

DOI: <https://doi.org/10.24297/jam.v25i.9837>

Euler's Number in Right Triangles

Dr. Chetansing Rajput

M.B.B.S. (Nair Hospital, Mumbai) Asst. Commissioner (Govt. Of Maharashtra, India)

E-Mail: chetansingrajput1129@gmail.com Contact: (+91) 7057521129

This paper is a single page rapid communication of an explicit and intriguing formula that yields the precise value of Euler's number (e) from the side lengths of right angled triangles.

Consider a right triangle (a, b, c) with a and b as its shorter and longer legs respectively, and c is the hypotenuse. Then, the $\left(\operatorname{arsinh}\left(\frac{a}{c-b}\right)\right)^{\text{th}}$ root of cotangent of one quarter of the smaller acute angle of the right triangle (a, b, c) precisely equals the Euler's number (e).

In exponent notation :

$$\left[\cot\left(\frac{\theta}{4}\right) \right]^{\operatorname{arsinh}\frac{a}{c-b}} = e$$

where θ the smaller acute angle of the right triangle (a, b, c).

Similarly, the $\left(\operatorname{arsinh}\left(\frac{b}{c-a}\right)\right)^{\text{th}}$ root of cotangent of one quarter of the larger acute angle of the right triangle (a, b, c) precisely equals the Euler's number (e).

References : None

Funding Statement : This research work is self-sponsored by the author

