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Abstract

The wholeness principle is analysed for non-abelian gauge symmetry. This principle states that nature acts through
grouping. It says that physical laws should be derived from fields associations. At this work, we consider on the possibility of

introducting a non-abelian fields set { Azl } under a common gauge parameter.

A Yang-Mills extension is studied. Taking the SU (N) symmetry group with different potential fields rotating

under a same group, new fields strengths are developed. They express covariant entities which are granular, collective,
correlated, and not necessarily Lie algebra valued. They yield new scalars and a Lagrangian beyond Yang-Mills is obtained.

Classical equations are derived and (2N +7) equations are developed.

A further step is on how such non-abelian whole symmetry is implemented at SU (N) gauge group. For this, itis
studied on the algebra closure and Jacobi identities, Bianchi identities, Noether theorem, gauge fixing, BRST symmetry,
conservation laws, covariance, charges algebra. As result, one notices that it is installed at SU(N) symmetry
independently on the number of involved fields. Given this consistency, Yang-Mills should not more be considered as the
unique Lagrangian performed from SU (N) .

Introducting the BRST symmetry an invariant Leff is stablished. The BRST charge associated to the N -potential

fields system is calculated and its nilpotency property obtained. Others conservations laws involving ghost scale, global
charges are evalued showing that this whole symmetry extension preserve the original Yang-Mills algebra. Also the ghost
number is conserved. These results imply that Yang-Mills should be understood as a pattern and not as a specific
Lagrangian.

Concluding, an extended Lagrangian can be constructed. It is possible to implement a non-abelian whole gauge
symmetry based on a fields set {Af:I }. Its physical feature is a systemic interpretation for the physical processes.
Understand complexity from whole gauge symmetry.
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1 Introduction

Gauge symmetry is guiding physics [1]. The physical laws search is being determined by symmetry groups. They
carry the lemma where the numbers of gauge fields should be given by the number of generators of a given group. Under
this principle Yang-Mills theories have been developed [2, 3]. Nevertheless it is possible to move beyond to this situation by
including an undefined number of potential fields rotating under a same symmetry group [4]. Different origins based on
Kaluza-Klein [5], supersymmetry [6], fibre bundle [?], o -model [7] have already been studied to consider an initial set of
fields transforming under a common gauge group as

, _ i _
A,'=UA, U +—o UU™, €
g
iat
where | =1,...,N and U = e'“@2 The matrices t, are the group generators of SU(N) . This matrices satisfy the

Lie algebra for SU (N) . Theindex a is an internal indice and run according to the group’s choice.

Eq. (1) indicates the existence of a non-abelian gauge symmetry involving different potential fields. It introduces the
meaning of wholeness through gauge symmetry. Consequently emerges a new concept for physical laws be understood. Its
whole symmetry deploys an ab initio for describing a systemic nature. For this, it constructs a fields association under a
same gauge parameter. Considering that such fields satisfy the Borschera€™s theorem [8], one can redefine them. To get a

better transparency on symmetry, one should write the model in terms of the {Dﬂ, XM} fields basis, where Dﬂ = tha
is defined as

DH i Z Aﬂ' f @
I
with

0 —y -1 I -1
D> D,1SUD,U S o, 3

and where X ; = X2t are potential fields

X = Aa= A Ay = A= Aa )
with
i -1
Xﬂi—>Xﬂi—UXMU , (5)
where | = 2,...,N. Thus the field Dy works as the usual gauge field and the fields X#i as a kind of vctor-matter fields

transforming in the adjoint representation. Geometrically, the potential fields X 4 can be originated from the torsion tensor

of the higher-dimensional manifold that spontaneously compactify to M *xB* ,where B* is the Minkowski space-time

and B¥ some K -dimensional internal space. Thus the origin of the potential fields can be treated back to the vielbein,

spin-connection and potential fields of higher-dimensional gravity-matter coupled theory spontaneously compactified for an
internal space with torsion [5].

Nevertheless by definition, the physical fields are that ones which physical masses are the poles of two-point Green
functions. For this, one has to diagonalize the transverse sector by introducting a matrix €2 [9]. The {Dﬂ, Xyi} basis is
not the physical basis. It yields an operation guaranteed by the Borscher’'s theorem saying that physics must be
nondependent under fields reparametrizations [8]. Thus, the physical basis {G #,} is obtained rotating as

- I — I
D,u - QlIG,u ' X,ui - QiIG,u (6)
and so, given the Q) matrix invertible condition
-1
QIKQKJ - 5IJ @

one gets
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G, >G, UGﬂ,U‘l+g—6 uu, ®)
|

where (, = i_l . It is understood the notation G u = G ﬂlt The presence of different coupling constants means on
11

the possibility for coupling with different currents.

The outline of the paper is organized as follows. The methodology is first to expose the new aspect originated from
SU (N) symmetry, and then, understand how through the gauge parameter and group generators the non-abelian
symmetry is implemented. So at section 2, the non-abelian fields set symmetry { Azl } is proposed through an extended

Lagrangian with respect to Yang-Mills. In section 3, from internal mechanisms one studies that this extended model is
consistent with the symmetry skeleton which antecedes the Lagrangian. In the next two sections, Bianchi and Noether
identities are derived. At section 6, the Lagrangian is divided in different pieces according to the scalars produced from
generators decomposition. In section 7 one extracts on the classical equations showing about granular and collective
space-time evolutions, covariance and with relationships beyond Lie algebra. Conserved currents are explored at section 8.
The energy-momentum tensor is expressed at section 9. On symmetries as BRST, ghost scale and global gauge
transformations, corresponding charges algebras and ghost number conservation are left for section 10. The corresponding
Slavnov-Taylor Identity is written at section 11. Concluding remarks are posted at section 12, saying on the possibility of a
systemic physics be described based on the whole symmetry principle.

2 Non-abelian whole Lagrangian

A non-abelian gauge symmetry association is defined through equations (1), (3), (5), (8). They are showing that the
SU(N) symmetry can be worked out through different fields basis as { A, }, {Dﬂ, Xﬂi} , {GM} . However,
{Dﬂ , X;zi} is called the constructor basis due to the fact that, under this field-referential, the gauge invariance origin for the
Lagrangian terms become more immediate. This is because the field Dﬂ works as the usual gauge field and the fields
X 4 transform covariantly.

The candidate for non-abelian whole Lagrangean will contain granular and collective contributions coming from
antisymmetric, symmetric and semi-topological sectors [10]. Working out the Lagrangian in constructor basis, one gets

i = v TuUv l i 4
Ly (D, X =tr[(Z,, +2,) +mr|@,, +2,)@" + 7" )]—Emijx#x“, ©

where ZW is the most general covariant field strength with granular dependence on fields, and Zﬂv is associated to

collective fields. Z*" means £, Zm

Decomposing on antisymmetric and symmetric sectors

2w = Lyy+Ziun (10)
where
Z,,=dD,, + & X, (11)
with the following granular field strength
D#V:E)#Dv—avDﬂJrig[Dﬂ,Dv], (12)
and
Xy =0,X.—0,X},+ig([D,, X/]1-[D,, X1} (13
For the symmetric sector,
(,uv) ﬁx(,uv)-i_pl ,uvxsi’ (14)

with g, the metric tensor of Minkowski space and
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X i

(uv)

=0,X}+a,X! +ig([D,, X!1+[D,, X \]) (15)

Similarly for the collective field strength,

Zyv = Ziun F L) (16)
where
Zh = Y X X+ 8 [X L X T+ by {X,, XS a7
and
Ly = a‘[ij][x;iu ij]"'b(ij){X;iu ij}+u[ij]gyv[xziz’ Xaj]"'v(ij)g,w{xli Xaj}- (18)

Notice that Z#

order to explore the abundance of gauge scalars that such extended model offers one should also consider all possible
group-valued structures in the non-irreducible sector contribution.

and ZH are not necessarity Lie algebra valued as it is Fy , inthe usual Yang-Mills theory. However in

\4 v

Besides that, one can yet to express the gauge fixing term so that the Lagrangian Eqg. (9) become LGI + LGF , with
Ls = 1[0, (D + o x4)F
GF — E #( +0; ) (19)
The transverse diagonalized gauge invariant Lagrangian, which means the physical Lagrangian, is given by

L@ =tl@,, +2, )+, +2,0@ + 2] miGle +4,(0,61)0.6%),

(20)
where the corresponding field strengths one written in terms of physical fields. Rewriting Eq. (11),
Z,,=8(0,G, -0,G,)-iga,[G,.G’], (21)
with
a, =dQy, + Q) , ay) =8, +aQ, Q). (22)
For Eqg. (17),
Ly = 7[|J]G/LG\‘/] + b(u)[G;I, G 1+ C[IJ]{G;Iz .G} (23)
with
Y = 7[ij]Qi|Q§
by = a2
Cruy = B Q) (24)
For Eq. (14),
Z,,=p G(va) + 0 g/.lVGZI , (25)
with
G(va) = a,uG\l + avG;Iz + IgJ ([G/IJ ’ G\:] ] _[GJ ’ Gi ]): (26)
and
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9, =09Q,, 5 = ﬂiQil VP = piQiI . @7)

For Eq. (18),
Ly = b[u][G;Iu G/1+ C(IJ){G;I: .G+ U[U]QW[G; ,G”] +V(IJ)gyv{Golz ,G*}. (28)
with
by = b5, Gy = G2 Q)
Uy = u[ij]QiIQ\J; Vaoy = V(ij)QiIQ.J; (29)
Notice that egs. (21), (23), (26), (28) transform covariantly.
3 Symmetry skeleton

We consider five preliminary types of fundamental mechanism analysis on the conditions for including more fields.
They are based on counting the number of degrees of freedom, geometry, supersymmetry, symmetry and dynamics. This
section intends to explore the most subtle, the fourth hability. It is based on the following instructions: algebra closure, BRST
algorithm, Bianchi identities, local Noether theorem, covariance. The function of these symmetry topics will be to study

whether the SU (N) gauge group accomodates the presence of N potential fields rotating under the same group

parameters. These arguments purely based on symmetry will work as basis for including an extended Lagrangian to SU(N)
Symmetry Group. Gauge fields, being Lie algebra-valued carry group properties. Therefore, a first call of command from
symmetry is to verify whether the set of gauge transformations implemented by such general gauge theory is able to build up
one algebra. Considering the physical sector, one gets the field transformations

Gy =D, (X (30)
where
[D,, 2" = Q;8,a%(x) +[G,, (x),a(x)]* (31)
and taking two successive gauge transformations, one gets that the algebra of infinitesimal transformations closes:
[6(c1),6(a2)IG;; = of D, (@50r) (32)

The Jacobi identity of the Lie algebra imposes a next relationship. It is necessary to show that these infinitesimal
transformations generate the whole invariance groups. Verify that the Jacobi identity acting on field G P is satisfied. From
Eq. (32), it yields

{[6(a1),[6(2), 5(ax3)]1+cycl. perm 3G =0 (33)

Eq. (32) and Eq. (33) apply to any tensorial combination. Concluding this first consistency test, one can state that the local
properties for the N -potential fields of the classical transformations are summarized by Eq. (30), Eq. (32) and Eq. (33).

The next text includes quantum aspects. It is the BRST algorithm. BRST transformations [11] have been
considered a very useful technique to probe the internal structure of a gauge theory. By taking supplementary fields with
unphysical statistics it was noticed, initially, as a method to originate the Ward identities and also to compensate the effects
due the quantum propagation of zero modes which are contained in a potential field. However it was later understood that
the BRST framework also reveals more intrinsic aspects of the theory. Besides solving the gauge dependence of the
gauge-fixing term, it brings a perspective where it anticipates the notion of Lagrangian. This means that BRST signature
appears at the level of first principle for detecting a full Lagrangian. In this way, as the ghosts and the auxiliary fields are
unphysical quanta, one could say that the BRST method works like the X-ray technique for detecting a possible physical
illness embedded in the body of the theory. For instance, by computing the cohomology of the BRST charge, one is able to
infer about the stability and absence of anomalies in the theory [12].

Considering that the BRST and anti-BRST symmetries [13] penetrate in the symmetry instructions for organizing
the most general gauge invariant Lagrangian, our proposal is to use it for testing how for gauge theories will be able to

absorb the presence of more potential fields. We are going to follow the Baulieu & Thierry-Mieg prescription [14]. There
the ghost technical device takes from the very beginning, for predicting the Lagrangian, a set of basic fields D#, c,C,b

; and in our case it should be complemented by the presence of XL , N—1 massive vector fields.
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The inclusion of the auxiliary field D, interpreted as a Lagrangian multiplier for the gauge-fixing condition,

promotes the BRST and anti-BRST as fundamental symmetries of gauge theories. The symmetry generators S and S of
fields into ghosts become independent of the notion of Lagrangian in the sense that transformations do not depend any more
on the gauge-fixing term of the Lagrangian. Writing in terms of the fields,

sDﬂ =V,c, §D# =V,C,
sX, =[X,,,c],sX,, =[X,,c],

u?

sc= —%[c,c], sc=-[c,c]-b,

sC=b,sC = —l[c,c],

2
sb=0,sb =-[C,b], (34)
where
v/,t :ay-+g[Dy’-]7 (35)
D/.l :ay-+g[D;t’-]+gi[X;ﬂ-]’ (36)
and

sc+5c=]c,c]. (37)

Information contained in Eq. (37) can be checked by Eg. (34). They completely determine the properties of an extended
gauge symmetry.

The algebraic method will be scheduled in terms of Lorentz invariance, dimension analysis, ghost number, BRST
and anti-BRST invariance, hermiticity and global invariance. It builds up the following expansion

L%y =L (cl) +sKJ +sK3* + 5K (38)
where LelXt s Kzext 4 K;Xt and K:Xt are polynomial functions on all fields satisfying the above conditions. The operators
S and S obey the following nilpotency relations

s> =s5+55=52 (39)
which are equivalent to the closure of the classical algebra and to the Jacoby identity.

Now, the next step is to prove that this full extended BRST invariance Eg. (34) leads to the most general
non-abelian gauge independent physics. From the fact that LQ has dimension four and zero ghost number, one

immediately extends the result K2 for Yang-Mills theory by
K> =K, +a,D, X" (40)
where
K, = a, D}, +aCc (41)
Notice that the term a4inLX I obeys all requisites to enter the K;Xt definition. However, they are S and S

invariants giving a null contribution to LQ . They are then irrelevant.

Looking for K;Xt , one explores a combination of four independent monomials, three present in the discussion of
Yang-Mills theory

bc, (42)
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b(‘:+%c[c‘:,c] - _s(co), 43

H (44)

__1_
D9 ,c ==5D?
2
and still fourth possibility in our case
Hy & =& 4
o X 8ﬂc = ais(D#X ) (45)
However one can eliminate Eq. (43) - Eq. (45) from the game since they are of the type §K2 . So the result here is
the same as in ordinary Yang-Mills theories
Xt — v — —_
K5® =K, =T (46)
We should like to emphasize here that for most of the classical Lie groups, but not SU (2), there exists an
invariant symmetric tensor of rank—3, d_, . In these cases one must still consider others candidates to K;Xt
dabchD’jo(_:c, and o;d

the S -invariance of the Lagrangian. However a difference here is that these symmetric tensors can appear conveniently in

abcDZ‘X (3 b(_: ° . However, according to the prescriptions, we discard them because they break

the theory through the L1 contribution.
In order to determine K;Xt , one proceeds in the same way as for K;Xt . The resultis again as in Yang-Mills theory
W ext — - =
K;™ = K; = g4bC. (47)
Observe without loss of generality that one can write
— , i A N N
sK,; = 5K, = ;b = ,S(bT) = —x,S(bc). (48)
Finally we have to find L1- From K;Xt and KS, Fadeev-Popov and the gauge-fixing terms are reproduced in the
extended Yang-Mills approach. Nevertheless a main difference lies on the fact that L1 is not only a function of the D#

-gauge field but also a function of XL, vector fields. Then, as BRST invariance is equivalent to the classical gauge
invariance, the most general possibility is given by

L, = tr[al(Z/w+ 2, )2+ 2" )+ ape,, 0 (

Z’”+z‘”)(Z""+z"°)—%m§XLX”j} (49)

where Z# and Z# are written in the previous section. One can indeed check, after some algebra, that really

\4 v

SL,=sL, =0 (50)
which is the last requirement to establish our final Lagrangian. We have therefore shown that the most general non-abelian

Lagrangian satisfying Baulieu and Thierry-Mieg programme is really the effective Lagrangian we have been using from the
departure:

Lo = Lg (D,,, X ) +tr[s5(a,D? + @, D, X +a,CC )+ argb?]. 51)

The b field can be eliminated by using its equation of motion and in the limit of Landau gauge one gets the generating
functional for Green functions:

Z[D,,X*“,¢c,c,J,3;,7,1]= J'DD#DX “DeDes[o” (D, +aixj[)]eiseff , (52)
where J; = Jo;, with J the external source associated to D, field and J; tothe XL vector field and

Sy = jd“x{LG, (D, X!)+1r[8,eD**c+J3“D, + 3! X“ +ci7 +Cnl}. (53)
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The third instruction dictated by the symmetry relies exclusively on algebraic identities, as for instance, the Bianchi
identities. Mathematical considerations yield two relationships to be analyzed and explored by each particular theory. These
are:

[A[B,CII+[C,[A BI]+[B.[C, A]] =0, (54)
+[C.{A B}Y]+[B{C, A}] =0, (55)

Identities Eq. (54) and Eqg. (55) will take different forms relative to the structure of the particular theory under consideration,
as it becomes evident if we apply them to the cases of general relativity or Yang-Mills. Nevertheless, their implementation in
physics is hot immediate. In order to transform them into a type of constraint equation, they must first obey a kind of physical
closure. This means that Eq. (54) and Eg. (55) must be consistent with dimensionality and covariance considerations. Thus
a good candidate that gauge theories provide to surpass such a convenience is the covariant derivative. So, from Eq. (54),
one gets the following identity

br1,+bT,+D,T,=0 (56)
with
T,uv:[Dy’Dv]' (57)
From Eq. (55)

[D/,z’{Dv7Dp}]+[Dp’{Dy7Dv}]+[Dv1{Dp’D/,l}]:0’ (58)
the operational identity will be
bs,+bsS, +DS,  -60,0,0,=0 (59)
with
Syv :{Dy’Dv}' (60)

The significant physical question for the Bianchi identities of the extended theory concerns the possible covariant
derivatives that can be built up. Since this model provides two basis {Dﬂ, XM} and {GM} one should take them both

as a laboratory to grow the covariant derivatives. From the first set, one gets two types of covariant derivatives: V p (D ﬂ)

given by Eq. (35) and D# (Dﬂ, Xui) through Eq. (36). Now, taking these covariant derivatives in Eq. (56) or Eqg. (59), one
gets different kinds of Bianchi identities. While the second Jacobi identity is more useful for effective theories, Eq. (54)
serves our interest of exploring about the physical fields.

Thus taking the physical set, the corresponding covariant derivative is D i 0 oh g, G L1 - Fromeq (54) one gets
the most general identity

[D,i (G).[D, (G;),D 4 (G)II+cycl . perm. = 0, (61)

which contains the basic conditions for being proposed as a physical equation. It has the covariant property and correct
dimensionality. Then, splitting up the corresponding field strength in symmetric and antisymmetric piece, one gets the
following identity:

0,G;,+0,G(,q+0,G(,; =0 (62)

7] [rul luv] —

where
G[va] :[Dﬂ(G|)1DV(G|)]- (63)

Eq. (62) means that this extended model contains N Bianchi identities, where each one is associated to a corresponding
physical field. A similar result one gets from Eq. (59) for effective cases.

The attempt in this section is being to identify the existence of instructions in gauge theories for assuming a number
of potential fields different from the number of group generators. So as a final aspect for analyzing a possible origin for this
extended model is by means of invariance of the action. It leads to Euler-Lagrange equations which will be studied in the
following sections and contributions from surface terms. The effort here will be just of introducing more fields at the minimal
action principle. It gives,
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oL 5D, +jd4x L
5(0,0,)

o) :Id4x oL -0 50, D, +Lox* (64)
oD #

. 1 0(0,®)

where CI)I E{D 0 X ﬂi}. Eq. (64) shows that while the conservation laws are to be manifested for all the system, the

equation of motion appear individualized for each field, separately. Therefore an emphasis from this result is that the
different identities which the Noether theorem and total angular momentum gives rise to are conservation laws for all system

containing N fields.

The local Noether theorem for a non-abelian gauge involving N potential fields in the same group is understood
by the three following equations:

0,34 (D, X;) =0, (65)
L2 230X ©
Laaﬂavaa(x) =0, (67)
5(0,D?)
where
J(D, X,) = e e i (68)

= DIk - ¥
6(0,D,) 5(0,X.")

Thus, from the analysis of the global and local instructions given by Eg. (65) and Eqg. (66), one gets that there is an
explicit information on how symmetry moves a room to accommodate the XLa fields. It is calculated through Eq. (68). On

the other hand, Eqg. (67) only informs that ————— is totally antisymmetric. However, implicitly, from dimensional

a
§(0,D?)
analysis and gauge invariance, it is also possible to guess that there can be XL fields. Eq. (67) contains indications for

their presence through a coupling with the genuine gauge field D#. It can be made through mixed propagators and
interacting terms. For instance, Eq. (11) plus Eq. (17) satisfy Eq. (67).

The inclusion of more potential fields should rather be characterized as an extension of the usual case. Therefore
our preference in writing the Noether equations in terms of the set CDI E{Dﬂ, Xyi}, where it is easy to get the boundary

conditions by turning off the XL fields. From this basis, we will analyze three pieces of information from Noether theorem.

First it is to reobtain the old result where symmetry current derived from inhomogeneous Dﬂ field will play a dual role. Its
expression obtained from Noether theorem coincides with the relationship which will be performed for the corresponding
D p -equation. Another consistency test is from Eq. (66), or taking its divergence. Then, the proposed Lagrangian must verify

the equality between the left-hand side and right-hand side. The third information that Noether theorem provides should not
be understood as a conservation law but as a constraint of the theory. Substituting the weaken condition Eg. (67) in Eg. (66)
one gets

0,1k =7, (69)

where T[/N] is a skew-symmetric tensor depending on D# and the XL fields. J" in our case is essentially made of

the “matter” of XL fields we have put in the game of the extended model. Thus the axiomatic approach to defining gauge
theories as the theories where the equation

o,F*=73%, (70)

should be obtained as a symmetry constraint is enlarged ( F* ® isthe QCD field strength). Eq. (69) reexamines this reflex
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between symmetry and Coulomb’s law.

In the physical set the local Norther theorem is transposed as

0,34(G) =0, (71)
! —0, i~ a =J4, (72)
9, “6(0,G,)
roa —0“0"a(x) =0, (73)
| 5(8#Gv)
and
é]_ a
J#(G)=| ———=,G, 74
N (G) 50.6) (74)

It then appears clearly that Coulomb’s law does not contain a necessary compromise with a non-dynamical origin. It was
just a coincidence for the case involving one field. Observe also that even its strongest condition, Eq. (73) does not require

for the fields Gm being not dynamical.

Another conservation law concerns to the total angular momentum wa = L';“,+ S;V. It contains the orbital
angular momentum plus the spin contribution. It gives

0,5 =0, (75)

where Ll;v =X, 0, —X,6; and the spin-current S;V (GG,
6(8;1 pl)

To conclude this section, we would note that the so called four types of internal mechanisms work not only to detect
the presence of N fields but also to isolate the identity carried by each of them. The first instruction shows, formally, the

possibility of more than one field to be transformed under the same group parameter Ota(X) ; from the Baulieu &

Thierry-Mieg procedure one gets a method to assume an extended Lagrangian; the existence of different equations
associated to each field spots be developed through the Bianchi identities; the minimal action principle brings a conjunction

between the whole system involving N fields and the individualization of each quanta through the variational principle.
There the identity of each field is obtained through its correspondent covariant equation of motion, while the system identity
is organized through conservation laws. This means that the conservation of energy-momentum, angular momentum and
internal charges are instructions only for the system as a whole.

Consequently the symmetry skeleton is able to support more “flash”: the presence of more potential fields besides
the usual gauge field. The principle that the number of potential fields must be equal to the number of group generators is

enlarged. The SU (N) group allows to introduce different fields rotating under the same symmetry and associated with

. . -1 . el A . ) .
different symmetry weights Q| , and coupling constants {, . However it is still necessary to ascertain a fifth consistency

of the above skeleton for assuming more fields. It is to study on the covariance properties of the equations of motion. It will be
considered in the subsequent sections

4 Bianchi identities

Considering the covariant derivatives Eq. (35), Eq. (36) and the collective expression X;Jl , = [XL , XVJ ] , One gets
the following Bianchi identities:

V#Dvp +VVDW +VprV =0
D#X[ivp] +DVX[‘M +Dpx[‘M +ig([XL, Dvp]+[xi, Dm]+[XL, D, 1)=0

D#x'w) +D, X| Dpxgw) +ig([XL, Dvp]—[x;, Dm]+[Xj,, D,1)=0

()
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D, x” +D,x! +Dprw+[xJ le]]-i-[xj lep]]-i-[xj X'W]]:O (76)
Then, defining Z['W] = a(ij)x/‘ﬂv, and Zzﬂv) = a(ij)xj‘;v, one also derives the following expressions

X1+ DX X1+ IX, X,y ) =0

D, 2ty +D,2{0) +D,, 20 — a5y ([X 1 Xy 141X, Xy 141X XLy D =0
D21~ D, 2+, 70y =305y ([X 1 Xy 1= [X0, X ) 1-[X0, X)) =0

D, 2ty =D () +D 20 + 8y ([X L Xy 11X, X[ 1-1X, X ) =0 77

5 Noether identities

1 ! 1
D,Z{,; +D, 7,1 +D, 7,y +ag (X,

The local Noether theorem provides three relationships

24[Z%" dD, + X! ]+ A,d[24¥7, D, 1+ 4[24, dD, + &, X 1]

_ a, =0, (78)
“I +BIZY +297,(28 + &)X 1+ p 9" 128 + 28 X))
i E [uv] [uv] [uv] [uv] i :
2—d(AZ¥ + L2+ [24, 2 + A4,d24 7, dD, + o4 X ] 5 0
g ,uaa =Y,
+25 (B2, X1+ pg" 128, X))+ &(B1297, X! 1+ pg 22, X1])
(79)
[4d,21 1 2d 1,247 F 0,6, = 0. (80)

6 Lagrangian scalars

The potential fields Lagrangian plays with different quanta. From group theory arguments one knows that a
quadrivector carries information about different spin states. Neverthless as gauge invariance acts differently one the vector
and scalar sectors, one expects that it will work as a source for rendering explicit a different dynamics for each one of those
parts. So we should now split the Lagrangean in antisymmetric and simmetric parts rewrite Eq. (9) as

L(D,, X ) =tr[4,Z,, 2% + A7, 241 + 4 Z,, 2]

7 (uv) +§zz<yv)z(”v) +§3Z(#V)z(’”)], (81)

[uv] [uv]

+tr|gz

(uv)
A new aspect in this whole gauge model is that fields strength are not just Lie algebra valued. They can be

decomposed through groups terms t,, t,t,, [t,,t,], {t,,t,}. and one gets an expansion where each term transforms

covariantly. It yields a Lagrangian whole expansion which englobes the usual Yang-Mills sector and the whole extension.
Defining the field strength

Fuv =20+ 2 (82)
one gets
= A, J+B3t*+Ct%" (83)
where

1 a
Aun = Nb[u]X X,

a — a ia abcy/ ic Jb
B, =dD;, +a; X[, +Ciy X X,

,uv__yu(xlaij Xlaij) (84)
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with

abc — abc abc
Cai = —lag, 7" +by;d™. (85)

Similarly from,
Suv =L T2 (86)
one expands the symmetric field strength
— ia adiayta
Syv - (ﬂix(,uv) +pig,uvxa )t

ia jbyasb ia jb ia ib a 4b
+7ap XXyt +(a[iJ']X# X, + U9, X X7 lt ]

iay/ jb iay agb \rya b
(b X BX P 4y, g, XX K2, 10, @7
Splitting
L=L,+Ls, (88)
considering the antisymmetric sector,
L,= trFﬂVF’”, (89)

and performing calculations, one obtains LA being build up by 5 scalar meshes

LA 2 I} a v abcpa e
L, = NAZ +2NA, C/*+B2 B/" +iNf B2 C*

viva
a b abapiab L ab~ pied
+N(CMCM+CWC” +ngabchWC” j (90)
with
aaped = AaprOoar — gt Goar + dagrOcs (91)
Similarly for the symmetric sector, one obtains a 8 meshes decomposition. Given
Ls =S,.,8", (92)
one gets,
L =L +L +L,+L, + L+ +L, +Lg, (93)
where
L = NAfN,
L, =iNf **°A2 B“*,
L, = 2iNf *°A% C#*°,
N

— paap b ab p 1 ba abp uwed
L,=B, B +B,B +Zd3abchWB ,

al a a N 1
I-5 = Cﬂk!)f|:2(Bwb - By b) +E (dsabcd _d3abdc)By ‘ :|’
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L = 4BaaDW+2(Bab Bba)DW+% Bab 2 (G3apcs + d3apa0) Déc

uv
— ab ba N ab uv
- Z(C,uv_Cyv)_'_Z(dSabcd _dSabdc_dSbacd +d3badC)C,uv Ccd J

aa v Cc N a v
L = 4D "Dy + |:2D2V + Z (d3ape + Asapge + apaca + Aapadc) D#t:/:| D (94)

with
a — ia aia
Ayv_IBiX(yv)+p|gvaa J
ab _— ia \/ bj
B =7y Xu X0
Cab - Xiax Jb+u Xlaxajb
wv = i N Ay P9 A

D""b—b x'ax1b+v(”)g Xiax b (95)

(ij) uvta

b ) . .
where f®° are the anti-symmetric structure constants and d"”le are the components of the completely symmetric

invariant rank —3 tensor of the group.

7 Field Equations

The on-shell informations also will be depending on this generators expansions. It gives for Dz field,

21(4d8VZ[”V]ta +4i %(de ta, ij)Z[”V][ta,tb]j+

+/z{2davzwta +2i %(de —aixlb)z[”][ta,tb]j+
. g ib> (1) g b v)

+5| 40 AXDZUY 48 p X 0T [t ]+

2] %(ﬂ X220+ pX Mg, g )t t,]=0 (96)
and for X field

21[40@2“’ It + 4 % PASYACE [ta,tb]J T

2, (4a, X P2V 1 ]+ (8by + 27) X P2, 8 3+

Ag(ma 2", — ,3 o, DY, 1,1+ (2D, +y[m)x;bz[”“]{ta,tb}j+

(v ta

( 430,Z“, —4p0“Z 0t —4i > g (,BinZ(”V’+p,D“bZV))[ta,t ]j

ég2(4(‘3‘[ij]xlbz(mJru[ijlxM.IDZ(VV))[t 14 4b {X0, 23, + v {X9, 203, )+ )
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280,24 _/’iaﬂg(mz(m))a +2<b(u)xlbzw Vi X Mb‘ﬁl(m)z(m)){tavtb}Jr
=0 (97)

Taking the trace in the above equation, one gets

Zji(davz[#v]a _ gfabc(deb +a, Xvib)z[yv]C) n

250 BX 2297 + p X T ) +

+2,(do, 2" —gf . (dD +a, X )z ) +

abc

— &0l (BX, 2 4+ p X P2)) =0 (98)

Multiplying the equation of motion by tk and taking again the corresponding trace, we have
ﬂi(d (daek T ifaek)avz[# % +

+g(dD,” +a; X *)(if — £, 0, )2 )+

abc cek
+ le(gp| (ifabc fcek abcdcek ) X sz V)e
+ gﬁl (ifabc fcek abcdcek ) X IbZ % V)e) &

+ 5 XCIC

)a Z[# V]a

aek aek

+g(dDb+aX oif )zl +

abc cek abc cek

53 (gp| (Ifabc cek abc cek ) X sz(‘t)e

+ gﬂl (ifabc fcek abc cek ) X lbz(y v)e) O (99)

The corresponding equations of motion at physical basis are

J,(~4a,6,2% ", +4iga, GPZV L, t,])+
12(461(” )Gjbz[y g [t t,]+ (4b[IJ] + 27[|J])Gjbz[# V]{ta ; tb})+
A?;(zal ﬁvz[y V]ta - Za(la)G:b (gz[ﬂ 1zt V])[ta 1]+ z(b[IJ] + 7[|J])Gjbz[ﬂ V]{ta ' tb})+

_4§1(ﬂ| avz ) +:0| g(m)aﬂz ) }a +

4z, ((a[u ]Gjbz(ﬂ "+ u[IJ]Gjbg(pa)Z(m) Mt t,]1+ (b(IJ)G:bZ(’u )+ Vag )Gjbg(m)z(m)){ta ) tb})+

() (o) b= [uv] b (po)
253[‘(&&2 “ 4 910" G2 b+ B0 G2 + U G 2 Ital’tb]JZO(lOO)

+(b Grzl 1 2y GJb z(p"))[ta,tb}

(1) () g(pcr)
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In order to understand more specifically the model one should also express the equations of motion through Eq.
(88) sectors. Considering first the D# -field equation of motion, one gets

DIl = je (101)
where the LA contribution is

Wa

[uv]

= 4B, + 20y, XX (102)

v]!
where the covariant derivative is defined at Eq. (3.3) and the LS contribution is
IS =i+ IS+ (103)

with

ji* = 4gt (8, (B, X P + o g XX+ oy (B, +4p; XX )

J;a - 2|9N7.J f bmn f bac[ﬁpx im(vX 4#)jn XEC +ppgaﬂx im(aX ﬁ)jnx vpc]'

5 = 4igNF o™ £ 2B + p Yan, + (B, +4p, )y, XXX, (104)

Given that Eq. (7.7) depends only on X' fields, one gets that through this model {Dj, Xf} the Xf fields

a :
work as source to Dy fields.

Eq. (101) contains three features. First, it is covariant which proves that the introduction of this extended symmetry
is consistent. Notice that it not only show on covariance but also on the presence of a conserved current when Eg. (7.6) is not
considered

j*@ =—-0,B" = df **°(dD] + e X )W L4 (105)

The charge associated to this current as the same symmetry boundary condition as in the usual QCD [15].

Second, deriving the Noether theorem expression Eg. (68), one gets
J{& = NdW™,dD, + o X! | (106)
which is exactly the Dﬂ -field equation of motion without the right hand side j;io 4
Third, due to the PoincarA® lemma, one derives the expression
brua —
D355 =0, (107)
showing that j é’ p is conserved covariantly. Its relationship with Noether current is
Fy7 YT | abc b bi [ve]
I =180 — 179dD) + o X)W e (108)

Considering for X#i fields, we get the following covariant equations of motion

b 2vij — 1T
aNDLW,,, — My Xoh =i (109)
where
T _ qA s
‘]va,i - ‘]va,i +Jva,i’ (110)

which corresponding expressions are in Appendix B.

Considering that the main proposal at this section is to show that the introduction of a fields set in the SU (N)
gauge symmetry preserves covariance it will be not necessary to calculate the physical fields equations of motions.
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Given that the minimal action expressions between two generic fields reference system {@} and {®} is given

by $§ZD] = 635([1)(13] =0, one gets that its corresponding equations can be related to the {GI}-basis through the
transformations
L L
M, =0
oG, 0(0,G,)
Q( o a )=0 (111)

.y
G, “(,G,)

So egs. (111) generate that the explicit covariance obtained through egs. (7.4) and (7.11) are preserved at {G,} physical
basis.

8 Directive and Circumstantial Symmetries

The whole physics introduces the meaning of an integral organization including two kinds of symmetries. They are
the directive and the circumstantial symmetry. Their qualitative difference is that while the director symmetry appears as a
natural instruction from the gauge parameter, the circumstantial symmetry will be depending on relationships between the
so-called free coefficients studied at Apendice B.

From these two types of symmetries one derives currents conservations. Associated to the gauge parameter one
gets the Slavnov-Taylor identity (off-shell) and the Noether identity (on-shell) which yield one conserved current with N-fields
contributions

&S

a
7

5

~1=0 (112)
éx/l

ia
+5Xu

_[ d“x[eD;

which produces a directive conserved current

a,u (Ijuirective =0, (113)
Rewriting Eg. (7.1), one gets
ﬂidavzﬂ‘a+%g"v(8-Da+ai8-Xia):J’ﬁ(D) (114)

where J ”a(D) current is explicitly derived at Appendix C. Considering that Eqg. (8.3) coincides with Noether identity,

J~ (D) conservation is a directive. It takes obligatory one degree of freedom from Dz field.
Similarly for XLa fields, one gets
[uv] Il 2\ pia sia
Lod,Z +§min = J“(X) (115)
where J”ia(X) current is written at Appendix C. Consequently the classical decoupling of the longitudinal sector

0,X #% =0 will depend on circumstances between the free coefficients.

9 Energy Momentum Tensor

Given the expression

vp vou )

1
eﬂV:Tﬂﬁzap(sWﬁsﬂ -S

where

oL oL

T =—"— 8D, +——0,X -1 L
“" 5(6*D,,) 86" X L) #
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S, = % Dy + ﬁzﬁxﬂa (116)
with
2 =65080 -508) (117)
one gets
0,,=0,,+6;, (118)
with

A la la A
0., =42, 321" +4z[#p]az[v +22, 0220 22,0020 0k (119)

[1pla
and

05, = ABZ X +4pZ 5 X5

(up)a (uv)

+2B,2,a X" +2020) X3

(up)a (1v)

+42(, 08 X, X AT +42) u X, X T

+42(,,,.065, 0K X P+ 422 v {X,, X, "}
27, g X, X T +2Z 0 u[X X T
+2Z by {X. X P 34220 v {X . X}

~4B0°(Z(,pa X ) +4B,0° (Z (10X )

~4p0,(Z0 X)) =480 (Z(,paX,5)

4p| v(Z p)ax Ia)+2ﬁiap(z(,uv)ax,;a)
i Zlglap (Z(yp)axvia) B Zﬂlap (Z(vp)ax;ia)

—2p0,(20 X)) +4p0” (2, X )6,

—2p0,(z) X0 +2p0 (2 X )8, -1, L° (120)

Eq. (9.3) provides the conservation law
0,0"" =0. (121)

10 Charges Algebra
Although the gauge fixing term breaks the gauge it is possible to show that there is a symmetry that is preserved in

the Lagrangian which is the BRST symmetry. Considering the group parameter as a® = gca& where a® is a bose

quantity, c? a fermi quantity and o4 some anticommuting global quantity, we will derive the BRST invariance. For
convenience it will be studied at constructor basis.
Considering the general Lagrangian
Lef‘f = LGI +L +LGF +LFP (122)

matter
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where the corresponding terms LGI is defined at Eg. (9), the covariants derivatives with to this extended model are
vV,=0,-+g[D,], (123)
D,=0,-+9[D, 1+ g[X} ], (124)
which means Dib = 5ab6ﬂ + of abch +9;f abCXz‘, and with a matter term as
L ageer =% D™y " (125)

Further, the gauge fixing term at Eq. (19) can be rewritten in terms of the scalar auxiliary field b? as

Ler :—éa”ba(Dj+ain‘)+§baba (126)
and the Faddeev Popov term is
L =—i(04c*)D3c®, 127)

where C% and C” are the ghost fields.

Considering the infinitesimal BRST transformation
Df = -V S,
ai — abc.b \/ ci
X, =gf ¥’ XA,
oy =igcitiyal,

&a e _% f abchCCé-/fL,

& =ib°a,
M® =0, (128)
one gets,
5(D%c”) =0, 5(cxc)* =0, (129)
which yields,
oy =0 (130)

and also that BRST transformations are idempotent

§7D? = 87X ¥ = 5% = 6%6° = 5°b* =0. (131)

Similarly at {G,, } basis,

IGf, =D’ = 51(sG} ), 5°G;, =0. (132)

The fundamental object in a gauge theory is not the Lagrangian but the functional generator ot the Green’s
functions. It is given by
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A ap@, :aiy pia
|Id X[Leﬁ-h]HD +J#X }

Z[J]=N'[DD,DX ,DcDt.e (133)

So we have to show that Z[O] is invariant under BRST transformation. Considering that the part involving Leff was

already proved, we have now to demonstrate on the invariance of the measure DDHDXLDCDC . Calculating the
functional Jacobian of the BRST transformation,

(D (), X ¥ (%),¢% (%),¢% (%))
S(DE(y). X (y).c"(y).c°(y))'

one gets that det]J =1, which means that it is a constant that does not depend on fields and that can be absorved by a

(134)

functional constant. In fact by introducing the fields set {Dﬂ, Xyi} the measure DDHDXLDCDE is preserved.

Given that the model contains the BRST symmetry the Noether theorem leads to the conserved current JERST .

BRST va d‘ vai d‘eff d— a d—eff a d-eff
J,o = =D ———+6X -+ O +6C +C — . (135)
&)”D"“‘ 004X o'y oo c? oo c?
For simplicity, we are going to separete in antisymmetric and symmetric parts
JBRST — JBRST | yBRST (136)
where
JEST =b*Dib° —c?0,b* —4g(0"c?) DY, —4gf (gD + g, X )¢ D},
2 4gca[f ®°(gD™ + g, X “’i)]ny +ige® (8,8 xC)* —i % (cxc)?o,c (137)
which gives the following expression for the BRST charge
bl _[d x( b*D;°ct -0 baca+|—g(6 €)*(cxc)? j (138)

Considering that

ZiZ(QBRST )2 - iZ{QBRST , QBRST} = [iZQBRST ’ QBRST] = &?BRST : (139)

and the relationships
[QF",D31=-i(V ¢,
Q¥ X31=
Q¥ b7]=0,
Q" 1= gty
QI e} = 2 (exo)"
Q" c7}=b". (140)

One gets

25 = [a? x( (@4h)*(cxC)*? _g(a b)* (cxc)*® )5/1 0. (141)
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Including from Eq. (14) the symmetric sector L¢ (D, X,), one derives
BRST _ abcab y/ 1ci y/ ai
Js =49, XX, (142)
with
BRST = _[ d3x(— 4g; f "X X(";‘)‘V)) (143)
Given that Ogeer (T 2°C°X ") =0, one gets
ST =4, Id3x(f e X W‘é)((%‘v))= 0. (144)
At this way we show that similarly to QCD

X =0,and 52Q%T = 0. (145)

Another conservation law is with respect to the scale global symmetry for ghosts
-0=a

c® >c? zefct:c? >c* =e (146)

Consequently, one gets a Noether conserved current

3¢ =ile’D*c) - (0c?)c? (147)
and a conserved hermitean charge

<_> -

Q.= ijd3x c*o’c? +Ca[gf *Dpc’ + g, f abcX(ﬁ"cc] : (148)
working as the “ghost-scale” generators of the fields operators transformations

[Q., D;1=[Q.. X;'1=[Q..%']1=0,

[Q,,c*]=-ic?,

[Q..Cc*]=ic™. (149)

next symmetry to be studied corresponds to the global gauge transformation. The corresponding infinitesimal
transformations are

a — gabc_bpmc
5Dﬂ—f 5Dﬂ,

ai — gabc_by/ci
éX#—f gXﬂ,
&a — fabcgbcc’

&a f abcgch

M? = fareehpe, (150)

where £” =—ga”. Considering L, , L, .wor» Lee @ndL g, under Eq. (150), one gets that they are separatedely
invariants. Thus one derives the following Noether conserved current

3% =_4g(D"xD,,)* + j2~|(D, +o;X ') xb[
—i(CxD,c)* +i(0,Cxc)* —4g;(X{xD,,)* (151)

where Jz is the matter current. It gives
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Qs = [d*X{-49(D" xD,o)* + ji +[(D, + 6, X3)xb] + (152)

—i(CxD,c)* +i(0,c xc)* —4g, (X xD,,)* (153)
with

[Q2,D}]=if D,

[Q(; Xzi] - If ach;i’

[Qg ’ bb] - |f abcbc,

[Qd.yw']=-t%",
[Qg ’ Cb] — If abcCc1
[Q2,c"]=if **C”. (154)

Concluding, we obtain that the charges algebra is the same as in QCD:

[Qgrsts Qerst 1= 0,

[1Qc, Qerst] = Qs

[Q:.Q.]1=0,

[Qs.Q1=0,

[Qs: Qerst1=0,

[Q..Q:]1=if *Q,. (155)

Eq. (155) is showing that the charges algebra depends only on the symmetry involved. It does not depend on the number of
potential fields being considered at the fields set.

Finally, in order to close this section we are going to calculate the ghost number operator. It is defined as

N, ={Qgsr.D,C°} (156)
Calculating Eg. (156), one gets
a — vha Ga
N2 =40"DZ, 1%, (157)
which gives
0,N* =0. (158)

11 Slavnov-Taylor identity

Another ingredient on this non-abelian extension is to consider the Slavnov-Taylor identity. Now we perform those
BRST transformation on generator functional to obtain the Slavnov-Taylor identities for the extended symmetry SU (N) Lt
is convenient to define the generator functional in terms of sources for fermions and bosons

2(,5,0,0,£,£3u,W,v,0,6) = [DDDX,DeDCD 2Dz exp (i [d X L), (159)
where the total Lagrangian in terms of fields and sources is

Lot = Lo +J;D“""+iji‘ﬁ+3—aca+(_:ao-a+;_(g’+2’;(

total
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+u? L D“°(D)c” —w,? f *%C°X [ +va(—% f 22%°c%) + O(it°c? y) + (it*c? )0, (160)

1

—a
in which J¥ and S* are sources of D# and X 4 » Tespectively, (o ,0%) anticommuting sources associated to

Faddeev-Popov fields, and (¢, are associated to the fermions (y, ) ., respectively. The three last terms of Eq. (160)
have been introduced of a way that the total Lagrangian remains invariant by BRST transformations in accord with the

nilpotent relations. The others sources (u ; , Wﬂa ,Va, 0, 6’) are anticommuting too. Now the invariance of the generator
functional under BRST symmetry implies that

[DDDX DDCD 4Dy exp*[d*X(I*°eD +56X 5 + 0 &* +5C 0 + {8y +54£) =0,
(161)

and by substituting the BRST transformations, one gets

jDDDxiDEDcD}D;(exp s jd“x{—i[D;b(D)cb]u SRR G RV G
0,

+ Ea(—% f 2ccc) A —ié (0,D")Ac® + £ (T Ay) + (-iT%C*A7){3=0  (62)
0,

in which it is easy to show that the Jacobian of those transformations is unity. Those expression is written in terms of
derivatives of the generator functional in relation to sources

oz oL —adl oL
d*x[J* +54@ + o+ — 1 0. 163
.[ [ S SW@ 9% &/a 15 ( 450 1= (163)

Putting Z = e“’" , @ same equation holds for W
oW a W —adW 1 W
S

. =W W
jd“x[yﬂéuw+ e &/a—glgﬁﬂ(&]m)a +g§+§g]=o. (164)

We convert this differential equation into an expression in terms of the one particle irreducible 1PI generating functional I’

, then we use the Legendre transformation by using W and I' as function of the sources (u, w,V, 0, 49) too, that leads
us to relations

Jlﬁ: él_;u ,Ua:_ él—‘.aa ga:_él—;y Ga—_é}—‘ai Z/__£1
oD OX I o 5S¢ 14
_ LN . W, W _ N

== =" (165)
NN 8 8 5O 56
Hence the expression (11.6) becomes
s O O o o Jd or o Jd o Jd or
jd X—— +—= +— a——( )_a+——+——] 0.(166)
DU X2 XN g sc. & S0 85

—a
For simplify the form of this expression, the generator functional Z has the following dependence in terms of C and

Ga

Z= J‘DDDXiDEDcD}D;(exp{ijd“x[—Eaay(D‘”‘bcb)+(_:aaa +-- 1} (167)
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that give us

or or
= _glaﬂ (_a
5¢ a,,

) (168)

and finally we get the functional differential equation

PRI, . Y. I I . I D) I, Do)
Id X[— +— t—m—t+t———=+——=]=0, (169)
oD, e X g e X N oy 60 B Sy

where
r— 1 4 a2
r ‘F_gj‘d x(ayD ). (170)

The equation (169) is Slavnov-Taylor identity for extended SU (N) . It will give us the important relations between Green

functions of the massless, massive gluons and Faddeev-Popov ghosts that imply into the renormalizability of the model. The
question of full renormalizability will not demonstrated here cause it is necessary a detailed analysis on Slavnov-Taylor
identities and redefinitions of the parameters into the Lagrangian. It will be dedicated in a next paper.

12 Conclusion

The effort in this work is to implement the whole gauge principle at non-abelian level. Gauge symmetry depends on
two variables which are the gauge parameters and group generators. They define Lie algebra valued fields transforming

under gauge symmetry. The purpose is to show that these two variables, &, and '[a, also work to accommodate the

gauge symmetry for a fields set transformation as Eq. (1). Consider on the possibility of an antireductionist physics where N
-non-abelian fields act together. Given the SU (N) symmetry drive new association features which go further than
Yang-Mills understanding. This means to preserve the symmetry pattern and introduce a new Lagrangian.

Eight aspects attached to group generators and gauge parameters were analysed in order to express the
consistency of introduction of this extended gauge model. From group generators: algebra closure and Jacobi identities,
Bianchi identities; from gauge parameters: Noether theorem, gauge fixing, BRST symmetry, global transformations (BRST,
ghost scale, gauge global); charges algebra, covariant equations of motion plus PoincarA© lemma from both symmetry

variables. And so, they are showing that SU (N) gauge group acts as an operator where it does not matter the number of

fields involved on its transformations. Consequently, given a certain SU (N) gauge group it is possible to derive a

Lagrangian where the number of potential fields is not necessarily equal to the number of group generators as ruled by
Yang-Mills theory.

Eqg. (1) introduces that symmetry should be treated as an environment. A fields association physics appears. In a
further work we will analyse on more details other classical aspects, renormalizability, unitarity. For instance, study on its
consequences on the Slavnov-Taylor identity. And so, understand on possibilities for a systemic physical process be
described through this non-abelian whole gauge principle. Complexity should be an achievement related through a gauge
totality principle.

13 Group relationships

Gauge theory considers fields as Lie algebra valued. So one should express A, = Az,ta, D, = tha,

Xi= X;ita , G, = GZ,ta under the corresponding group generators properties

[t,.t,]1=if &, (171)

{ta ' tb} = %é;\b + dabctc ! (172)

where Eq. (172) does not belong to the algebra. And with the following traces properties

tr(t,)=0
tr(t,t,) = No,,
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. N
tr (tatbtc) =1 E fenbc
tr(ttt.ty) = 0,,0,4 + 0,40 +
N
+ Z [d abtOear — Aot Oogr + age Doy ] (173)

14 Covariant X ,-equations of motion

Eq. (7.11) corresponds to (N -1) covariant equations of motions related to X#i -fields. At this Appendix it will be
expressed the correspondent currents

I =303 (174)

where Jz'i is derived from the Lagrangian antisymmetric sector, eq (89). It gives

i o ij c c ij el ji e N ij c
‘JV: = NJVo\ +27/|3q|:25ae7/“]x[lri xgl +7/Jxap[vxa(} +7J X[Z x3]e +Ed3aecd7[”x[5 Xs;i:|x;ze

+ b[ij]dach[By] XH° 4 by pg 4N 2, 0% (X[Zcxg]b)- (175)
where
jla = 20 o 7o [D5, + o X s, + oger Fo XX B1X AP (176)
Considering J‘fd'i from Eg. (92), one gets
IS EVAT Y, 177)
where
V:b = 6#5ab i gfabcD:’ (178)

and T(i/“,) and J‘i,:11 are calculed from the 8 meshes that build up Ls according to Eq. (94). It gives

8
Ten = 2. T (179)
k=1
8
=>4 (180)
k=1

where only the first three meshes in Eq. (94) contributes to Tﬁ . They are

Tl = 4N[ﬂiﬂix(j3v) +(oB; +4pip; +ﬂipj)9yvxoj:aa]' (18)
Tiy = 2INf amn7pq[:3ix<5zmxf)n +pigyvxo?mxaqnl (182)
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TS = 4iNf *™ 'B(alpql o XY+ U, XX+

183)
(uv) pmys agn (
+ ' (@pq +4ppq) 9, X" X
Considering Jli,a, one gets
i2 — i j b by
312 = 28, M B X X 4 o X X S0 | (184)
i,3 — jb qc ib qc
Jia fabc[alq (,B X(vy) +10igyvxa “)X + Uigg (IBJ +4pj)xaaxv ] (185)
From mesh 5 to 8 there is no more propagating terms. Eq. (177) will receive just sources. Thus from
oL L °
+..+ ;
Olstetly) > (186)
é)( 1a
Y k=5
we get calculations which will not contribute to the scope of this work. For instance, mesh (5) gives
(i) y pnys an il y pn(v y #)qa liye pa( )an
Ay X PIX XK 4+ 2(p " X P X9 X PRI X+
(187)

J - 7/ N m(v n .
& 4 (7i| (d3aLmn + dSmnaL) - 7Ii (dSLamn + d3ana))x it X ‘o XLL

Consequently, the above Eq. (187) shows how others sources from Eq. (186) will not interfere on the covariant
property of X 4 equations of motions due to the fact that they depend only on X i -fields whose transform covariantly.

15 Conserved currents

Classically, in order to avoid undesired degrees of freedom we should relate them to conserved currents. For this
every field in this whole model must be associated to a corresponding conserved current. Noether and Slavnov-Taylor
identities already inform on the existence of only one natural conservation law. In this apendice one explores the conserved
currents through the circumstantial symmetry.

Considering Eq. (7.1)-(8.3), one gets the following Dﬂ -current expression:

Ji(D)= ZJa<.)(D)

where

344 (D) = 44, (ig (dD) + o X ") Z¥ [t ., 1,])

340 (D) = 45ig(BXPZY) + pXPZ )t t,]

J44(D) = 24,(ig (dD + ¢, X,”) 2" [t t,])

34wy (D) = 2&ig (B X247 + p Xz D)t 1] (188)
Expanding

J44, (D) = 4ig A {c’D? (6“D" —8"D* +ig[D*,D*]) +
+da;DP (0" X" =" X* +ig([D*, X "]-[D", X “])) +
+do, X (0“D" —0"D* +ig[D*,D"]) +
+oa X (04X =0 X4 +ig ([D*, X"]-[D", X“])}Ht..t.]
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34, (D) = 4&ig{BB;X (0" X T +0"X 4 +ig([D", X 1]+ [D", X “1)) +
+B.p;9" X (0,X%+0,X% +2ig)[D,, X1+
+oB X (0,X" +0,X 1 +2ig[D,, X1]) +

+PPi 8y X (0, X7 +0,X +2ig[D,, X "}, t,]

J4(e) (D) = 2ig2,{dD; (ag;, [X *, X T+ by {X ", X3+ X “ X 7)

+akx‘lfb(a(ij)[xﬂi’ ij]+b[ij]{x A, ij}+7[ij]xﬂixvj)}[ta1tb]

4w (D) = 2&ig{B X" (g [ X, X1+ U9 X, X 7]

+ B X, X v, 94X X9 +

+ X (@ [X, X T T4 u 90 X, X ]

+By X0, X3 97X, XTHHE, 8] (189)
it yields,

J“(D) = 4igA,(d?D? +de;, X * (6“D" —0"D*) +

+(daij +aianib)(8”X‘d —8"X"j))[ta,tb]+

+4igE (BB, X (0 XM +0"X4) + 2,4, X400, X" +

+2(8,p;+ pip;9,) X0, X D, t,]

—49%2,((d*D] +da, X *)[D*, D"+

+(de; DY + a0 XP)([D¥, X 1]-[D”, X 4Dt 1, ]

—49°&, (88, X([D*, X"]+[D", X“]) +

+2(B,0,+ B+ pip;9,) XD, XD, . t,]

+2ig2,(dD) + a4 X\°) (@, [ X, X 11+ by { X, X 13+

+ 7 X XD, ]

+2A9&AB X0 (B [ X, X1+ U, 9 XL, X 91+

+ B X, X v, 90X L, X3 +

+ X (@ [X0, X T T+ ug 90 X, X 9T+

+b(ij){xli/’ XVj}"'V(ij)g:{X(iw Xaj})}[tantb] (190)
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Eq. (C.3) can be rewritten as the following expansion
J2(D) = oDD+ DX +0XX + DDD+ DDX + DXX + XXX
where

oDD=D0“D,a + D 0" D"a, + D**6,D"a,

a, = 44igd”[t, t,]
a, = -44igd°[t, . t,]

a,=0

oDX =D,0" X" b, +D,0" X *“b, + D*0, X “b,

+ X 0 D"b, + X 0" D*b, + X "6, DD,

b, =44igda[t,, t, ]
b, = —4Aigdat, 1, ]
b, =0

b, = 44igdayt, t,]
b = —44igdat, 1, ]
by =0

XX = X Po“Xe, + X Po" X e, + X0, X e,

¢, = 4digaiaft, t,]+45i95 B[t 1, ]

C, = -44igaa;lt, . t,1-45ig4 Ailt,. t, ]

C; =84ig(p B+ Bip; + pip;9.) )Mtat]
DDD=D/D*“D" (-449%d?)[t,.t, 1[t,.t.]

DDX = (X,*D*“D" + D D*X"" —D/D*X*").

-(_4ﬂ1gzdai)[te’tf 1Mt, 6]

DXX = X" D**X " (-44 9%, —46,9° B4t 1 It 4,1+

+ X" DX (dA9 e —459° B BT b 1t 1]+
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+ XD (-859°)(Bp; + P+ pipi 9Nt b 1Mt 1,1+

+ Dva X (Zﬂzigd)(a(ij)[te’tf I+ b[ij]{te’tf H Viiptel' )t ]

XXX = Xvkbxyiexm (Zﬂzigak[te’tf]+b[ij]{te1tf}+7[ij]tetf)[tavtb]"‘
+ X, XX (B[t t: 1+ B {t. .t D(2&i9)[t, 1,1+
+X ﬂkbxojex a ((Bgiy + Ay + Al 90 e t 1+

+ (BN, + o) + oV, 90 Hte t D(2EI9)E, L] (191)
Notice that egs. (3.24) and (3.27) coincide.

Similarly for Xifa’ fields equations of motion, eqgs. (7.2) and (8.4), are the following Ji’a’ currents expression:

6
Ja(X)= Z‘]i/;(k)
k=1
where

Ji§(1) (X) =4igAe, (DBZ = [t t,])

Jil;(z)(X) :_4§l(ﬂiavz(#v)ta+piauz t o4

(v "a

+ig(8D;Z"" + pDPZ L, 1,])

Ji/;(s) (X)= 24, (Za(ij) ijbz[” : [ta ' tb] + (Zb[ij] + 7[ij]) ijbz[” V]{ta ' tb})

Jiw(X) = 452{(a[ij]xvjbz(w) +u[ij]XMbZ(v))[ta’t 1+

+ (g X Jbz(# T+ Vi X sz(v)){ta 1)

Jiae (X) = 4 (2ige DB Zed [t..t,1+2a, ijbz[” i [t..t, ]+

+ (2b[ij] + 7[ij]) ijbz L V]{ta )

Jig(e)(X) = 263{_ﬁiavz(#v)t pla,uz(v)t T
—ig(BDYz“" + p Dz )L, 1,1+
+(a; X, P2 +ug X PZ )t ]+

+ (0 X,PZ5 v X Z ), 8,3 (192)

Expanding
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Jfay (X) = 4ig, (der, D2 (6D” —0"D* +ig[D*, D*]) +

+a,a;D; (0" X" =0" X" +ig([D*, X ']-[D", X “"I)It,.t,]

i“j=v

Iy (X) =—4&{(B,5;0, (0" X" +0"X " +ig([D, X "]+ [D*, X“])) +
+28,0;9"'0,(0,X* +ig[D,, X 1) +

+2,00" (0, X" +ig[D,, X 1) +

+2p,0,9,0"(0,X? +ig[D,, X “I)t, +

+ig(B,B,D; (0" X" +0"X“ +ig[D*, X"]+[D", X “1]) +
+28,p,9""D2(6,X % +ig[D,, X )+

+2B,,D*(8,X" +ig[D,, X"])+

+2p,p;9,D (9, X +ig[D,, X “I)It,. t,1}

‘]ig(S)(X) =24, (Za(ij)xvjb (a(kl)[x X% 1+ b[kl]{x & X M}Jr 7[k|]x X Nt t ]+

+(2b[ij] +7’[ij])xvjb (a(kn[xld(, XVI]+b[kI]{XFk1 X +7[kI]XﬂkXVI){ta1tb})

iy (X) = 484 (8 X, (@ [X ™, X1+ U, 9 X, X U]+
By LXK 4V 94X X +

+ U X (ag g [ X, X T+ Uy 00 TX S X ]+

+ By £X, X v 00X, XD 11+

+ (0 X, (g [ X, X T4+ Uy 0 IX S, X 1+

+ By LX XM T+ Uy 9 TX S X AT) +

+ Vi X (B X, X U 90X X T+

+ b(kl){Xvk XM+ V(kl)g:{xak D)3

Jig(s)(x) = {29, Df(a(jk)[xluj’ XVK]“‘b[jk]{X#j , X Vk}+ y[jk]xij Vk)[ta’tb]WL
+2dag, X, (0“D" —8"D* +ig[D*, D"DIt,. t, 1+

+2aka(ij,xvjb (0 X™ —0"X* +ig([D*, X *]-[D", X *MIt,.t, ]+
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+d (20, +757) X, (0“D” —0"D* +ig[D*, D" At .} +

+ 0 (2 + ) X" (@ X =X +ig ([D*, X *]-[D", X “I{t.. .31}

ey (X) =250, (33 [ X, X *T+u g9 X)X *]+

+ B DX, X4V 9K L X AP, +

= p,0" (B[ X, X1+ un [X ), X ]+

+ 00K XV 00X XD, +

—igBD (ag [ X, X * 1+ U0 X, X ]+

B TX X4V 94X L XDt b 1+
—igp D™ (3 [X,, X1+ U000 [X,) X1+

+B X X v X XD 8]+

+ B X, (04X ™ + 0" X +ig([D*, X *1+[D*, X “IIt,.t, 1+
+2p8579“ X, (0, X“ +ig[D,, X “DIt,. t.]+
+2BUin X (0, X +ig[D,, X *DIt,.t,1+
+20Ugn 90 X (0, X +ig[D,,, X “DIt,.t,1+

+ By X, P (0 X ™ +0" X +ig ([D*, X *1+[D¥, X “It,. t.} +
+2pb, 9" X (0, X +ig[D,, X “I{t,. t, }+

+ 2BV X (0, X" +ig[D,, X “D{t, t,}+

+2pV;9, X . (6,X “+ig [D,, X ak]){ta 4,3} (193)

Ja(X)=—4&(B.B;0,(0" X T+ XM +2(B.p; + B, o + pip; 9, )0 0, X ), +
+4ig/, (do; D (6“D" —0"D*) + o, DY (04 XM = 0" X “)[t,, t, ]+

—4ig&, (8,8,D; (0" X" + 3" X M)+ 2(fp; + Bip, + pip; 9 ) D0, X D)L, 1,1+
+,{X,” (6" D" —"D*)(2da [t,,t, 1+ d (2by; + 757 ){t b, 1) +

+ X, P (0 X = 0" X ) 2y [, 11+ o (b + v )t 1 D3+

+ 25X (0" X" +0" X ) (Bag[ta, t. 1+ Bbg {ta t,1) +

+2X 0, X “((Peag; + Alg; + Al 9)I, t,1+
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+(2dg) + BNy + AV 9 Hta D

—4ig&,(B,5;0,(ID", X ) +2(B,p; + B, o + pip;9,)0“[D,, X It +
— 25430, (3 q[ X, X T+ {X 4, X"} +

+ (Bl + 01 @ +Upg 90 DO IX] X T+

+ (B + 20 + V(o 9 NI LX) X D3, +

~49°4(de; D)[D*, D' ]+aa; D ([D*, X"]-[D", X “ D), t,1+
+49%5,(8,6,D;([D*, X "1+[D", X “1]) +

+2(8.p; + Bip, + pip;9,)D*[D,, X DIt t,1+

+igA{X,°[D*, D*1(2day,[t,, t, 1+ d (2, + 75 )Hta b)) +

+20D) (3o [ X, XT+ B g {X, X3+ 750 XA X, 1,1+

+X 2 ([D*, X*1-[D", X “I)(2ex ag; [t .1+ ot (2 + 7 )HEa 133+
—2igE{B Dy (ay;q[X ™, X T+ {X 4, X} +

+(BUpjq + 2 (@ U9, ))DPIX, X ¥ T+

+(BVo + 20 + V(509 ) DX, X “FHE 6,1+

+2ig X, ([D*, X *1+[D", X * DB [ta o]+ Beb {ta t:3)
+2X“°[D,, X “1((0cag + Bl + Al 90 )t 6,1+

+(2dg) + BNy + AV 9 Hta D3

+ 22, X 2 (8 [ X XM 4+ by X4 XM (23 [t b1+ (2B + 75 At oD +
+48,{X, " (g DX X 1By £X 4, X D) (g [t 6]+ B {ta B2 +

+ XA (DX, X U (@ [t G ]+t 1,1 +

+(8py + Uy 95 ) (U [t & 1+ Vi {ta 6 1) +

X X HWy (@[t G ]+ Bt &) +

+ Oy + Vo 95 ) Ui e 1+ Vi it 1. 1)) 3

Eq. (C.6) can be rewritten expanding as

J.X(X) =00X +0DD+0DX +0XX + DDD+ DDX + DXX + XXX

0PX =0,0"X "a, +0,0" X Ha, +040, X “a,
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a =45 B P ita
a, =45 Bp it

a = _851(ﬂipj "‘,iji +pipjg:)ta
oDD = D 0“D"b, + D,’0"D*b, + D**0,D“b,

bl=44igde[t, ]
b2 =-4Aigdet, t,]

8DX = D8*X ¢, + 8" X “ic, + D", X “c,

+ X o“Drc, + X 0D e, + X ijaa D%,

+ D0, X" (—4&ig B B))It. t, I, +

+ X0, D (-4&igB Bt t It, +

+ D0, X (—4&ig B B)t. t, 1, +

+X10,D" (-4&igB Bt t, It, +

+D ;0" X (-8&i9)(B.p; + B;p + pip Ot e I,

+ XajfayD;(_Sélig)(ﬂipj +,iji +pipjg:)[te’tf]ta

C, = 4Aigoiaft, t,]1 - 495 fi [t b, ]

¢, = -A4igaia;lt, . t,1-45i9 5 4t . t, ]

C; = =8&ig(Lip; + f;p + pipi9)tan b ]

C, = Ay(2day; [t,, t, ]+ d (2 + 7 )t 1)
Cs = — A, (2dag, [t,, t,1+d by + 75, 4t b1

OXX = X FPor X d, + X o X#d, + X0 _X*d, +
+ X0, XM (=28, B, (agjqlte te 1+ b {te £ L) +
+ X0, X (=2&, B (agqlte te 1+ b {t t L) +
+ (X FO XM+ XM X ) (-2, (BUpjq + o (B +

+ U 90 DIt t It — 28 (BV iy + 2,0 + V(0 90 Nt t ])
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d; = A e [t t,]+ o (b + 75 4t LD +
+ 283 (Beagta t,1+ b {ta 1)

d, = —4, ey ag, [ty t, 1+ o (2 + 7 )t 6, 3) +
+ 283 (Beagta t,1+ b {ta 1.3

dy = 4S5 (A8 + Al + Aln 90t b1+

+ (b + Bl + AV 90 Mt th 1)
DDD = D,D*“D" (-44,9°de)[t,. t 1[t,.t,]

DDX = DD“ X" (<44 9%aa; +459° B B)It. t It b1+
+D,; DX (44 g° e +45,9° .8t t It 1,1+
+DDX T (859° (B + Bip + P9 et 1t 1]
+X,”D*D" (4,ig).(2da; [t, . t, 1[t, . t, 1+

+d(2b[ij] +7[ij])[te’tf 1t..t, 1

DXX = DX “* X" (24,ig cr; (8 [te t 1+ by jqfte te 3+ 7 jgtel ) +

— 28,198, (agqlte te 1+ B {te te DI 11+

+ DX XM (<2&ig (BUgq + £ @gjq +Urja 9o )t t 1+

= 28519 (BV iy + £ By + Vi 9 Nt £ DI 11+

+ X, PDeX M (Aig e (2ag; [t t It t, 1+ (0 + 7yt e Kt 1) +
+25,i9/5, (ag) [t t; 1t t, 1+ b, [t £ HE. 1) +

+ X, PDX A (—Aig e (2a; [t t 1Tt b1+ (2 + 7t t Kt 6 ) +
+25,i9/3, (agy) [t t; [t t, 1+ b, [t £ Kt t, 1) +

+ XD X M (84,9 (g + Ay + Al 90 )t t 1T, .1+

+4&:i9 (o045, + BNy + PNV 90 )t Kt 1))

XXX = ijbx Hex (24, (a(kl)[te1tf ]+ b[kl]{te’tf }+ Yiaptels )-

(2 [t 1 ]+ (2 + 7 Hta 1) +
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+4&, (g [t t, 1+ €t b 1) - (B [ta 81+ 0 €. 8. 3)) +

+ XX EX M (AE,) Uy (gLt t Tt b 1+ g It £ 1€ 1 3) +
+(8yyy + Upay 95 ) (U [t Hta b3+ Vi [t £ Kt 1) +

+ Vg (@t £ Mot 1+ b {te £ Ht, 1) +

+ Oy + Vi 90 ) Uiyt t HE b3+ v e t H . 63) (195)

Thus depending on free coefficients expressions one can decouple the longitudinal sector. Given the model symmetry
circumstance, one gets (N —1) conserved currents

ij Y u

aﬂJi:(X):%m?a X4 =0 (196)

16 Volume of circumstances

The volume of circumstances measure the number of invariant terms in the Lagrangian. It is an interesting property
that fields association physics can offer. It relates the free coefficients associated to scalar terms as d 2 , dai , O and
so on. Physically these free coefficients can take any value without violating gauge symmetry.

As an example, we are going to the case LA = trZWZ #Y which yields th following volume of circumstance

EN“—gN3—§N2—7N+3, (197)
4 2 4
given by the structure
B D251
[uv]ia .
D, X¥: (N -1)
X[ ga X2 (N -1)°
a hing 1oj . 2
D2 X*'X'9 (N -1)
X[y XX (N -1)°
~— N-1)(N-2)T
2
bi v Cj Ky ol . 4
XXX XM (N -1) (198)
It is still possible to rewrite some of these structures in more elementary terms
a hing 1oj .
D2 XX :
fap D2, X 21X N(N-1)
2
dabCDva nbix wj : (N _1)2(N _2) (199)
ak P2 IRVAT N
XK XX
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o N(N=1)2
ak )7 IRV N
fabCX[MX X ’.T
ak )2 IRVALE I (N _l)Z(N _2)
Aape X[y XX 5 (200)
Xbixcjx,uskxvtl .
V74 :
2
e T XX TX X ! :{—N(Nz‘l)}
p— 2 p—
fapcda X0 XXX N(N 121 (N52)
i 2 .
dabcfS?XEIX:JXPSka N(N l) (N 2)
4
2
dabcdsatxzixfjxyskx i :[(N _1)(N —2)} (201)
2
Similarly one gets for L :'[I’(Z(W)Z(”V) the following volume of circumstances
(5N? —6N +4)(N -1)°, (202)
given by the structure
X {a X E% (N —1)?
i \s 1vak . 2
XX 1% 2(N -1)
ai ok s vl . 3
X XHkX (N -1)
iy bky/ el . 3
X faix pkx e 3(N ~1)
N N(N-=1)T
X XIX X! :[—( )}
2
iy kbt o] N(N=D)T
X XX KX .3[7
bi v Cj Kyl . 4
XX IX AKX (N -1)
bi i ¢ sk oy bl . 2
XXX H X (N -1)% (N = 2)(3N —2) (203)
It is still possible to rewrite some of these structures in more elementary terms
ai ok N/ Vel .
X Xk
—_— 2 —
fabcx(a,titv)x’ubkxvc':(N 1)2(N 2)
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ai o N(N-1)?
dabcx(/tv)xybkx I:% (204)
i/ bky/vel .
X ey ok el
f X/_taixbkxvd 3(N _1)2(N _2)
abc”™M u v . 2
i .o N(N -1)°
ape X XX 13 (205)
Xbixcjx,uskxvtl .
V7 )
ay biy @ JIN-D(N-2)T
fabcil:stxz XvJXﬂSkXVﬂ |: 2

N(N —1)%(N —2)

f daxbixcjx/_lskxvtl.
H TV .

abc™'st 4
d faxbixcjx,uskxvﬂ.N(N _1)2(N_2)
abc "st "M Ny : 4
2
daped 3 X o X I X420 :{—N(Nz_l)} (206)
Xbix/ﬂjxskxvtbl .
H v .
f faxbix;ﬁjxskxvtm.(N _1)2(N_2)(3N—4)
abc "st N v i 4
f daxbix/mjxskxvtbl.BN(N —1)2(N_2)
abc™st N i v . 4
d faxbix/ﬁjxskxlftm.(N —l)z(N—Z)(BN_4)
abc "st TN u v 2 4
_— 2 _—
g X XXX SN 2 (N=2) (207)
With this, we have, in general, that the total volume of circumstance of the Lagrangian is
L:§N4—4—1N3+£N2—21N+7, (208)
4 2 4

which outshines Yang-Mills (N =1), L:1 free coeficient.
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