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Abstract  

This paper deals with a fuzzy programming approach for treating an interactive two-stage stochastic rough-interval water 
resource management. The approach has been developed by incorporating an interactive fuzzy resolution method within a 
rough two-stage stochastic programming framework. The approach can not only tackle dual rough intervals presented as 
an inexact boundary intervals that exist in the objective function and the left- and right-hand sides of the constraints that 
are associated with different levels of economic penalties when the promised policy targets are violated. The results 
indicate that a set of solutions under different feasibility degrees has been generated for planning the water resources 
allocation. They can help the decision makers to conduct in depth analysis of tradeoffs between economic efficiency and 
constraint-violation risk, as well as enable them to identify, in an interactive way, a desired compromise between 
satisfaction degree of the goal and feasibility of the constraints. A management example in terms of rough-intervals water 
resources allocation has been treated for the sake of applicability of the proposed approach. 

Keywords: Rough sets and intervals; Fuzzy programming; Interactive approach; Inexact water resources 

management. 
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1. Introduction 

 Recently, the conflict-laden issues of water resources allocation among competing municipal, industrial and 
agricultural interests have been of increasing concerns. The competition among water users has been intensified due to 
growing population shifts, shrinking water availabilities, varying natural conditions and deteriorating quality of water 
resources. The increased water demands and the inadequate water supplies have exacerbated the storage of water 
resources; this has been considered as a major obstacle to sustainable water resources management. The problem arises 
when the essential demand cannot be satisfied due to insufficient resources, losses can hardly avoided resulting in variety 
of adverse impacts on socio-economic development. Therefore, a sound planning water resources allocation is desired to 
help reduce such losses. However, the water resources management system are complicated with a variety of 
uncertainties and their interactions when may intensify the conflict-laden issues of water allocation. 

 To study the above concern problems, a number of optimization techniques ial distributions. In TSP, an initial 
decision must be made before the realization of random variables (first-stage decision), and then a corrective action can 
be taken place (second-stage decision). This implies that a second-stage decision can be used to minimize "penalties" 
that may appear due to any infeasibility. 

 In general, TS deals with uncertainties expressed as probabilistic distributions and account for economic 
penalties with recourse against any infeasibility. In many real-world problems' however, the quality and quantity of 
uncertain/information are often not satisfactory enough to be presented as probabilistic distributions. Even if such 
distributions for uncertain parameters are available, reflecting them in large-scale optimization models can be extremely 
challenging. 

 In comparison, rough-interval mathematical programming (RIMP) is effective in talking of unknown quantities 
expressed as intervals with known lower and upper bounds. RIMP proves to be an effective approach to deal with the 
uncertainties in the parameters of the considered problems. Rough-interval two-stage stochastic programming (RITSP) 
approach for water resources management could not only tockle uncertainties expressed as probabilistic distribution and 
rough intervals, but also analyze a variety of policy scenarios that are associated with different levels of economic 
penalties when the promised policy targets are violated. 

 An interactive fuzzy resolution (IFR) method is proposed for solving a two-stage stochastic rough-intervals water 
resources allocation management problems with fuzzy parameters. IFR permits interactive participations of DMS in all 
steps of decision process expressing their preference in linguistic terms. A set of solutions could obtained from IFR under 
different feasibility degrees of the constraints which are meaningful to support in-depth analysis of tradeoffs between 
economic efficiency and constraint violation risk. IFR enables DMS to identify a compromised solution between two factors 
in conflict: feasibility of the constraint and satisfaction degree of the goal. 

 In earlier work in the conflict-laden issues of water resources allocation among competition interests have been of 
in creasing concerns many researches as Huang and Chng (2003); Wang et al. (2003), Li and Huang (2008), Lu et al., 
(2006) and (200). The above concerns a number of optimization techniques were developed/by Slousinski (986); Wu et 
al., (1997); Huang (1998); Tairaj and Vedula (2000); Seifi and Hipel (2001); Luo et al., (2003); Maqsod et al., (2005); Li et  
al., (2007) and Wang et al., (2007). 

 Recently, Jimenez et a;/. (2007) proposed an interactive fuzzy resolution (IFR) method for solving linear 
programming problems with fuzzy parameters. Also, Wang and Huang (2011) have been proposed an interactive two-
stage stochastic fuzzy programming (ITSFP) approach for water resource management problem. They develop its 
approach by incorporating IFR method within an inexact two-stage stochastic programming framework. ITSFP cannot only 
tackle dual uncertainties presented as a fuzzy boundary intervals that exist in the objective function and the left-and right-
hand of the constraint, but also permit in-depth analysis of various policy scenarios that are associated with different levels 
of economic penalties when the promised policy target are violated. 

 This paper deal with a fuzzy programming approach for treating an interactive two-stage stochastic fuzzy (ITSFP) 
for rough-interval water resources management. The approach has been developed by incorporating an interactive fuzzy 
resolution method within a rough-interval two-stage stochastic programming (RITSP) framework. ITSFP can not only 
tackle dual rough-intervals presented as a fuzzy boundary intervals that exist in the objective function and the left-and 
right-hand/side of the constraints, but also permit in-depth analysis of various policy scenarios that are associated with 
different levels of economic penalties when the promised policy targets are violated. A management problem in terms of 
rough-intervals water resources allocation has been studied for the sake of applicability of the proposed approach. 

2. Preliminaries  

 In this section, we recall some definitions needed through the paper. 

 Moore (1979) introduced the concept of closed interval numbers. Let 

( ) {[ , ] : , ( , ), }L U L U L UI R a a a a R a a       denote the set of all closed interval numbers on R. 

Definition 1. Suppose that [ , ], [ , ] ( )L U L Ua a b b I R . We define: 
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1- [ , ] [ , ] [ , ]L U L U L L U Ua a b b a b a b    , 

2- [ , ] [ , ] [ , ]L U L U L L U Ua a b b a b a b    , 

3- The order relation " "  in ( )I R  is defined by: 

[ , ] [ , ]L U L Ua a b b  if and only if ,L L U Ua b a b  . 

Definition 2. (Zadeh (1965)): A fuzzy set A  in X R  is characterized by a membership function ( )
A

  , where X 

represents a space of points, with an element of X denoted by x; ( )
A

x   represents the membership grade of x in A ; 

( ) : [0, 1]
A

x X  . 

Definition 3. A convex fuzzy set A  is a set defined on the real line R with a continuous membership function 
A

   that ca 

be defined as follows: 

 

1

1 2

2 3

3 4

4

0, if ;

( ), if ;

( ) 1, if ;

( ), if ;

0, if ,

A

A

A

x a

f x a x a

x a x a

g x a x a

x a






 

  


 










   (1) 

where  
A

f    and  
A

g    represent a continuous and monotonically increasing function on  

the left-hand side of A  and a continuous and monotonically decreasing function on the right-hand side of A , 

respectively. 

Definition 4. The  -level set of a fuzzy set A  can be defined as follows: 

 { : ( ) , [0, 1]}
A

A x R x      
     (2) 

since 
A

   is upper semi-continuous, the  -level set of A  defined in (2) forms a closed bounded interval (Wang and 

Huang (2011)): 

 
1 1[ ( ), ( )]A AA f g    , 

where,  

 
1 ( ) inf { : ( ) }A A

f x x x    ,     (3) 

and  

 
1 ( ) sup{ : ( ) }A A

g x x x    .     (4) 

Definition 5. (Wang and Huang (2011)): The expected interval of a fuzzy set A , denoted by EI ( )A , can be defined as 

follows: 
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 EI 1 2( ) [ , ]A AA E E
   

1 1

0 0

( ) ( )
A A

f d g d   
 

  
  
   .    (5) 

Definition 6. (Wang and Huang (2011)): the expected value of a fuzzy set A , denoted by ( )E A  , is the half of its 

expected interval: 

 
1 2( )

2

A AE E
E A


 

 

 .      (6) 

Definition 7. Let R be the set of real numbers, a fuzzy number a  is a mapping: : [0, 1]a R  , with the following 

properties: 

1- ( )a x   is upper semi continuous membership function, 

2- a  is convex fuzzy set, i.e., 
1 2( (1 ) )a w x w x   

1 2min( ( ), ( ))a ax x   , for all 

1 2, , [0, 1]x x R w  , 

3- a  is normal, i.e., there exists 0x R , for which 0( ) 1a x  , 

4- supp( ) { : ( ) 0}aa x R x    is a support of a . 

Definition 8. (Kaufmann and Gupta (1988)): A trapezoidal fuzzy number (Tr. F. N) can be represented completely by a 

quadruplet: 1 2 3 4( , , , )A a a a a  whose membership function is characterized as: 

 

1

1
1 2

2 1

2 3

4
3 4

4 3

4

0, if ;

, if ;

1, if ;

, if ;

0, if .

A

x a

x a
a x a

a a

a x a

a x
a x a

a a

x a






  



  
 

 


 

     (7) 

Remark 1. A triangular fuzzy number (T. F. N) is a special case of a trapezoidal fuzzy number (Tr. F. N.) with 2 3a a . 

3. Problem definition 

Consider a problem in which a water manager is response for allocating water to multiple users. The objective of the water 

resources allocation problem is to maximize the system benefit. Based on local water management polices, a prescribed 

quantity of water is promised to each user. If the promised water is delivered, it will result in net benefits to the local 

economy, otherwise, users will have to either obtain water from more expensive sources or curtail their development plans 

resulting in economic penalties. In such problem, the water flow levels are uncertain (expressed as random variables), 

while a decision of water allocation target (first-stage decision) must be mate before the realization of random variables, 

and then a recourse action can be taken after disclosure of a random variables (second-stage decision). Therefore, this 
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problem under consideration can be formulated as a two-stage stochastic programming (TSP) model as follows (Wang 

and Huang (2011)): 

 

1 1

max
m m

i i i i Q

i i

f N B T E C S
 

 
   

 
      (8a) 

 subject to 

  

1

( )(1 )
m

i i Q

i

T S Q


   ,     (8b) 

  (Water availability constraints) 

  max , 1, ...,i Q i iS T T i m   ;    (8c) 

  (Water-allocation target constraints) 

  0, 1, ...,i QS i m  ;    (8d) 

  (Non-negativity and technical constraints), 

where f is the system benefit ($); iN B  is the net benefit to user (i) per 
3m  of water allocation 

3($/ )m  (first-stage 

revenue parameters); iT  is the allocation target for water that is promised to user 
3( )( )i m  (first-stage decision 

variables); ( )E   is the expected value of a random variable; iC  is the loss to user ( )i  per 
3m  of water not 

delivered, 
3($/ )i iC N B m  (second-stage parameters); i QS  is the storage of water to user ( )i  when the 

seasonal flow is 
3( )Q m  (second-stage decision variables); Q is the total amount of seasonal flows 

3( )m  (random 

variable);   is the rate of water loss during transportation; maxiT  s the maximum allowable allocation amount for user 

3( )( )i m ; m is the total number of water user, I is the water user, e.g., 1i   for the municipality, 2i   for the 

industrial user, 3i   for the agricultural sector. 

 The distribution of Q must be approximated by a set of discrete values. Letting Q take values jq  with probability 

( 1, ..., )jp j n , we have 

 

1 1 1

m m n

i i Q i j i j

i j

E C S C p q
  

  
     

   
       (9) 

where i js  denotes the amount by which the water-allocation target ( )iT  is not met when the seasonal flow is jq  with 

probability jp . Thus, model (1) van be reformulated as follows: 

 

1 1 1

max
m m n

i i j i i j

i i j

f N B T p c s
  

       (10a) 

 subject to 
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1

( )(1 ) , 1, ...,
m

i i j j

i

T s a j n


    ;   (10b) 

  max , 1, ...,i j i is T T i m   ; and  (10c) 

  0, 1, ..., ; 1, ...,i js i m j n   . (10d) 

 For a difficults may be face the planner to promise a deterministic water-allocation target ( )iT  to a water user, 

the available flows are uncertain. Thus, we need to define uncertain parameters (rough and interval) of model (3). The 

notion of rough set (Nanda and Majumdar (1992)) given through the following definition: 

Definition. Let U be a nonempty set and   b a complete sub algebra of the Boolean algebra ( )P U  of subsets of U. 

the pair ( , )U   is called a rough universe.  Let R be a relation defined as follows: 

 ( , )L UA A A R   if and only if , ,L U LA A A A  . 

The elements of R are called rough sets and the elements of   are called exact sets. 

Definition 10. The degree of rough of the set ( , )L UA A  is 

 
card || ||

card || ||

L L L L

U U U U

A A A A

A A A A


 

 


  


     (11) 

where || ||A  denotes the length of the interval. 

 In response to the above concerns, rough interval and interval parameters are introduced into model (3) to 

communicale uncertainties. This leads to an interactive rough interval two-stage stochastic programming (IRITSP)model 

as follows: 

 

1

max ( , ) ( , )( )
m

L U L U
i i

i

f f N B N B T


    
 

1 1

( , )( )
m n

L U
j i i

i j

p C C S
 

   
   (12a) 

 subject to 

  

1

( )(1 ) , 1, ...,
m

i i j j

i

T S q j n


       
;   (12b) 

  max , 1, ...,i j i iS T T i m    
;   (12c) 

 and  

  0, 1, ..., ; 1, ...,i jS i m j n  
; (12d) 

where ( , )L UA A 
 is rough interval and B 

 is interval. 
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4. Interactive fuzzy resolution approach 

 In many real world problems, when the subjective judgment of decision maker (DMS) is influential in the decision 

making process, the fuzzy set theory is recognized as an effective tool to express their opinions. For example, in RITSP 

can hardly reflect the ambiguous or vague information from the subjective estimations. Say, DMS estimate that the most 

possible value for the net benefit to a water user is $90 per 
3m  of water allocated, and there is no possibility for it to be 

lower than $80 or more than $100 per 
3m  of water; such a subjective estimation can be expressed as a fuzzy set. 

Therefore, an interactive fuzzy resolution (IFR) method is introduced to tackle uncertainties presented as fuzzy sets. 

Firstly, consider the following enteractive fuzzy rough interval two-stage stochastic programming (IFRITSP) model: 

 

1

max ( , ) ( , )( )
m

L U L U
i i i

i

f f N B N B T


       

1 1

( , )( )
m n

L U
j i i i j

i j

p C C S
 

   
   (13a) 

 subject to 

  

1

( )(1 ) , 1, ...,
m

i i j j

i

T S q j n


         ;   (13b) 

  max , 1, ...,i j i iS T T i m    
;   (13c) 

 and  

  0, 1, ..., ; 1, ...,i jS i m j n  
; (13d) 

where ,i i jT S 
 and maxiT 

 are interval variables; ( , )L U
i iN B N B   , ( , )L U

i iC C   , are fuzzy rough interval 

parameters;    and jq   are fuzzy parameters. 

Here, we introduce some concepts and definitions of fuzzy set theory. A fuzzy set ( )A  in X is characterized by a 

membership function ( ( ))
A

  , where X re[resents a space of points, with an element of X denoted by x (Zadeh 

(1965)); represents the membership grade of x in A  taking value x. Zadeh (1978) define the possibility associated with 

A  as 
A

  . 

According to formulae (5) and (6), if the fuzzy set ( )A  is trapezoidal or triangular, its expected interval and expected 

value can be calculated as follows: 

 1 2 3 4 1 2 3 4

1 1 1
( ) ( ), ( ) , ( ) ( )

2 2 4
E I A a a a a EV A a a a a

 
       
 

   (14) 

 The uncertain and / or imprecise nature of many parameters leads to concerns of system feasibility and 

optimality. It is therefore necessary to answer the following two questions: 

(1) How to define the feasibility of a decision vector, when the constraints involve fuzzy sets? 
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(2) How to define the optimality for an objective function with fuzzy coefficients? 

Several focuses have been developed to answer these questions (Lai and Huang (1994); Rommelfanger and 

Slovinski (1998); Wang and Huang (2011)). A varity of methods for comparing or ranking fuzzy sets have been reported 

(Wang and Kerre (1996); Timenez et al., (2007), Wang and Huang (2011)) constructed a fuzzy relationship analysis to 

compare fuzzy sets: such a method was computationally efficient. 

 For any pair of fuzzy sets (A and )B , the degree in which A  is smaller than B  can be defined as follows: 

 

2 1

2 1
1 2 2 1

2 1 2 2

1 2 3

0, if 0;

( , ) , if 0 [ , ];
( ) ( )

1, if ;

B A

B A
B A B A

M B A B A

B A

E E

E E
A B E E E E

E E E E

E E x a



  

 

   
  


  




  

  



  (15) 

where 1 2[ , ]A AE E
 

 and 1 2[ , ]B BE E
 

 are the expected intervals of A  and B . When ( , ) , [0, 1]M A B     , 

it implies that A  is smaller than or equal to B  at least in degree ( )  and can be represented by A B
  . 

 For the first question, according to Wang and Huang (2011) a decision interval 

, , 1, ...,i i jT R S R i m     and 1, ...,j n  will be feasible of degree   (or  -feasible) if 

 

1

min ( ),
m

M i i j j
j

i

T S q 


   
   

   
   

    (16) 

where   is the degree of the feasibility of a decision vector, and 1   provides a measure of the risk of infeasibility. 

According to formula (12), this is equivalent to: 

 1 2 1 2

1

( )(1 (1 ) ) (1 ) ,j j

m
q q

i i j

i

T S E E E E    


      
      

 

 1, ...,j n         (17) 

The set of decision vectors that are  -feasible denoted by ( )k  , it is evident that: 

 1 2 1 2, ( ) ( )k k           (18) 

To address the second question, vectors 
0 mT R  and 

05 m nR  is an acceptable solution if it can be verified that 

(Wang and Huang (20110): 

 1

1 1 1

( , ( ) ( , )( ),j

m m n
qL U L U

M i i i j i i i j

i i j

N B N B T p C C S
  





 

         

 

1 1 1

1
( ( , )( ) ( , )( )

2

m m n
L L L U
i i i i j i i i j

i i j

N B N B N B T p C C S
  


 


            

Thus, 
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0 0 1

[( , ), ( , )]
2

L U L U
M f f f f            (19) 

where 
0 0( , )T S  is a better choice (with maximized objective) at least in degree 

1

2
. According to formula (12), it is 

equivalent to: 

 
0 0

1 2 1 2

1 1
( , ) ( , ), ,

2 2

k kf f k kE E E E k L U 
    

   (20) 

Based in formulae (14) and (17), vectors 
0 mT R  and 

0 m nS R  is an  -acceptable solution of the initial FRISP 

model (6) if it an optimal solution to the following  -parametric RITSP model: 

 

1

max ( , ) ( , )( )
m

L U L U
i i i

i

EV f f EV N B N B T


       

1 1

( , )( )
m n

L U
j i i i j

i j

p EV C C S
 

   
  (21a) 

 subject to 

  1 2 1 2

1

( )(1 (1 ) ) (1 ) ,j j

m
q q

i i j

i

T S E E E E    


      
      

 

1, ...,j n ;       (21b) 

  max , 1, ...,i j i iS T T i m    
;   (21c) 

 and  

  0, 1, ..., ; 1, ...,i jS i m j n  
; (21d) 

where ( , ) ( ( ), ( )); ( , ) ( ( ),L U L U L U L
i i iEV f f EV f EV f EV C C EV C       

 ( ))U
iEV C 

 

and ( , ) ( ( ), ( ))L U L U
i i i iEV N B N B EV N B EV N B        are rough intervals of boundary parameters;   

is the feasibility degree of a decision vectors and (1 )  provides a measure about the risk of infeasibility for a decision 

vectors. 

According to Wang and Huang (2011), if iT 
 are consider as uncertain inputs, let the interval variable 

i i i iT T T y  
, where i i iT T T     and [0, 1]iy  . , 1, ...,iy i m  are decision variables that are 

used for identifying an optimized set of target values ( )iT 
 in order to support the related policy analysis. Thus, by 

introducing decision variables ( )ig  model (21) can be reformulated as: 

 

1

max ( , ) ( , )( )
m

L U L U
i i i i i

i

EV f f EV N B N B T T y


           
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1 1

( , )( )
m n

L U
j i i i j

i j

p EV C C S
 

       (22a) 

 subject to 

  1 2 1 2

1

( )(1 (1 ) ) (1 ) ,j j

m
q q

i i i i j

i

T T y S E E E E    



        
     

 

1, ...,j n ;       (22b) 

  max , 1, ...,i j i i i iS T T y T i m     
;   (22c) 

 and  

  0, 1, ..., ; 1, ...,i jS i m j n  
; (22d) 

when iT 
 are known model (22) can be transformed into four deterministic such model, which are correspond to the lower 

and upper of the rough objective-function value and correspond to the lower and upper bounds of the objective function 

interval value. This transformation process is based on an interactive algorithm. For the lower of the rough objective 

function value, consider the following two submodels. The first model is: 

 

1

max ( ) ( )( )
m

L L
i i i i

i

EV f EV N B T T y  



     

1 1

( )( )
m n

L
j i i j

i j

p EV C S 

 

     (23a) 

 subject to 

  1 2 1 2

1

( )(1 (1 ) ) (1 ) ,j j

m
q q

i i i i j

i

T T y S E E E E    
   



        
   

 

1, ...,j n ;       (23b) 

  max , 1, ...,i j i i i iS T T y T i m       ;   (23c) 

  0, 1, ..., ; 1, ...,i jS i m j n  
; (23d) 

where i jS 
 and iy  are decision a variables. 

The second model correspond to the lower bound of the objective-function interval is: 

 

1

max ( ) ( )( )
m

L L
i i i i

i

EV f EV N B T T y  



     

1 1

( )( )
m n

L
j i i j

i j

p EV C S 

 

     (24a) 
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 subject to 

  1 2 1 2

1

( )(1 (1 ) ) (1 ) ,j j

m
q q

i i i i j

i

T T y S E E E E    
   



        
   

 

1, ...,j n ;       (24b) 

  max , 1, ...,i j i i i iS T T y T i m       ;   (24c) 

  , 1, ..., ; 1, ...,i j i jS S i m j n    ; (24d) 

where i jS 
 and iy  are decision a variables. 

Also, for the upper of the rough objective-function value, consider the following two submodels, the first model correspond 

to the upper bound of the objective-function interval 

1

max ( ) ( )( )
m

U U
i i i i

i

EV f EV N B T T y  



     

1 1

( )( )
m n

U
j i i j

i j

p EV C S 

 

     (25a) 

 subject to 

  1 2 1 2

1

( )(1 (1 ) ) (1 ) ,j j

m
q q

i i i i j

i

T T y S E E E E    
   



        
   

 

1, ...,j n ;       (25b) 

  max , 1, ...,i j i i i iS T T y T i m       ;   (25c) 

  0, 1, ..., ; 1, ...,i jS i m j n  
; (25d) 

where i jS 
 and iy  are decision a variables. 

The second model correspond to the lower bound of the objective-function interval is: 

 

1

max ( ) ( )( )
m

U U
i i i i

i

EV f EV N B T T y  



     

1 1

( )( )
m n

U
j i i j

i j

p EV C S 

 

     (26a) 

 subject to 

  1 2 1 2

1

( )(1 (1 ) ) (1 ) ,j j

m
q q

i i i i j

i

T T y S E E E E    
   



        
   
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1, ...,j n ;       (26b) 

  max , 1, ...,i j i i i iS T T y T i m       ;   (26c) 

  , 1, ..., ; 1, ...,i j i jS S i m j n    ; (26d) 

where i jS 
 and iy  are decision a variables. Submodels (23) – (26) are deterministic linear programming problems. The 

solutions of model 919) under the optimized water-allocation targets are given by the following (27) and (28): 

 opt opt opt opt opt opt[ ] [ , ], [ ] [ , ]L L L L L L
i j i j i jS S S f f f           (27) 

where opt
L
i jS 

 and opt
Lf   are the solution of (20), and opt

L
i jS 

 and opt
Lf   are those of sub-model (21). Also,  

 opt opt opt opt opt opt[ ] [ , ], [ ] [ , ]U U U U U U
i j i j i jS S S f f f           (28) 

where opt
U
i jS 

 and opt
Uf   are the solution of (25), and opt

U
i jS 

 and opt
Uf   are those of sub-model (26). Thus, the 

optimized rough-water allocation scheme is: 

 opt opt opt opt opt opt,L L L U U U
i j i i j i j i i jA T S A T S        

   (29) 

The degree of rough of the optimized rough-water allocation, denoted by  , is: 

 
opt

opt

| |

|

L
i j

U
i j

A

A
 




        (30) 

5. The Algorithm 

 An interactive algorithm is proposed to solve the  -parametric RITSP problems by using interactive fuzzy 

resolution (IFR). The IFR (Wang and Huang (2011)) method allows DMS to consider two factors in an interactive way, 

feasibility of the constraints and satisfaction degree of the goals. A strong desire to obtain a better objective-function value 

will lead to a lower degree of constraint feasibility; contrarly, a willingness to accept a lower satisfaction degree of the goal 

will guarantee a higher feasibility of the constraints. Therefore, the DMS have identify a balanced solution between the two 

objectives in conflict; to improve the objective-function value or to improve the constraint feasibility. 

 The natural language for establishing a semantic correspondence for different degrees of feasibility is the best 

way to reflect the DMS preferences. Therefore, Wang and Huang (2011) and others establish 11 scales, which allowed a 

sufficient distinction between different levels without being excessive. The 11 scales are as follows: 

0.0- Unacceptable solution,  0.1- Practically unacceptable solution, 

0.2- Almost unacceptable solution, 0.3- Very unacceptable solution, 

0.4- Quite unacceptable solution, 0.5- Neither acceptable solution, 

0.6- Quite acceptable solution, 0.7- Very acceptable solution, 

0.8- Almost acceptable solution, 0.9 Practically acceptable solution, 

1.0- Completely acceptable solution. 
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 Obviously, other scales can be considered depending on the wishes of the DMS. The 11 scales correspond to 

different risk level of violating the modeling constraints. The higher the scale value, the lower the risk level. In real world 

problems, the DMS may not willing to admit a high risk of constraints violation. If 0  is the minimum constraint feasibility 

that the DMS are willing to accept, the feasibility interval of   will be reduce to 0 1   . According to the semantic 

scale, the discrete values of   can be achieved as follows: 

 
0

0

1
0.1 / 0, 1, ..., [0, 1]

0.1
kM k k


 

 
     
 

   (31) 

In the first step of the IFR method, the space opt opt{ , / }kO T S M   of the k -acceptable solutions and the 

corresponding possibilistic distributions of the objective-function values opt ( )kf   can be obtained through solving (13) 

under each k . In order to obtain a decision vector that complies with the expectation of the DMS, two conflicting factors 

should be evaluated: feasibility of the constraints and acceptability of the objective-function value. After obtaining the 

results under different opt ( )kf  , the DMS are asked to specify a goal ( )G  and its tolerance threshold ( )G . The foal 

is expressed by means of a fuzzy goal set ( )G  whose membership function is: 

 

1, if ;

( ) (0, 1), if ;

0, if ,
G

z G

z G z G

z G

 

 


   
 

    (32) 

In the second step of the IFR method, the satisfaction degree of the fuzzy goal ( )G  for each  -acceptable solution, i.e., 

the membership grade of opt ( )kf   to ( )G  can be analyzed through an index: 

 

opt

opt

opt

( ) ( )

( ( ))
( )

Gf

S
kG

f

S

z z d z

f
z d z

 

 










 





    (33) 

where  denotes the classical integral; S is the support of the fuzzy set opt( )f . This an extension of the widely 

accepted center of gravity defuzzification method, using the goal function ( )
G
   as a weighting factor (Jimenez et al., 

(2007)). 

 In the third step of the IFR method, we attempt to identify the balance between feasibility of the constraints and 

the satisfication degree of the foal in the space of k -acceptable solutions ( )O . 

 Now, we consider to build two fuzzy sets: F and S with the following membership functions 

opt opt( ( ), ( ))k k kF
T S     and opt opt( ( ), ( ))k kS

T S     opt( ( ))kG
K f 

 , respectively. For 

obtaining a final recommendation, a fuzzy decision ( )D  is defined by aggregating the two a forenamed fuzzy sets (i.e., 

D F S    ) (Bellman and Zaeh (1970); Jimênez et al., (2007)): 
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 opt opt opt( ( ), ( )) min( , ( ( ))k k k kD G
T S k f        (34) 

The solution with the highest membership grade will be the final decision for the IFRITSP problem (i.e.,  model (6)) 

 
* *

opt opt opt( , ) max {min( , ( ( ))
k

k kD G
M

T S k f


  


     (35) 

 The detailed solution process can be summarized as follows: 

Step 1: Formulate the IFRITSP model (6). 

Step 2: Reformulate the IFRIRSP model by introducing i i i iT T T y  
, where i i iT T T     and 

[0, 1]iy  . 

Step 3: Transform the IFRITSP model into four submodels ((20)-(23)), where the first two submodels corresponding to 

Lf   and the second two submodels corresponding to 
Uf  . 

Step 4: Obtain the k -acceptable solutions through solving the 
Lf   submodel under each k . 

Step 5: Compute the satisfication degree of the fuzzy foal for each  -acceptable solution. 

Step 6: Identify a balance (i.e., membership grade of the fuzzy decision) between feasibility of the constraints and 

satification degree of the foal for each  -acceptable solution. 

Step 7: Formulate and solve the 
Lf   submodel by the following the same interactive procedure as that in 

Lf   

submodel. 

Step 8: Reach a desired compromise between feasibility of the constraints and the satisfication degree of the goal by 

considering the solutions from the two submodels. 

Step 9: Obtain the k -feasibility optimal solution: 

 opt opt opt opt opt opt[ , ], [ , ] ,L L L L L L
i j i j i jf f f S S S i j         . 

Step 10: Obtain the optimal water-allocation scheme: 

 opt opt opt ,L L L
i j i i jA T S i j    

. 

Step 11: Repeat steps (4)-(10) for obtaining the optimal water allocation scheme: 

 opt opt opt ,U U U
i j i i jA T S i j    

 

 To the two submodels corresponding to 
Uf  . 

Step 12: Find the rough degrees of the optimal water allocation scheme: 

 
| |

, [0, 1] ,
| |

L
i j

i j i jU
i j

A
i j

A
   




. 

Step 13: Stop. 
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6. Case study 

The following water resources management problem will be used demonstrate applicability of the developed IFRITSP 

approach. A water manager is responsible for allocating water from unregulated sector to three users: a municipality, an 

industry concern and an agricultural sector. These water users need to know how much water they can expect so as to 

make appropriate decisions on their various activities and investments. If the promised water is delivered a net benefit to 

the local economy will be generated for each unit water allocated; otherwise, either the water must be obtained from 

higher-priced alternatives of the demand must cartailed by reduced industrial and / or agricultural productions, resulting in 

a reduced system benefit (Wang and Huang (2011)). Table 1 shows the maximum allowable water allocation, the water-

allocation target, the fuzzy-rough net benefit to user i per 
3m  of water allocated and the loss to user i per 

3m  of water 

not delivered. Moreover, Table 1 presents the fuzzy boundary intervals for the rate of water loss during transportation and 

the seasonal flows under different probability levels. 

Table 1. Related economic data ($/
3m )  and seasonal flows (in 

6 310 m ) and different probability levels 

Activity User ( 1)i   User ( 2)i   User ( 3)i   

Maximum allowable 

allocation max( )T   
7.0 7.0 7.0 

Water allocation 

target 
[ 1.5, 2.5 ] [ 2.0, 4.0 ] [ 3.5, 6.5 ] 

Net benefit water 

demand is satisfied 

,( )L U
i iN B N B    

( [ (85, 90, 95), (105, 110, 115) 

], 

[ (80, 90, 100), (100, 110, 120 

) ] ) 

([940, 45, 50), (60, 65, 

75)], [935, 45, 55), (55, 

65, 75)] 

([(26, 28, 30), (30, 32, 

34)]) 

Reduction of net 

benefit water demand 

is not delivered 

,( )L U
i iC C    

([(210, 220, 230), (270, 280, 

290) ], 

[(215, 220, 230), (270, 280, 

290) ] ) 

[(50, 60, 70), (80, 90, 

100)], [(55, 60, 65), 

(85, 90, 95)]) 

([(40, 50, 60), (60, 70, 

80)]) 

Flow level Probability (%) Seasonal flow ( )
j

q
  

Low ( 1)j   0.2 [ (3.3, 3.5, 3.7), (.3, 4.5, 4.7) ] 

Medium ( 2)j   0.6 [ (7.0, 8.0, 9.0), (11.0, 12.0, 13.0) ] 

High ( 3)j   0.2 [ (114.0, 15.0, 16.0), (18.0, 19.0, 20.0) ] 

Rate of water loss 

( )   
 [ ( 0.10, 0.15, 0.20), (0.30, 0.35, 0.40) ] 

  

         max ( , ) 1.9([(85, 90, 95), (105, 110, 115)], [(80, 90, 100), (100, 110, 120)])L Uf f     

3.49[(40, 45, 50), (60, 65, 70)], [(35, 45, 55), (55, 65, 75)])  

4.7([(27, 28, 29), (31, 32, 33)], [(26, 28, 30), (30, 32, 34)])  

0.2([9215, 220, 225), (275, 280, 285)], [(210, 220, 232),  
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11(270, 280, 290)] )S 
 

0.2([ 55, 60, 65), (85, 90, 95)], [(50, 60, 70), 21(80, 90, 100)]S 
 

310.2([(45, 50, 55), (65, 70, 75)], [(40, 50, 60), (60, 70, 80)])S 
 

0.6([(215, 220, 225), (275, 280, 285)], [(210, 220, 230),  

12(270, 280, 290)])S 
 

0.6([ 55, 60, 65), (85, 90, 95)], [(50, 60, 70), 22(80, 90, 100)]S 
 

320.6([(45, 50, 55), (65, 70, 75)], [(40, 50, 60), (60, 70, 80)])S 
 

0.2([(215, 220, 225), (275, 280, 285)], [(210, 220, 230),  

13(270, 280, 290)])S 
 

0.2([ 55, 60, 65), (85, 90, 95)], [(50, 60, 70), 23(80, 90, 100)]S 
 

330.2([(45, 50, 55), (65, 70, 75)], [(40, 50, 60), (60, 70, 80)])S 
 

 subject to 

  1 1
11 21 31 1 2 1 2(10 )(1 0.6 0.4 ) 0.4 0.6

q q
S S S E E E E       

        
, 

  2 2
12 22 32 1 2 1 2(10 )(1 0.6 0.4 ) 0.4 0.6

q q
S S S E E E E       

        
, 

  3 3
13 23 33 1 2 1 2(10 )(1 0.6 0.4 ) 0.4 0.6

q q
S S S E E E E       

        
, 

  11 1.9 7S   , 

  21 3.4 7S   , 

  31 4.7 7S   , 

  12 1.9 7S   , 

  22 3.4 7S   , 

  32 4.7 7S   , 

  13 1.9 7S   , 

  23 3.4 7S   , 
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  33 4.7 7S   , 

  0, , 1, 2, 3i jS i j   . 
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Table 2. The  -acceptable solutions from the IRISTP model (in 
6 310 )m  

Feasibi

lity 

degree 

Shortage ( , )L U
i j i jS S 

 

11 11( , )L US S 

 

21 21( , )L US S 

 

31 31( , )L US S 

 

12 12( , )L US S 

 

22 22( , )L US S 

 

32 32( , )L US S 

 

13 13( , )L US S 

 

23 23( , )L US S 

 

33 33( , )L US S 

 

  0.

4 0 

[1.3524, 

2.6829] 4.7 0 0 

[0, 

1.0781] 0 0 0 

  0.

5 0 

[1.3870, 

2.7074] 4.7 0 0 [0, 1.111] 0 0 0 

  0.

6 0 

[1.4212, 

2.7317] 4.7 0 0 

[0, 

1.1439] 0 0 0 

  0.

7 0 

1.4552, 

2.7559] 4.7 0 0 

[0, 

1.1765] 0 0 0 

  0.

8 0 

[1.4888, 

2.7799] 4.7 0 0 

[0, 

1.2088] 0 0 0 

  0.

9 0 

1.5222, 

2.8036] 4.7 0 0 

[0, 

1.2409] 0 0 0 

  1.

0 0 

1.5553, 

2.823] 4.7 0 0 [0, 4.7] 0 0 0 

Table 3. Possibilistic distribution of system benefit, 
( ) ( )( , )L Uf f 

    (L. E. 
610 )  

 

  0.4 

([(291.6278, 234.096, 396.4966), (446.952, 490.2565, 533.54616), [(271.045, 344.0622, 417.0794), (473.1956, 

490.2568, 558.7092)]) 

  0.5 

([(290.0968, 342.7782, 395.4596), (446.26, 489.634, 533.008)], [(269.6375, 342.7782, 415.9189), (421.147, 

489.634, 524.121)]) 

  0.6 

([(288.5758, 341.5026, 394.4294), (445.576, 489.0184, 532.4608)], [(268.2392, 341.5026, 414.766), 

(420.4972, 489.0184, 557.5396)]) 

  0.7 

([(287.0634, 340.2342, 393.405), (444.896, 488.4064, 531.9168)], [(266.8488, 340.2342, 413.6196), 

(419.8512, 488.4064, 556.9616)]) 

  0.8 

([(285.5646, 338.9772, 392.3898), (444.224, 487.8016, 531.3792)], [(265.4709, 338.9772, 412.4835), 

(419.2128, 487.8016, 556.3904)]) 

  0.9 

([(159.278, 233.724, 308.17), (443.556, 487.2004, 530.8445)], [(264.1035, 337.7298, 411.3561), (418.5782, 

487.2004, 555.82261)]) 

  1.0 

([(159.278, 233.724, 308.17), (442.894, 486.6046, 530.3152)], [(149.701, 233.724, 317.747), (417.9493, 

486.6046, 533.709)]) 
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