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ABSTRACT 

We presented in this paper a theoretical modification of Hume Rothery condition of phase stability in good agreement with 
experimental data. This modification is derived directly from the quantum conditions on the free electron Fermi gas inside 
the crystal. The new condition relates both the volume of Fermi sphere VF and volume of Brillouin zone VB by the valence 

electron concentration VEC as ;   
𝑽𝑭

𝑽𝑩
= 𝑽𝑬𝑪   for tetragonal and hexagonal systems and as;  

𝑽𝑭

𝑽𝑩
=

𝑽𝑬𝑪

𝟐
  for cubic systems.  
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1. INTRODUCTION   

The Hume Rothery condition of phase stability [1] states that the structure of a certain phase will be stable when the Fermi 
sphere touches the Brillouin zone boundary at a certain plane. In this case the diameter of Brillouin zone (KB) will equal to 
the diameter of Fermi sphere (2kF), i.e. KB =2kF. where kF is the Fermi wavevector or the radius of Fermi sphere and its 

magnitude is given by 𝒌𝑭 =  
𝟑𝝅𝟐𝑵

𝑽
 

𝟏

𝟑
 , where N is the number of electrons in the volume V. The diameter of Brillouin zone is 

given by KB= 2π/d(hkl), where d(hkl) is the interplanar distance between (hkl) planes. The condition means that the Fermi 
sphere will touch the Brillouin zone in a certain direction in the reciprocal space. Actually Brillouin zones are not spherical 
in shape and they are polyhedral in the reciprocal space and depend on the type of crystal structure of the real lattices. 
For example; the real face centered cubic lattice in reciprocal space becomes body centered and vice versa. We have to 
compare the volume of the Fermi sphere with the whole volume of Brillouin zone. 

 Let us assume that there is a relation between the volume of Fermi sphere VF and the volume of Brillouin zone VB in the 
form; VF = CVB where C is a dimensionless constant depends on the electron concentration for a particular alloy system. 

Here also 𝑽𝑭 =
𝟒

𝟑
𝝅𝒌𝑭

𝟑  and VB=(2π)
3
/VP, where VP is the volume of primitive cell of the real lattice. At First we will take the 

body centered tetragonal (BCT) -Sn. Now let us calculate the volume of the primitive cell of -Sn. The primitive lattice 
vectors of BCT is given by [2]; a1= (a/2, a/2, c/2) , a2=(a/2, -a/2, c/2), and a3=(a/2, a/2, -c/2) and since the volume of the 
primitive cell VP is given by; VP = a1.a2xa3. After calculation we get VP=a

2
c/2, since the volume of conventional cell is 

VC=a
2
c therefore VP=VC/2. All the Brillouin zones have the same volume, i.e. the volume of first zone equal to the volume 

of the second zone and so on. The volume of Brillouin zone is related to the volume of the primitive cell by; VB=(2π)
3
/VP 

therefore we have VB= 16π
3
/VC. Here VB can be calculated from the XRD data. 

Now let us calculate the volume of Fermi sphere VF from the equation of kF as the following; 𝑽𝑭 =
𝟒

𝟑
𝝅𝒌𝑭

𝟑 =
𝟒

𝟑
𝝅(

𝟑𝝅𝟐𝑵𝑪

𝑽𝑪
) 

substituting for VF and VB we get; 𝑽𝑭 =
𝑵𝑪

𝟒
𝑽𝑩 where NC is the number of electrons in the conventional unit cell. The 

valence electron concentration (VEC) is defined as the number of electrons per atom, i.e. VEC=NC/na where na is the 

number of atoms in the unit cell. Substituting for NC we get 
𝑽𝑭

𝑽𝑩
=

𝒏𝒂

𝟒
𝑽𝑬𝑪. For Sn unit cell na=4, so we get;  

𝑽𝑭

𝑽𝑩
= 𝑽𝑬𝑪  this is 

the condition of phase stability for pure β-Sn. This condition is derived directly from the quantum conditions on the free 
electron Fermi gas inside the crystal and it is not an assumption. Therefore the aim of the present work is to check the 
validity of this condition for some of pure metals with different crystal structure and valencies such as Li, Na, Cu, Ag, Al, 
Pb, Cd, Zn, and In and for Sn based binary systems. The Sn-based binary systems under investigation in this work are, 
Sn-Cu, Sn-Cd, Sn-Al, and Sn-Sb. The experimental XRD data are obtained from reference [3] for pure metals and from 
reference [4] for Sn based binary alloys. Also the data for kF is taken from reference [5]. 

2. CALCULATION AND RESULTS  

2.1. PURE METALS 

I. Face Centered Cubic (FCC) 

The primitive cell of FCC is described by the primitive vectors [2]; 

a1=(0, a/2, a/2), a2=(a/2, 0, a/2), and a3=(a/2, a/2, 0). Also the volume of the primitive cell VP is given by; VP= a1.a2xa3, 

substituting we get VP=a
3
/4 = VC/4 therefore VB=(2π)

3
/VP=32π

3
/VC. Now we have; 𝑽𝑭 =

𝟒

𝟑
𝝅𝒌𝑭

𝟑 =
𝟒

𝟑
𝝅(

𝟑𝝅𝟐𝑵𝑪

𝑽𝑪
) substitute for 

VC we get, 𝑽𝑭 =
𝑵𝑪

𝟖
𝑽𝑩, here NC is the number of electrons in the conventional unit cell. Since NC = naVEC , therefore we 

have; 
𝑽𝑭

𝑽𝑩
=

𝒏𝒂

𝟖
𝑽𝑬𝑪. For Cu, Ag, Al, and Pb; na=4 and hence we get;  

𝑽𝑭

𝑽𝑩
=

𝑽𝑬𝑪

𝟐
 . This theoretical result is in good agreement 

with the calculated results in Table 1. Therefore we can write;  
𝑽𝑭

𝑽𝑩
=

𝑽𝑬𝑪

𝟐
  for FCC. 

Table 1. The structure parameters of FCC metals. 

Structure 
parameter 

FCC 

Cu Ag Al Pb 

Valency 1 1 3 4 

NC 4 4 12 16 

VEC 1 1 3 4 

A 3.61505 4.0855 4.04963 4.93 

NC/VC (Ǻ)
-3
 0.08466 0.05865 0.18069 0.13353 



ISSN 2347-3487                                                           

2015 , 21                                                                                                                                               July   2505 | P a g e 

VC (Ǻ)
3
 47.2435 68.1923 66.4119 119.8231 

VB (Ǻ)
-3
 21.0018 14.550 14.9401 8.2805 

kF (Ǻ)
-1
 1.36 1.2 1.75 1.57 

VF (Ǻ)
-3
 10.5367 7.2382 22.4492 16.2101 

VF/VB 0.5017 0.4974 1.5026 1.9576 

 

II. Body Centered Cubic (BCC) 

The primitive cell of BCC is described by the primitive vectors [2]; 

a1=(-a/2, a/2, a/2), a2=(a/2, -a/2, a/2), and a3=(a/2, a/2, -a/2). Also the volume of the primitive cell VP is given by; VP= 

a1.a2xa3, substituting we get; VP=a
3
/2 = VC/2 therefore VB=(2π)

3
/VP=16π

3
/VC. Now we have;𝑽𝑭 =

𝟒

𝟑
𝝅𝒌𝑭

𝟑 =
𝟒

𝟑
𝝅(

𝟑𝝅𝟐𝑵𝑪

𝑽𝑪
) 

substitute for VC we get, 𝑽𝑭 =
𝑵𝑪

𝟒
𝑽𝑩, and since NC=naVEC, therefore we have; 

𝑽𝑭

𝑽𝑩
=

𝒏𝒂

𝟒
𝑽𝑬𝑪. For Li and Na, na=2 and hence 

we get;  
𝑽𝑭

𝑽𝑩
=

𝑽𝑬𝑪

𝟐
 . This theoretical result is in good agreement with the calculated results in Table 2, therefore we can 

write; 
𝑽𝑭

𝑽𝑩
=

𝑽𝑬𝑪

𝟐
  for BCC. 

Table 2. The structure parameters for BCC, HEX and Tetragonal metals. 

Structure 
parameter 

BCC Hexagonal Tetragonal 

Li Na Cd Zn In 

Valency 1 1 2 2 3 

NC 2 2 4 4 6 

VEC 1 1 2 2 3 

A 3.51 4.29 2.9793 2.665 3.251 

C 3.51 4.29 5.6181 4.947 4.945 

NC/VC (Ǻ)
-3
 0.04624 0.02533 0.09262 0.1314 0.1148 

VC (Ǻ)
3
 43.2435 78.9535 43.1865 30.4275 52.2637 

VB (Ǻ)
-3
 11.4722 6.2834 5.74369 8.1521 4.7461 

kF (Ǻ)
-1
 1.11 0.92 1.4 1.57 1.5 

VF (Ǻ)
-3
 5.7287 3.2617 11.49 16.2101 14.1371 

VF/VB  0.4993 0.5190 2.0004 1.9884 2.9786 

 

III. Hexagonal System (HEX) 

The primitive cell of HEX is described by the primitive vectors [2]; 

a1=(a/2, -a 𝟑/2, 0), a2=(a/2, a 𝟑/2, 0), and a3=(0, 0, c). Also the volume of the primitive cell VP is given by; VP= a1.a2xa3, 

substituting we get VP=a
2
c 𝟑/2 = VC therefore VB=(2π)

3
/VP=8π

3
/VC. Now we have; 𝑽𝑭 =

𝟒

𝟑
𝝅𝒌𝑭

𝟑 =
𝟒

𝟑
𝝅(

𝟑𝝅𝟐𝑵𝑪

𝑽𝑪
) substitute for 

VC we get, 𝑽𝑭 =
𝑵𝑪

𝟐
𝑽𝑩, Substitute for NC=naVEC, we have; 

𝑽𝑭

𝑽𝑩
=

𝒏𝒂

𝟐
𝑽𝑬𝑪. For Cd and Zn na=2  and hence we get; 

𝑽𝑭

𝑽𝑩
= 𝑽𝑬𝑪. 

This theoretical result is in good agreement with the calculated results in Table 2, Therefore we can write; 
𝑽𝑭

𝑽𝑩
= 𝑽𝑬𝑪  for 

hexagonal structure. 
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IV. Tetragonal System (TET) 

In the introduction we have discussed the body centered tetragonal, here we will discuss primitive tetragonal cell decribed 
by[2]; 

a1=(a,0, 0), a2=(0, a, 0), and a3=(0, 0, c) by substituting we get for VP=a
2
c=VC therefore VB=(2π)

3
/VP=8π

3
/VC. Now we 

have; 𝑽𝑭 =
𝟒

𝟑
𝝅𝒌𝑭

𝟑 =
𝟒

𝟑
𝝅(

𝟑𝝅𝟐𝑵𝑪

𝑽𝑪
) substitute for VC we get, 𝑽𝑭 =

𝑵𝑪

𝟐
𝑽𝑩. Substitute for NC=naVEC, we have; 

𝑽𝑭

𝑽𝑩
=

𝒏𝒂

𝟐
𝑽𝑬𝑪. For In 

na = 2 and hence we get; 
𝑽𝑭

𝑽𝑩
= 𝑽𝑬𝑪. This theoretical result is in good agreement with the calculated results in Table 2, 

Therefore we can write; 
𝑽𝑭

𝑽𝑩
= 𝑽𝑬𝑪  for primitive tetragonal. 

2.2. SN BASED BINARY ALLOYS 

  In this work the study is restricted on the primary substitutional solid solutions of a solute atom in Sn. Also we 
assume one solute atom substitutes one Sn atom in each unit cell. 

I- Sn-Cu system 

For Sn-Cu system the unit cell will contain 3 Sn atoms and one Cu atom of valency +1, therefore NC=3x4+1x1=13 electron 
and VEC=13/4=3.25 electron per atom (e/a). The crystal structure of this solution is BCT and the condition of phase 

stability we have derived for this structure is 
𝑽𝑭

𝑽𝑩
= 𝑽𝑬𝑪. We calculate VF/VB to be 3.25. Now let us calculate VB and VF and 

check the result we have obtained. The volume of the conventional unit cell VC= 105.90 Ǻ
3 

(see Table 3) and hence VB= 

16π
3
/VC = 4.6846 Ǻ

-3
. Now we will calculate kF using 𝒌𝑭 =  

𝟑𝝅𝟐𝑵𝑪

𝑽𝑪
 

𝟏

𝟑
  And then we can calculate VF from 𝑽𝑭 =

𝟒

𝟑
𝝅𝒌𝑭

𝟑. By 

calculation we get; VF=15.2249 Ǻ
-3

. Finally we get; VF/VB = 3.25  which equal the VEC for this alloy as predicted by the 
modified condition of phase stability. By the same method we can proceed for the other systems.  

II- Sn-Cd System 

In this system the unit cell will contain 3 Sn atoms and one Cd atom of valency +2 therefore NC=3x4+1x2=14 electron and 
VEC=14/4=3.5 e/a. (see Table 3) By calculation we get VF/VB =3.5 and comparing with VEC we find a good agreement 

with the modified condition of phase stability   
𝑽𝑭

𝑽𝑩
= 𝑽𝑬𝑪     

Table 3. The structure parameters of BCT Sn based binary alloys. 

Structure 
parameter 

BCT 

Sn-Cu Sn-Cd Sn-Al Sn pure Sn-Sb 

Solute 

Valency 
1 2 3 4 5 

NC 13 14 15 16 17 

VEC 3.25 3.50 3.75 4.00 4.25 

NC/VC (Ǻ)
-3
 0.1227 0.1322 0.1402 0.1479 0.1610 

VC (Ǻ)
3
 105.90 105.88 106.98 108.18 105.56 

c/a 0.5476 0.5464 0.5455 0.5457 0.5418 

VB (Ǻ)
-3
 4.6846 4.6854 4.6373 4.5858 4.6997 

kF (Ǻ)
-1
 1.5375 1.5760 1.6072 1.6360 1.6831 

EF (eV) 9.0068 9.4641 9.8415 10.1981 10.7937 

VF (Ǻ)
-3
 15.2249 16.3992 17.3899 18.3435 19.9737 

VF/VB  3.25 3.50 3.75 4.00 4.25 
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III- Sn-Al System 

In this system the unit cell will contain 3 Sn atoms and one Al atom of valency +3 therefore NC=3x4+1x3=15 electron and 
VEC=15/4=3.75 e/a. (see Table 3) By calculation we get VF/VB =3.75 and comparing with VEC we find a good agreement 

with the modified condition of phase stability   
𝑽𝑭

𝑽𝑩
= 𝑽𝑬𝑪.     

IV- Sn-Sb System 

In this system the unit cell will contain 3 Sn atoms and one Sb atom of valency +5, therefore NC=3x4+1x5=17 electron and 
VEC=17/4=4.25 e/a. (see Table 3). By calculation we get VF/VB =4.25 and comparing with VEC we find a good agreement 

with the modified condition of phase stability   
𝑽𝑭

𝑽𝑩
= 𝑽𝑬𝑪.    

3. Discussion 

The derivation of the modified condition of phase stability is based on the equation of the wavevector kF given above and 
this equation originated from the quantum conditions on the free electron Fermi gas inside the crystal. Now let us see what 
will happen to the crystal structure of the primary solid solution based on Sn when the electron concentration changes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 (a) Variation of  VC with VEC (b) Variation of VB with VEC. 

Figure 1(a) shows the variation of the volume of the unit cell VC with VEC. VC increases up to maximum value at VEC=4 
and then decreases with increasing VEC. Figure 1(b) shows the variation of volume of Brillouin zone with VEC. Here VB 
decreases with increasing VEC up to minimum value at VEC=4 and then increases. Both VC and VB are inversely related 
since for BCT; VB= 16π

3
/VC. When the electron concentration changes the atoms arrange themselves, due to the 

quantum interaction with these electrons, to have a certain positions and hence a certain shape and volume of the unit cell 

VC. Accordingly VB changes in such a way to obey the condition of stability 
𝑽𝑭

𝑽𝑩
= 𝑽𝑬𝑪. The inversion point in both curves 

for VC and VB is at VEC=4 which is VEC of pure base metal Sn and this means that the cell accommodated for VEC = 4 
and when the VEC exceeds this value a change has to be occur to account for the extra electrons.  

 

 

 

     

 

 

 

 

 

 

 

 

 

Figure 2 (a) Variation of VF with VEC (b) The ratio VF/VB with VEC. 
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Figure 2 (a) shows the variation of volume of Fermi sphere VF with VEC. VF increases linearly as indicated from 𝑽𝑭 =
𝟒𝝅𝟑𝒏𝒂𝑽𝑬𝑪

𝑽𝑪
  where na is the number of atoms in the unit cell. Figure 2 (b) shows the verification of the condition of phase 

stability experimentally which shows exact agreement with the theoretically derived condition 
𝑽𝑭

𝑽𝑩
= 𝑽𝑬𝑪. 

4. CONCLUSION 

The theoretically derived condition is in a very good agreement with the experimental data which confirm the validity of this 
modified condition of phase stability. Therefore we can conclude that the alloy adapts its crystal structure in such a way , 
the ratio of volume of Fermi sphere VF to volume of Brillouin zone VB is related to valence electron concentration VEC as;   
𝑽𝑭

𝑽𝑩
= 𝑽𝑬𝑪 for tetragonal and hexagonal systems and as;   

𝑽𝑭

𝑽𝑩
=

𝑽𝑬𝑪

𝟐
  for cubic systems.  
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