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ABSTRACT 

The interacting boson model (IBM) with intrinsic coherent state (characterized by 𝛽 and 𝛾) is used to describe the nuclear 
second order shape phase transition (denoted E(5)) between the spherical oscillator U(5) and the 𝛾-soft rotor O(6) 
structural limits. The potential energy surfaces (PES's) have been derived and the critical points of the phase transition 
have been determined . The model is examined for the spectra of even-even neutron rich xenon isotopic chain. The best 
adopted parameters in the IBM Hamiltonian for each nucleus have been adjusted to reproduce as closely as possible the 
experimental selected numbers of excitation energies of the yrast band,  by using computer simulated search 
program.Using the best fitted parameters , the 𝐸(𝐼𝑖

𝜋 )/𝐸(21
+) energy ratios for the  𝐼𝑖

𝜋 = 41
+, 61

+, 𝑎𝑛𝑑 81
+levels are calculated 

and compared to those of the O(6) and U(5) dynamical symmetry limits.
122

Xe and 
132

Xe are considered as examples for 
the two O(6) and U(5) dynamical symmetry limits respectively. 
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1.Introduction 

The interacting boson model (IBM)[1]  was widely used for describing the quadrupole collective states of the medium and 
heavy nuclei .In the original version of sd-IBM-1,the model includes s- and d-bosons and no distinction is made between 
proton and neutron bosons. The algebraic structure of this model is based upon U(6), and three dynamical symmetries 
arise, involving the subalgebras U(5), SU(3) and O(6) corresponding to spherical oscillator, axially symmetric rotor and 
gamma soft rotor. These three symmetry limits form a Casten triangle [2], that represents the nuclear phase diagram [3]. 
The intermediate between these three limits are of great interest. It was shown by Iachello [4-6], that new dynamical 
symmetries, called E(5),X(5) and Y(5) hold , respectively at the critical point between spherical shape and 𝛾-unstable 
deformation, between spherical and axially symmetric shape and between deformed axial and triaxial shape. In all these 
cases, critical points are defined in the context of the collective geometric BohrHamiltonian [7]. Soon, thereafter the 
introduction of this concept of critical point symmetries different nuclear shapes and phase transitions between them are 
studied [8-15] . 

The correspondence between the E(5) solution of Bohr Hamiltonian and the U(5)-O(6)transition in the IBM was studied in 
details [16-20] and the existence of an additional prolate-oblate transition was recognized [21,22]. 

Even mass Xenon nuclei54Xe were received much attentions. The Xe nuclei with the mass number A ~ 120 – 130 was 
studied experimentally     [23,24]   and interpreted theoretically 

by the general Bohr Hamiltonian(GBH) [25] and by acquiring special solutions in the E(5) and  

X(5) critical limits by using Davison potential Bohr Hamiltonian [26,27]. Also Montica et al [28] carried out the IBM2 
calculations for the Xe isotopic chain. 

The purpose of this paper is to analyze the potential energy surfaces (PES's) to investigate the evolution of nuclear shape 
transition in Xenon nulei from deformed 𝛾-soft O(6) to spherical vibrator U(5) in framework of the sd-IBM-1 with intrinsic 
coherent state formalism [29,30].  

The outline of the paper is as follows: 

In section 2 wedescribe the formalism of the IBM 1 Hamiltonian under study, its intrinsic coherent state and the PES's. 
Comment on equilibrium deformation and critical points are considered in section 3. The U(5)-O(6) shape transition with 
more than Hamiltonian form is produced in section 4.Section 5 presents numerical calculations and discussion for Xe 
isotopic chain. Finally a conclusion and some remarks on our study are given in section 6. 

2. Formalism 

We start by considering the most general Hamiltonian of the sd-IBM in the multipole form as[1] 

𝐻 = 𝜖𝑑𝑛 𝑑 + 𝑎0𝑃 † .  𝑃 + 𝑎1𝐿  . 𝐿 + 𝑎2𝑄  . 𝑄 + 𝑎3𝑇 3 . 𝑇 3                                 (1) 

wherethe multipole operator 𝑛 𝑑   , 𝑃  , 𝐿  , 𝑄  , 𝑎𝑛𝑑 𝑇 3 are given by: 

𝑛 𝑑  =  𝑑𝑚
†

𝑚 𝑑𝑚 (2) 

𝑃 † =
1

2
 𝑑† . 𝑑† − 𝑠†𝑠†                                                                    (3) 

𝐿 =  10 𝑑† × 𝑑  
(1)

                                                                  (4)  

𝑄 =  𝑠† × 𝑑 + 𝑑† × 𝑠  
(2)

+ 𝜒 𝑑† × 𝑑  
(2)

                                                          (5) 

𝑇 3 =  𝑑† × 𝑑  
(3)

                                                                (6) 

with 𝑑𝜇
 = (−1)𝜇𝑑𝜇 , 𝑡(𝜆). 𝑈(𝜆) = (−1)𝜆 2𝜆 + 1[𝑡(𝜆) × 𝑈(𝜆)](0) and [𝑡(𝜆) × 𝑈(𝜆)]𝜇

(𝜆)
=   𝜆1𝜇1𝜆2𝜇2 𝜆𝜇 𝜇1𝜇2

𝑡𝜇1

(𝜆1)
𝑡𝜇2

(𝜆2)
 where 

 𝜆1𝜇1𝜆2𝜇2 𝜆𝜇 is the Clebsch – Gordan coefficients.The intrinsic coherent normalized state for the sd IBM for a nucleus with 

N valence bosons outside a doubly closed shell state │  0     is given by [29,30] 

│  𝑁, 𝛽, 𝛾 =
1

 𝑁!
 Γ

† 𝛽, 𝛾  
𝑁

│  0                                                         (7) 

whereΓ
†
 is the boson creation operator acting in the intrinsic system is given by 

Γ
† 𝛽, 𝛾 =

1

 1+𝛽2
 𝑠† + 𝛽 cos 𝛾 𝑑0

† +
1

 2
𝛽 sin𝛾  𝑑2

† + 𝑑−2
†                    (8) 

where the intrinsic deformation parameters 𝛽 and 𝛾 represent the shape parameters. 

In terms of the parameters 𝛽 and 𝛾, the expectation value of the Hamiltonian H is easily obtained from the evolution of the 
expectation values of each single term given by : 

 𝑁, 𝛽, 𝛾 𝑛 𝑑 𝑁, 𝛽, 𝛾 =
𝑁

1+𝛽 2
𝛽2                         (9) 
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 𝑁, 𝛽, 𝛾 𝑃 † .  𝑃  𝑁, 𝛽, 𝛾 =
𝑁(𝑁−1)

4(1+𝛽 2)
(1 − 𝛽2)2                            (10) 

 𝑁, 𝛽, 𝛾 𝐿  . 𝐿  𝑁, 𝛽, 𝛾 =
6𝑁

1+𝛽 2
𝛽2                                (11) 

  𝑁, 𝛽, 𝛾 𝑄  . 𝑄  𝑁, 𝛽, 𝛾 =
𝑁

1 + 𝛽2
 5 +  1 + 𝜒2 𝛽2 +

𝑁 𝑁 − 1 

 1 + 𝛽2 2
[4𝛽2 +

2

7
𝜒2𝛽4 

                                              − 
2

7
𝜒𝛽3 cos 3𝛾]                             (12) 

 𝑁, 𝛽, 𝛾 𝑇  . 𝑇  𝑁, 𝛽, 𝛾 =
𝑁

1+𝛽2

7

5
𝛽2                                    (13) 

with these values the expectation value of the Hamiltonian for 𝜒 = 0 can be written in the form: 

    𝐸 𝑁, 𝛽, 𝛾 =
𝐴2𝛽 2+𝐴4𝛽 4

 1+𝛽 2 2
+ 𝐴0                         (14) 

 

where 

   𝐴2 =  𝜖 −  𝑁 − 1 𝑎0 +  4𝑁 − 8 𝑎2 + 𝜆 𝑁                                                                             15  

 𝐴4 =  𝜖 − 4𝑎2 + 𝜆 𝑁                                                                                                                     (16) 

    𝐴 0 =  
1

4
𝑎0(𝑁 − 1) + 5𝑎2 𝑁                                                                                                     (17) 

with 

𝜆 = 6𝑎1 +
7

5
𝑎3                                                                                                                                 (18) 

3.Equilibrium Deformation and Critical Points 

Minimization of the energy with respect to 𝛽 for given values of the parameters gives the equilibrium value 𝛽0 defining the 
phase of the system,𝛽0 = 0corresponds to the symmetric phase, and 𝛽0 ≠ 0 to the broken symmetry phase. To determine 
the critical values of the order parameters of any nucleus, one needs to determine the locus of points for which conditions 
𝜕𝐸

𝜕𝛽
= 0and

𝜕2𝐸

𝜕𝛽 2
= 0aresatisfied. The minima of E as a function of 𝛽 can be estimated by equating the first order derivative to 

zero, and the location of the critical point is obtaind when E becomes flat at 𝛽 = 0 or equating the second order derivative 

at 𝛽 = 0 to zero. This yield to              .
𝜕𝐸

𝜕𝛽
= 0:     𝐴2 +  2𝐴4 − 𝐴2 𝛽2 = 0                                                                                           (19)  

Therefore the equilibriumvalue is 𝛽0 = ± 
𝐴2

𝐴2−2𝐴4
 

𝜕2𝐸

𝜕𝛽2
│

𝛽 =0
= 0:            𝐴2 = 0                                                                                                         (20) 

Therefore the relation betweenthe parameters to give the critical point is 𝐸 =  𝑁 − 1 𝑎0 − 𝜆 − (4𝑁 − 8).Thus the most 
general PES of the critical point in the U(5)-O(6)phase transition term is: 

𝐸𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
𝐴4𝛽4

(1 + 𝛽2)2
+ 𝐴0                                                                                                               (21) 

The analysis of the two dynamical symmetry limits of the IBM provides a good test to the PES's presented in the above 
formalism. 

(i) For the U(5) limit (𝑎0 = 0, 𝑎2 = 0), the equilibrium shape of the nucleus is always spherical, this yields    𝐸 𝑁, 𝛽 =

 𝜖 + 𝜆 𝑁
𝛽 2+𝛽 4

 1+𝛽 2 2
                                                                                                        (22) 

That is 

𝐸 𝑁, 𝛽 

 𝜖 + 𝜆 𝑁
=

𝛽2

1 + 𝛽2
                                                                                                                                  (23) 

The energy functional is γ independent and has a minimum at 𝛽 = 0.Figure (1a) illustrate the scaled energy functional as a 
function of 𝛽. 

(ii)The analysis of the equilibrium shape in the O(6) limit (𝜖 = 0, 𝑎2 = 0)show that a minimum occurs at 𝛽 = 0and at 

𝛽 = ± 
𝑎0 𝑁−1 −𝜆

𝑎0 𝑁−1 +𝜆
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with 

𝐴2 =  𝜆 − 𝑎0 𝑁 − 1  𝑁  

𝐴4 = 𝜆𝑁                                                                        (24) 

𝐴0 =
1

4
𝑎0(𝑁 − 1)𝑁 

Under the condition 𝑎0(𝑁 − 1) > 𝜆 and 𝑁 ≥5, the critical point is found at 𝑎0 𝑁 − 1 = 𝜆 Therefore   

𝐸𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
𝜆𝑁𝛽4

(1 + 𝛽2)2
+

1

4
𝑎0 𝑁 − 1 𝑁                                 (25) 

Figure (1b)illustrates the PES in the O(6)limit with the parameters 𝐴2 = −3600 𝐾𝑒𝑉, 𝐴4 = 1560 𝐾𝑒𝑉, 𝑎𝑛𝑑 𝐴0 = 1290𝐾𝑒𝑉,we 
notice that the equilibrium shape is deformed at 𝛽 = 0.73 

 

Figure(1) The energy functional 𝑬(𝜷)as a function of deformation parameter 𝜷: (a)For U(5) limit (b) for 
O(6) limit (the minimum of 𝑬 𝜷 is at 𝜷 ≠ 𝟎 (𝟎. 𝟕𝟑) ). 

4. The U(5)-O(6)Shape transition  

The transition between the spherical and 𝛾-unstable shapes can be studied by considering five cases. 

Case 1: (𝑝𝑢𝑡𝑡𝑖𝑛𝑔 𝑎0 = 𝑎1 = 𝑎3 = 0) 

The critical point appear when 𝐴2 = 0, yielding 𝐸𝑐 = −𝑎2(4𝑁 − 8) 

Introducing the control parameter 𝜂1,such that  

1 − 𝜂1

𝜂1
= −

𝑁𝑎2

𝜖
 

Then the critical point is located at 𝜂𝑐 =
4𝑁−8

5𝑁−8
 

For large N limit                𝜂𝑐 =
4

5
                                                                                 (26) 

If we eliminate the contribution of the one body terms, the coefficients 𝐴2and 𝐴4 becomes   

𝐴2 =  𝜖 + 4 𝑁 − 1  𝑎2 𝑁                                       (27) 

𝐴4 = 𝜖𝑁                                                                   (28) 

yielding the critical point at 𝐸𝑐 = −4(𝑁 − 1)𝑎2 and 𝜂𝑐 =
4

5
 

The corresponding PES's for the values of this case is given in Figure (2) for three values of  𝜂 . 

Case 2:  (𝑝𝑢𝑡𝑡𝑖𝑛𝑔 𝑎1 = 𝑎2 = 𝑎3 = 0) 

The critical point appearswhen 𝐴2 = 0, yielding 𝜖𝑐 = 𝑎0(𝑁 − 1) 

Introducing the control parameter 𝜂′such that  

1 − 𝜂′

𝜂′
=

(𝑁 − 1)𝑎0

𝜖
 

Then the critical point is located at 
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                                                                            𝜂𝑐 =
1

2
                                                          (29) 

In this case the PES has a flat behavior (~𝛽4)for small 𝛽,an inflection point is at 𝛽 = 1 and approaches a constant for large 
𝛽. The global minimum at 𝛽 = 0 is not well localized and the PES exhibits considerable instability in 𝛽 resembling a 
squarewell potential for 0 ≤ 𝛽 ≤ 1. 

 

Figure(2) Calculated PES's as a function deformation parameter 𝜷  U(5)-O(6) shape transition for case one at 
three values of control parameter 𝜼 = 𝟖 𝟗   , 𝟒 𝟓 ,  𝟖 𝟏𝟏  the critical point is at 𝜼𝒄 = 𝟒 𝟓 . 

 

Figure(3)the same as in Figure(2) but for the case 2 at the control parameter 𝜼′ = 𝟎. 𝟒, 𝟎. 𝟓 and 𝟎. 𝟔 . The critical 

point is at 𝜼′ =  𝟎. 𝟓 . 

The PES is illustrated in Figure(3) for three values of 𝜂′ 

The critical points connecting U(5) and O(6)in the above two cases are however different and can be viewed as two 
different lines in nuclear shape phase diagram, with the respective critical point lying in two different points in Casten 
triangle. In both cases the PES's display a spherical minimum in 𝛽 = 0 for𝜂 larger than the critical value 𝜂𝑐 , while having a 
deformed minimum for values of 𝜂 smaller than the critical value. At the critical point, the PES in both cases occurs in 

leading order a 𝛽4behavior, but differs for the higher order terms.  

Case 3:Modified O(6) to produce transition  

Putting 𝜖 = 𝑎2 = 0 in the original Hamiltonian and adding the term 𝛼𝑁(𝑁 + 4), then the parameters of the PES's become 

𝐴2 =  −4 𝑁 − 1 𝑎0 + 𝜆 𝑁 

𝐴4 = 𝜆𝑁                                                                           (30) 

𝐴0 =  𝑎0 𝑁 − 1 + 𝛼 𝑁 + 4  𝑁 

In Figure (4),we show the PES's corresponding to modified O(6) limit, with chosen parameters to produce a shape 
transition at N=7. The parameters are 𝜆 = 580 𝐾𝑒𝑉 , 𝑎0 = 12 𝐾𝑒𝑉    𝛼 = 65 𝐾𝑒𝑉 and 𝑁 = 4,7,13. 

Case 4: modified U(5) to produce transition 

 Putting 𝑎0 = 𝑎2 = 0 in the original Hamiltonian and adding the term (𝑎4𝑇4 . 𝑇4 − 𝛼𝑁 𝑛 𝑑  )where 𝑇4
  is the hexadecapole 

oprator 

 𝑇4
 = [𝑑† × 𝑑 ](4) 

 𝑁, 𝛽, 𝛾 𝑇4
 . 𝑇4

  𝑁, 𝛽, 𝛾 =
9

5

𝑁𝛽 2

1+𝛽 2
+

18

35

𝑁(𝑁−1)𝛽 4

(1+𝛽 2)2
                                                     (31) 

,then the parameters of the PES's become 

𝐴2 =  𝜖 + 𝜆 +
9

5
𝑎4 − 𝛼𝑁 𝑁 

𝐴4 =  𝜖 + 𝜆 +
9

5
𝑎4 +  

18

35
− 𝛼 𝑁 𝑁                                (32) 
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In Figure(5), we show the PES's corresponding to modified U(5)limit, with chosen parameters to produce a shape 
transition at N=7. The parameters are 𝐴2 = (660 − 100𝑁)𝑁and 𝐴4 = (500 + 60𝑁)𝑁 

 

Figure(4)Calculated PES's as a function of deformation parameter 𝜷  corresponding to modified O(6) to produce 
shape transition , case 3, with the parameters 𝝀 = 𝟓𝟖𝟎 𝑲𝒆𝑽 ,𝒂𝟎 = 𝟏𝟐 𝑲𝒆𝑽and 𝜶 = 𝟔𝟓 𝑲𝒆𝑽. The total number of 

bosons is N=2,5,7,9 and `12. 

 

Figure(5)Calculated PES's as a function of deformation parameter 𝜷  corresponding to modified U(5) to produce 
shape transition , case 4, with the parameters 𝑨𝟐 = (𝟔𝟔𝟎− 𝟏𝟎𝟎𝑵)𝑵 and𝑨𝟒 = (𝟓. 𝟎 + 𝟔𝟎𝑵)𝑵.The total number of 

bosons is N=2,5,7,9 and `12. 

Case 5: 

If 𝑎0 ≠ 0 and 𝑎4 = 0 in case 4, then the parameters of the PES's become 

𝐴2 =  𝜖 + 𝜆 − (𝑁 − 1)𝑎0 − 𝛼𝑁 𝑁 

𝐴4 =  𝜖 + 𝜆 − 𝛼𝑁                                                             (33) 
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𝐴0 =
1

4
(𝑁 − 1)𝑎0𝑁 

In the Figure (6),we show the PES's corresponding to chosen parameters to produce a shape transitionthe parameters are 
𝐴2 =  1031.21 − 154.2𝑁 𝑁 , 𝐴4 =  930.01 − 53𝑁 , and𝐴0 = 25.3(𝑁 − 1)𝑁. 

 

Figure(6) The same as in Figure(5) but when 𝒂𝟒 = 𝟎 with the parameters 𝑨𝟐 = (𝟏𝟎𝟑𝟏. 𝟐𝟏 − 𝟏𝟓𝟒. 𝟐𝑵)𝑵, 𝑨𝟒 =
(𝟗𝟑𝟎. 𝟎𝟏 + 𝟓𝟑𝑵)𝑵, and 𝑨𝟎 = 𝟐𝟓. 𝟑(𝑵 − 𝟏)𝑵 

5. Application to Xenon Isotopic chain 

The xenon isotopic chain along the mass region𝐴~120 − 130 represent excellent example for studying O(6)-U(5) shape 
phase transition which give a good test of the proposed nuclear IBM .We will study the second order shape phase 
transition between the U(5) and O(6) by analyzing the PES's of the Xenon isotopic chain 

122-132
Xe. The structure 

parameter of the quadrupole operator is taken to be zero .For each nucleus parameters of the PES's  A2 and A4 which are 
linear combination of the original parameters of the Hamiltonian have been adjusted by fitting the experimental excitation 
energies of the yrast band to the calculated ones using a computer search program to minimize 𝜒 such that  

𝜒 = (
1

𝑁
  

𝐸𝑒𝑥𝑝 . 𝐼𝑖 −𝐸𝑐𝑎𝑙 (𝐼𝑖 )

∆𝐸𝑒𝑥𝑝 . 𝐼𝑖 
 

2
𝑁
𝑖=1 )

1

2                               (34) 

where N is the number of the experimental fitting points and ∆𝐸𝑒𝑥𝑝 . 𝐼  are the experimental errors. The adopted best 
parameters are listed in Table [1]. These model parameters give a satisfactory description of the experimental data 
[31]and theoretical  

calculations[32]In Figure(7), the corresponding PES's plotted for this isotopicchain of nuclei which evolve from 𝛾-unstable 
nuclei to spherical vibrator when moving from the lighter 

122
Xe to heavier 

132
Xe isotopes. 
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Table (1) the PES's parameters A2 and A4 (in MeV) as derived in fitting procedure for Xe isotopic chain. 

Isotope A2(MeV) A4(MeV) 

122
Xe -4.84 12.76 

124
Xe -3.40 11.00 

126
Xe

 
-2.16 9.36 

128
Xe -1.12 7.84 

130
Xe -0.28 6.44 

132
Xe 0.36 5.16 

 

To get the characteristic of collectivity in our Xe isotopic chain, the behavior of the energyratios 𝑅𝐼/2 = 𝐸(𝐼𝑖
𝜋 )/𝐸(21

+) have 

been calculated for 
122

Xe and 
132

Xe and compared to those of the predicted dynamical symmetries for the O(6) and U(5) 
limits of the IBM , Specially the ratio 𝑅4/2 is a good criterion for the shape transition. The value 𝑅4/2 has a limiting value 2 

for quadrupole vibrator and 2.5 for a non-axial 𝛾 soft rotor. As it is seen from the Figure (8) 𝑅4/2decreasing gradually from 

2.5 for 
122

Xe to 2.25 for 
130

Xe. This means that this structure varies from 𝛾-soft rotor along harmonic vibrator. So the 
energy spectrum of the 

122-132
Xe nuclei can be studied between the rotational and vibrational limits. 

 

Figure(7)Calculated PES's (in MeV)as a function of deformation parameter 𝜷  in U(5)-O(6) to shape transition , for  
122-132

Xeisotopic chain( with 𝑵𝝅 = 𝟐 𝒑𝒓𝒐𝒕𝒐𝒏 𝒂𝒏𝒅 𝑵𝝂 = 𝟕 𝒕𝒐 𝟐 neutron bosons). The total number of bosons is 𝑵 = 𝟗 
to 4. 

 

Figure(8)The evolution of yrast energy ratios 𝑹𝑰/𝟐 = 𝑬(𝑰)/𝑬(𝟐) as a function of angular momentum I for the nuclei 
122

Xe and 
130

Xe and comparison with the prediction of U(5) and O(6) dynamical symmetry limits. 
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6. Conclusion 

The paper is focused on the U(5)-O(6)second order shape phase transition of the IBM. The considered Hamiltonian has 
been written in multipole form and studied in some different cases in order to produce shape phase transition. The PES's 
have been calculated as expectation values of the Hamiltonian operator within the intrinsic coherent states. The PES's in 
each case are investigated and analyzed and the equilibrium deformation and critical points are determined. The values of 
the PES's for doubly even Xe isotopic chain are studied systematically. The model parameters are adjusted by fitting the 
excitation yrast energies with the calculated ones by performing a computer search program in order to minimize the root-
mean-square(rms) deviation between the experimental excitation energies and calculated ones. The phase diagram for Xe 
nuclei exhibits second order shape phase transition from spherical U(5) to 𝛾-unstable O(6) when moving from heavier 
isotope 

132
Xe(with boson number =4)to lighter ones 

122
Xe (with boson number N=9) 
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