢ -plane. Moreover, the points outside the interval [b,a]will be mapped outside the ring p = p;* while

outside the interval [—a,—b | will be mapped inside the ring o = 0, .

Assume,
K/
o=U+iv=—In¢, {—KSUSK,—K/SVSK/} (32)
T
Hence, we have
/ /
u:K—Inp, v:Ke (33)
T T

Using (32) and (33) in (28), with the help of properties of elliptic function, we can have the parametric equations

snucn(iv)dn(iv) . cnudn(iv)sn(iv)
, =—ib 34
1-k?sn®usn?(iv) Y 1-k?sn*usn®(iv) (34)

The linear coordinate u =—K will cover the interval [—a, —b], while u =K covers the interval [a,b]. For this, we

have sn (K k ) =1, and the first formula of (34), after using the properties of the elliptic functions, see Whittaker et al.[19],
takes the form:

=bdn(v.k’)]", (K'<o<K’) (35)

Also, the formula (35), with the properties of dn, can be adapted in the form
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(b<x <a) (36)

The formula (36) is hold only for b <X < aand when X is changed from b to &, V will be changed from 0 toK’. For

this, we define
f.(0)=f {—b{d [ K0k ﬂ } f,(0)=t Hd ( K9 H } (-r<0<x) (37)

Where, f,(0)is defined inside p = p, and f,(6)outside p = p,*.
After the above discussion, the BVP (7) can be modified as

A} (p0<p<p0 )V (p.0) =t (9)—Pln[b1dn(ﬁ,k'ﬂ,

AN 1oV 1V
— =
o0t pop ptod®

P=Po V4
(38)
- - -1 — 1
V(p,9)|p:p51—f2(9) Pln{ dn }, \Y; 1+7r ( 7r<9£7r).
Where, V (p,0)=W (x,y )and X, Y are given by (34).
Using the chain rule, we can write the equivalence condition in the final form as
a oV
= [p—j . (b<x<a) (39)
K ’\/(a2 —X 2)(x 2 —bz) OP ) pepst
Now, we assume the solution of (38) in the form
= Z(Anp” +B,p™" )cosn9+C Inp+D, (po <p<p-rm< 937:) (40)
n=1
Therefore, for determining the unknown constants A_,B ,C, and D, we assume
f.(0)=f™+>FMcosng,  (m=12),
. i i (41)
In{dn (7,k ’H =a,+ Y .a,cosnd,  (-w<O<r).
n=1
From the second and third conditions of (38) and with the aid of (41), we have
fn(l) _anp pn - fn(Z) _anp p*ﬂ fn(Z) _anp pn - fn(l) _anp p*ﬂ
An:( )zon (2n )O J Bn:( )2(:1 (Zn )0 ’(n21)
Po —Fo Po —Fo (42)

fO_§@ 1
cz(" ° )2|np0 ,D:E(fo(l)—fo(z))+Plnb—aoP

eNow we have the following two points of discussions:

(1) The first discuss for a symmetric case, we have f, (8)=f,(8)=g(6), hence we get

n

fU=f®=g, (n=012..); C=0, D=g,+P(Inb—-q,)

Therefore, rewrite (42) to take the form
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Vy
(p.0)=3

Z—gn - (p"+p7")cosnO+P (Inb —ay)+9,i(py < p< oo -7 <0< 7). (43)
o
K’

With the aid of the last conditions of equation (38) and the formula (43), we can directly determine the value of P in the
form:

-1

P = 2 (ﬂl:t(j Zci(lzéa*’(njlnb , (chx =coshx). (44)

The values of &, can be obtained, after using the famous relation, see [19]

__ Q" in2] (20 -0) 7| (g =exp[ ==X ) Jim[ 24 ) < 2K
In[dn (u,k)]= SZ_; e 1)[1 qz(m_l)]sm [(Zn 1)2K } [q_exp( & J Im(ZKj < Kj to get
4p2n -1
a,=Invk, a,, =0, a, = (n>1) (45)

(2n-1)|1- 45 2”‘”]

Finally, using (44) in (39), the potential function ¢5(X ) , becomes

b(x)= - N p)ntanh(””'f an (X))
K \/(az—xz)(x —b?) = K
A o (46)
X =cosé, 6':1,]‘ , (b<x <a).
K (t?-1)(1-k*?)
where, the constant P is given by (44), and 'S by (45), while the function T, (X ) is the CP of the first kind.
(2) The second discuss for a skew symmetric case, we assume
fO=fO=-h., (nF012.) (47)
In this case, the four constants of (42) and the constant P of (44) become
h -h, h,K’
Ay =B, =< .(1=12,.);D=0; C=——=——, P=0. (48)
2sinh| Z [ Gt
K
Also the corresponding of the two formulas of (43) and (47), respectively, become
1& h T h,K’ 4
V(r,0)= Z—”(p—p )cosn9+—lnp, (po <p<pt—r<O< 7z) (49)
24 ( znK ) 7K
sinh
and
a nK h,K'
p(x)= {Znh coth( an (X )+°—} (b<x <a) (50)
K\/a -x?)(x?-b?) K’ 7K

Assume, in (49) and (50) h, =0, (m # n); h, =1;(n =0,1, 2,...) , then, we can obtain the following SRs:
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j X +t _AT.
[x _tua —t?)(t* —b?)
%
~ au (b <t <a); ,10=ﬁ,(n=0).

9:

F! Jor k) a

3. Special and new relations of SRs:

ISSN 2347-3487

), Y =cos@;A, = K tanh(”nKj, (n>1)
an

K’
(51)

Many spectral relationships, which have many applications in astrophysics, mathematical engineering and contact
problems in the theory of elasticity, can be derived and established from this work:

1
(1) the integral operator K ¢ = — j In

T 9 sin_n‘
2

cases:

aly)

¢(n7)dn can be established if we consider, in (4), the following two

sm(o/ ) )
52
t (5 ) o =%
n=2m+1, = 4 A , t—= e A ;(—a<§,17<a,a<7r,m =O,1,2,...).
(%) 2 ()
We have, directly the following
sin(%) ;
14 1 Ton sin(%) COS(A)dn sin(%)
4.[ In +d = Hon T om | — ' (53)
z2, Zsinggn 2(cosn —cosa) sm(%)
tan(fy) v
2m+1 d
17 : tan(%5) tan(%)
e I In +d = Hom il 2msa ) (54)
Bl i f;ﬂ \2(cosyp—cosa) tan(%)
where,
(2m )’1 m>1
Hom = [—Insin(g]+d}m:0 ; ﬂ2m+1:(2m +1)7l'(m20)
2
In this case, the orthogonal relation will take respectively the forms
0 m =P
" i n n
T
o €0S7 —COS
sm(/) sm(/)\[( n a) o eld
May 17, 2014
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(0/) (A) \J2(cosn —cosa)

Differentiating (4) with respect to X , we get

aT, ta i
ol oo gy

where, U (x ) is the CP of the second kind.

Let, N =0, in (57), we have

1@
ﬂiat—X ‘faz _tz o

ISSN 2347-3487

(56)

(57)

(58)

The value of the integral (58) has many important applications in the contact problem when the kernel takes a Cauchy

form.

Also, in & - plane we follow

(7]

[W(/) ° (-0 (i<e)
J \J2(cosn —cosa) I cosec(O/) {tan(é)} (n =2M8 m <N )

1% (n-¢&
;:];cot[T

cosec (% tan(‘~'7) 4 sm( ) tan (@ (n=2m-1
(2 Zml[tan(o/)} W ey (% I 4

N Sl T

\J2(cosn—cosa) sec( jtan((y) n=0 [<a

3=

(L—f
2

T cot

Also, the orthogonal relation for the CPs of the second kind takes the form

aU sin(%) tan(%) cos 2(cosn —cosa)d i o
_‘; H(sin(%)} [tan(f’/)} (/) ( = )77 {Zﬂsm (2)n=m, n,m=12,..

and

0, n =k

aU tan(%) U tan(’%) sec f COS77 —COS
:[, "{tan(%)J ml[tan(é)} (/) O Mn {Zﬂcos(zjtan (zj;n:k
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() For the integral operator K¢—2[I +f ]In
i a

—0

X .
——|¢(t)dt we write:
X_t‘gb() we wri

cos(Ap, (x))=cos(Asgnx p, (x ))=Reexp(i Asgnx p, (x ))

63
sgnx sin(Ap, (x )) =sin(Asgnx p, (x )) = Imexp(i Asgnx p, (x ))(| = \ﬁ) (63)
for this, we have
(J‘ +I )In (t)exp(iAsgnt p, (t))dt =ﬁexp(ilsanpi(x ), (-0 <A<0x <-a;0<A<w,X >a),
2 2 2 2
wi(X)=Xi%; p(x)=XENXTTA (s a) (64)
2\x“ -a a
also, we obtain
_jln| . (t)cos(Ap, (t))dt =%cos(iﬁi(x ), (A>0,x >a);
% j | |§ i:| , ()sin (45, (1))et =Ssin (25, (x) (65)
where, in (65), we assumed
N X £x%-a® _ X £yx?-a’
- B L) X
2Jx2-a a
If we differentiate (65) with respect to X we obtain many SRs of Cauchy kernel
%I%a) (t)sin (45, (t))dt =@, cos(4p, (x)). (>0, >a) (66)

5 7,
Another SR if we assume, in (65), that X = aeé, t= aeé ;(0 <&n< oo), hence, after some algebra, we get

Y X( X(n)ie% +1] : )
_Iln S k 2X (n)E %+x(77)% Sm(ﬂ(ﬂix(")Dd":ﬂﬂ(e%ix(é)))' (67)

[x (x)= stinhXE, z>o,§>oJ

The integral operator (II) with the SRs (65), (67) can be adapted, in the Fourier integral sine or cosine forms, as the
following:

F (1) <x>{°95“’3 o (coa) 8)
and its inverse

dA (x >a) (69)

2% cos(4p, (x))
f (X)_g'[a{sin(ﬂ,bi(x )

This leads us to deduce the following important relations

a

620 | Page May 17, 2014



& ISSN 2347-3487

ETE(A){COSW*(X ))dfTF(ﬂ){COS(M(X (CPREE, (70)

sin(2p_(x )) sin(2p_(x ))

The formulas (61) and (65)-(68) can be used with wide applications in the displacement problems of mechanics, see
Aleksandrov et al.[6], Aleksandrov[13] and Abdou [16].

a

In the spectral relationships (51), we assume
Q, _a I3 n
a:eé, b=e % (a>0), x:eé,t:eé, (ra<én<a). (71)

to obtain the following

[ - ,7| T, (Y )dn
| th =AT (X). 72
J 1| |\/2 cosha—coshyp) (%) (72)

—-a

where,
By : du
X =cosf, =" - I , k':k(xil—e’z"), Y =cos®,
k" % \[2(coshe—coshu) (73)
0/ *”/ ' k 4 .
‘D=ﬂe,zj & : in’=ze K tanh| " (e ) . (n=x1), Aozzne’ék(efﬂ)
k" < \J2(cosha —coshu) n k
Finally, for the interval b < |X | < a, after assuming
X:(a ](25 )t—[aszz](Zﬂz—az—bz), (xLtl<a, b<|é]rl<a) (74)

we can obtain

S5, e PR Y [ el RN CESY)
(J; +£] |£=n| (\/a ‘(o j) ;L ’ j (n =0). o

Ja?—b? ’
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