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ABSTRACT 

Current research presents a visual-computational tool to design and investigate round electrostatic lenses in sense of 
analysis procedure. The finite elements methods is adopted to find the electrostatic potential in the lens region. Laplace’s 
equation is first replaced by a certain functional which physically represent the electric energy stored in the electric field. 
This functional is then minimized at each mesh point with respect to the nearest eight ones. This minimization process is 
proved to be entirely equivalent to solving Laplace’s equation. The requirement that the functional being minimized is then 
yields a set of nine point equations which inter relate  the potentials at adjacent mesh points. Finally this set of equations is 
solved to find the electrostatic potential at each mesh point in the region of the lens under consideration. The procedure 
steps mention above are coded to program written in visual basic. Hence an interface tool for analyzing and designing 
electrostatic lenses has been built up. Designing results proved that the introduced tools has an excellent outputs in 
comparison with the others written in not visual programming languages. Furthermore it easier for researchers and 
designer to use such a tool over their counterpart ones. 
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1. INTRODUCTION  

A great importance for the electron lenses design have been given since the earlier days of electron optics.  Many 
computational tools are introduced to deals with such an issue, however, the computer package programs published by 
Munro in 1975 [1] may consider to be the first real one. Since that time several authors tried to improve this gadget 
concerning the usage [2] and  accuracy [3], but the novel principles are remained with ought change. The main 
characteristics of all of these  works are that they are coded to a conventional procedural programming languages 
generally the Fortran.  

In parallel with development of the computer software and hardware several software packages which written in different 
visual interface programming language are presented. Indeed these tools make it easy to design and hence optimize the 
electron lenses concerning their own shape and function. For example one may mention the software argued in the 
literatures [4], [5], [6] and the companies MEBS company programs [7], Charged Particles Optics Company programs and 
SIMION company programs [8]. 

In fact most of these software are presented for commercial issues rather than that of scientific purposes  So,  the  cost of 
any of these packages is too much expensive and may not serve the goals of researchers. Recently a computer aided 
design tool is introduced to manipulate magnetic lenses by [9]. It  can regarded to be a modification trial to the 
conventional counterpart. Present work also try to modify the conventional designing procedure and mainly concerns with 
electrostatic rather the magnetic lenses.  

2.MATERIAL AND METHODS 

2.1 Solution of Laplace’s Equation  

Evolution of the first order properties and third order aberrations for any electrostatic lens requires the knowledge of the 
electrostatic potential distributions throughout the electrode region. Consider now this region is meshed into a grid in 
sense of finite elements method (FEM) as shown in figure 1. The aim, however, is to compute the potential at each mesh 
point. Indeed the idea of round electric lens has been considered in drawing this figure. Hence the plane r-z in represent 
the plane of symmetry and so the z-axis is the axis of rotational symmetry. In other word, the region ABCD represent a 
cross section of a cylinder of length AB≡CD and radius AC≡BD. Furthermore, entire region is divided into quadrilaterals, 
which in turn subdivide into small triangles usually named finite elements.  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig 1: Mesh of the finite element method. 

The differential form of gauss's law usually given by the following form: 

∇   . 𝐷   = 𝜌                                                                                                     ………….(1) 
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Assuming the region ABCD is charge-free and keep in mind that the electric field is irrotational, i.e. curl E=0, equation (1)  
can be expressed in terms of a scalar function as follows:  

∇   . ∇   𝑈 = 0                                                                                                   ………….(2) 

Actually the scalar function U is the correspondent electrostatic potential which needs to be compute throughout the region 
ABCD. It can be seen that equation (2) is simply Laplace's equation. So, to find U there must be a certain boundary 
conditions impose on the boundaries of the region ABCD like Dirichlet or Newman boundary conditions.  

Unless the solution of equation (2) is unique under a specific boundary conditions, there will be a some variation in 

the potential such as 𝛿𝑈. Multiply this equation by the variation 𝛿𝑈 and making use the vector identity ∇   . (𝜑𝐴 ) = 𝜑∇.    𝐴 +

𝐴 . ∇   𝜑, it converts to the following form: 

∈0  ∇   .  𝛿𝑈 ∇   𝑈 − ∇   𝑈. ∇   𝛿𝑈 = 0                                                                  ………….(3) 

Where  ∈𝟎 is the permittivity of free space. The integration of equation (3) over all of the volume enclosed by the surface 

whose its cross-section area is ABCD yield to: 

∈0  ∇   .  𝛿𝑈 ∇   𝑈 𝑑𝑣 =
𝑉

∈0  ∇   𝑈. ∇   𝛿𝑈 𝑑𝑣
𝑉

                                                    ………….(4) 

Application of  the Gaussian theorem for the left-hand side of last equation gives: 

∈0  ∇   𝑈. ∇   𝛿𝑈 𝑑𝑣 =  𝛿𝑈𝑏∇   𝑆𝑉
𝑈𝑏  𝑑𝑎                                                            ………….(5) 

But for a prescript boundary conditions there will be no variation in the potential Ub and so equation (5) becomes: 

∈0  ∇   𝑈. ∇   𝛿𝑈 𝑑𝑣 = 0
𝑉

                                                                                ………….(6) 

Equation (6) declare that either the volume integration for the function  ∇   𝑈. ∇   𝛿𝑈  is vanishes throughout the volume V, 

or the function itself being null. The first probability can only be established by dividing the cylinder into two parts by a 
plane containing the axis-z, where first of them being held at (+U) and the remaining one at (-U). Actually this is unreliable 
situation in exciting round electrostatic lenses and there is no way to accept such a probability. Concerning with second 

consequence one directly observe that neither ∇   𝑈 nor ∇   𝛿𝑈 could be equal to zero. Because ∇   𝑈 = 0 means there is no 

electric field in the region ABCD and hence there is no lens at all. Also, 𝛿𝑈 is proposed initially to be exist, and one can't 

imagine that this variation is fixed throughout all of the region under consideration. Therefore the proposition that the 

function  ∇   𝑈. ∇   𝛿𝑈  equal to zero most be rejected.  

The careful inspection of equation (6) reveal that the two mathematical operators ∇    and 𝛿 are differ in their actions and 

so they are independ on each other. So, the order of these operator can be exchanged without changing the scientific 

meaning of equation (6). Accordingly the quantity  ∇   𝑈. ∇   𝛿𝑈  become equal to  ∇   𝑈. 𝛿∇      𝑈  and both of them equal to 

1
2 𝛿 ∇   𝑈 

2
. Thus, equation (6) can be written as follows: 

∈0  1

2
𝛿 ∇   𝑈 

2
𝑑𝑉 = 0

𝑉
                                                                                ………….(7) 

Defiantly, the conclusion used above can be repeated again to exchange the order position between the integration and 𝛿 

operators. So equation (7) becomes as follows: 

𝛿  
∈0

2
 ∇   𝑈 

2
𝑑𝑉

𝑉
= 𝛿  

∈0

2
𝐸  . 𝐸  𝑑𝑉

𝑉
= 0                                                       ………….(8) 

Equivalently, equation (8) can be written in the following abbreviation symbolic form: 

𝛿𝐹 = 0                                                                                                       ………….(9) 

Where F is the functional: 

𝐹 =  
∈0

2
𝐸  .  𝐸     𝑑𝑉

𝑉
                                                                                    ………….(10) 

Anyway, the physical interpretation of equation (6) become now understandable in a manner that, for a specific 
boundary conditions there is a certain potential distribution U which make the functional F minimum. So any variation of 
this functional with respect to this distribution U will vanishes. Mathematically this is equivalent to solving Laplace equation 
subjected to the same prescript boundary conditions. Strictly speaking for a well-defined Dirichlit or Newman boundary 
conditions, one no more needs to solve Laplace equation to compute the potential distribution that met these boundary 
conditions. Instead the functional F must be minimized for the same boundary conditions and then finding the potential 
distribution U that make F minimum. 

2.2 Minimization 

The same procedure that had been outlined by [10],  and revised by [11], is used in this work to minimizing the function in 
equation (10). Accordingly by assuming the potential vary linearly a cross a finite element as in the form: 
U(r,z)=a1+a2z+a3r, the functional F will take the following forms: 
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𝐹 =  
∈0

2
  

𝜕𝑈

𝜕𝑍
 

2
+  

𝜕𝑈

𝜕𝑟
 

2
 𝑟 𝑑𝑢𝑑𝑧𝑑𝑟

𝑟  𝜋  2𝜋

0  0  0
                                                   ……….(11) 

The contribution from a general finite element, see figure 2, to the total value of the functional in equation (11) is: 

∆𝐹 =
∈0𝜋 𝑟𝑎

4𝐴
   𝑏𝑖𝑈𝑖

3
𝑖=1  

2
+   𝑐𝑖𝑈𝑖

3
𝑖=1  

2
                                                      ……….(12) 

Where ra is the average value of radial distance at the center of the triangle, A is the area of the triangle, b i=rj-rk, ci=zk-zj 
and Ui is the potential value at the vertex i.  

The boundary condition must be used now in order to continue with the minimization process. The minimization 
according to equation (8 or 9) requires the differentiation of the contribution in equation (12) with respect to changes in the 
mesh-point potential. So from equation (12) one get: 

𝜕∆𝐹

𝜕𝑈𝑛
=  𝐹𝑛𝑚  𝑈𝑛                                                                                              ……….(13) 

Where n=i,k and m=i,k. the symbol Fnm is a 3×3 matrix given by the expression: 

∆𝐹 =
∈0𝜋 𝑟𝑎

4𝐴
 𝑏𝑛𝑏𝑚 + 𝐶𝑛𝐶𝑚                                                                            ……….(14) 

However, with aid of the last equation the coefficient of the matrix Fnm may calculated for every triangles of the finite 
element mesh. It's worth to mention that finite element (triangles) within the electrode most be excluded from the 
calculation because the electrode is itself an equipotentials surface.  

When the boundary conditions are inserted the matrices Fnm becomes able to set up triangles equations inter relating 
the potential values at adjacent mesh points. For example let U0 be the potential value of an arbitrary mesh point 0 as 
shown in figure 2. The potential at the nearest adjacent points being (U1,U2,U3, U4, U5, U6, U7 and U8). The change in the 
functional Fnm with respect to U0 must be equal to zero according to the minimization condition, thus the contribution from 
the twelve triangles that U0 be one of their vertex potential must be minimized. i.e. 

 
𝜕∆𝐹

𝜕𝑈0
 
𝑇1

+  
𝜕∆𝐹

𝜕𝑈0
 
𝑇2

+ ⋯ . +  
𝜕∆𝐹

𝜕𝑈0
 
𝑇12

= 0   ……….(15) 

By substitution of equation (13) into equation (15) one can get a nine point triangle equation of the form: 

 𝑃𝑖𝑈𝑖
8
𝑖=0 = 0                                       ……….(16) 

Where each Pi coefficient is a specific collection of terms of Fnm . Eventually a nine-point formula  is obtained for each non-
axial mesh point and a six-point formula for each axial-point. The resultant equations may be arranged in form of a band 
matrix which in turn can be solved by an appropriate numerical method.  

 

 

 

 

  

 

 

 

 

 

 

Fig 2a: An arbitrary finite element. 
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Fig 2b: Twelve triangles around a mesh point of potential U0. 

2.3 Procedure Encoding  

The algorithm described in last two sections has been coded to visual interfaces using the visual basic programming 
language, so as to provide an easier and flexible tool for analyzing an electric lens systems. Firstly, an assigned lens 
profile (usually a plot describe the lens system in r-z plane) is converted to data file represent the axial and radial 
coordinates of the assigned lens. Where each coordinates point is given a number that represent the number of segments 
between any neighbor points. Accordingly the r-z area is distributed into a grid of a small quadrant shapes. When the lens 
data file being input to the computer memory it will makes a further segmentations according to the given number for each 
coordinate point. Thereafter the computer starts to generate a finite elements (triangles) and follow an instructions 
appropriates to the steps mentioned in last two sections. Eventually, a nodal equation for each mesh point being set up 
and then arranged in form of matrix, where the Gaussian elimination and back ward substation is used to solve this 
system of equations to find the electrostatic potential at each mesh point.   

3. HILGHGHT DESCRIBTION OF IMPLEMENTATION  

Once the program being initiated, the first page appears as shown in figure 3.This page is optionally designed to 
illustrate the names of authors, theirs tilts and the name of the software that chosen to be ‘Electrostatic Lens Design 
Software (ELDS)’. Pressing the return key makes the execution process leave this page to the second one which is shown 
in figure 4. The background of this page  involve a text information represents the aim of ELDS software and a dialogue 
box ask user about whether the lens under consideration is symmetric or not. So when the type the lens is assigned in this 
step, say symmetric for example, user can no longer changed it to the other one, asymmetric in this example, unless the 
execution process is truncated and then it initiated again from the beginning.   

 

 

Fig 3: First page of the ELDS that appears just it being starts execution process.  
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Fig 4: Second page of ELDS. 

When the lens type is specified by pressing the bottom (Yes) or (No), execution transit to the third page of (ELDS), see 
figure.5a. Actually this page represent the main menu of the software which contain designing, analyzing and 
documentation options. Construction of these options have  takes into account that it being similar to that may be found in 
most of the Microsoft application programs, so as users become familiar to use (ELDS). The windows belong to options 
File, Edit, Compute, View, Plot and Window are shown in figure.5 b, c, d, e, f and g respectively. Obviously the function of 
each of them is quite clear, however, the File option may used to running the (ELDS) program for example or new lens, 
see figure.6. The example option has been add to gives indications about the procedure by means (ELDS) could executed 
and also checking its output results. Anyway Munros’s asymmetric lens [1] is used in this example since their details is 
published and available. It is recommended for user just begin to use (ELDS) to follows the Example commands to get 
over view knowledge in running a new lens design.   

Indeed for a new lens design that specified by a user itself the command New must be selected, see figure. 6b. Page of 
this command supply a user by the required designing  tools. Where it provide keys for defining the axial and radial 
meshes for the lens under consideration. In addition the menu allows user to specifying the type of any part in the 
regarded region whether it being free space or electrode material. When the lens design is converted into input data file it 
become ready for analyses. Consequently, its graph, mesh, axial potential, mesh potential and equipotential surfaces can 
be deduced by selecting the appropriate commend for that process as shown in figure 5.        
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Fig 5: a) The main menu of (ELDS) programs. b) FILE option. c) EDIT option. d) COMPUTE option. e) VIEW option. 
f) PLOT option. g) WINDOW option.  
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Fig 6: (a) Example and (b) New Data  sub-option of the File window.  

4. RESULTS  

In fact, Munro’s asymmetric lens is chosen to verify the results of (ELDS) program. Figure 7 shows the profile of the 
considered lens as it being plotted by (ELDS) using the Projection command from the Plot window. With aid of the 
command Mesh Points in the Plot window the meshes lines has distributed on this profile and the result is shown in 
figure.8. Indeed this distribution is done automatically by (ELDS) itself according the input values. The deduced axial 
electrostatic potential along the optical axis and the equipotential surfaces are plotted in figures 9 and 10 respectively.  

Actually one may present many data and graphs concerns with the lens under consideration. To keep space, however, 
the results presented so far are just selected to make an objective verification for the (ELDS) program. The axial 
electrostatic potential deduced from (ELDS) software and its counterpart imported from the literature [1] are listed in table-
1. Results of comparison reveals that an excellent accuracy could be obtain from the tool designed in the present work.    

(A) 

(B) 
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Fig 7: Plot of the considered lens by (ELDS).  

 

 

Fig 8: Distribution of axial and radial mesh lines for the profile appears in Fig 7.  
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Fig 9: Plot of the deduced  axial electrostatic potential distribution. 

 

 

 

 

 

 

 

Fig 10: The equipotential surfaces as it deduced from (ELDS) software. 
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Table 1: The axial electrostatic potential computed from present work and that imported from [1]. 

z (mm) V(Volts)(ELDS) V(Volts) [1] 

-14.0000 .000000 .000000 

-13.0000 .013936 .013936 

-12.0000 .042168 .042168 

-11.0000 .151446 .151446 

-10.0000 .823173 .823173 

-9.7000 1.809229 1.809229 

-9.4000 3.471465 3.471465 

-8.7308 10.817304 10.817304 

-8.0615 22.663271 22.663271 

-7.3923 38.457704 38.457704 

-6.7231 57.895433 57.895433 

-6.0538 80.757143 80.757143 

-5.3846 106.844276 106.844276 

-4.7154 135.957899 135.957899 

-4.0462 167.891784 167.891784 

-3.3769 202.431220 202.431220 

-2.7077 239.354914 239.354914 

-2.0385 278.438653 278.438653 

-1.3692 319.459739 319.459739 

-.7000 362.201390 362.201390 

-.0308 406.456563 406.456563 

.6385 452.030815 452.030815 

1.3077 498.744079 498.744079 

1.9769 546.431313 546.431313 

2.6462 594.942037 594.942037 

3.3154 644.138708 644.138708 

3.9846 693.893469 693.893469 

4.6538 744.081626 744.081626 

5.3231 794.565570 794.565570 

5.9923 845.142807 845.142807 

6.6615 895.339914 895.339914 

7.3308 943.537316 943.537316 

8.0000 983.675145 983.675145 

9.0000 997.544330 997.544330 

10.0000 999.652547 999.652547 

11.0000 999.937232 999.937232 

12.0000 999.982630 999.982630 

13.0000 999.994269 999.994269 

14.0000 1000.000000 1000.000000 
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5. CONCLUSION     

Manipulation of the regarded test lens shows that it is efficient and easy to use (ELDS) for analyzing electrostatic 
electron lenses. Furthermore the comparison proved that an accurate result may obtain from the designed software. The 
used visual programming language give raise for further realization of investigation concerning this type of lenses. 
Furthermore, (ELDS) may widely be used by non-expert users because it involve on adopting interfaces of direct 
indications. 
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