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Abstract

This paper discusses the high order nonlinear neutral mixed type difference equation

∆m [x(n) + p(n)h (x(σ(n)))] + q(n)f (x(τ(n))) = 0, n = 0, 1, 2, . . . ,

where (p(n)), (q(n)) are sequences of nonnegative real numbers, h, f : R → R are continuous and nondecreasing with
uh(u) > 0, uf(u) > 0 for all u ̸= 0, and (σ(n)) and (τ(n)) are sequences of integers such that

lim
n→∞

τ(n) = lim
n→∞

σ(n) = ∞.

Generally, the oscillatory behaviour of the solutions for this equation will be investigated. Especially, when m is even,
the result obtained here has completed the oscillation studies related to the above equation. In addition, examples
showing the accuracy of the results are given.
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Introduction

∆m [x(n) + p(n)h (x(σ(n)))] + q(n)f (x(τ(n))) = 0, n = 0, 1, 2, . . .

We consider the following higher order nonlinear neutral mixed type difference equation

∆m [x(n) + p(n)h (x(σ(n)))] + q(n)f (x(τ(n))) = 0, n = 0, 1, 2, . . . , (1.1)

where ∆ is the usual forward difference operator defined by ∆x(n) = x(n+ 1)− x(n), (p(n)) and (q(n)) are sequences
of nonnegative real numbers, h, f : R → R are continuous and nondecreasing with uh(u) > 0, uf(u) > 0 for all u ̸= 0,

and (σ(n)) and (τ(n)) are sequences of integers such that

lim
n→∞

τ(n) = lim
n→∞

σ(n) = ∞. (1.2)

Throughout this paper, we assume the following conditions to hold;
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(H1) (p(n)) is a real-valued sequence with p(n) ≥ 0, n ∈ N.

(H2) (q(n)) is a real-valued sequence with q(n) ≥ 0, n ∈ N and (q(n)) is not eventually identically zero.

(H3) h, f : R → R are continuous and nondecreasing with uh(u) > 0, uf(u) > 0 for all u ̸= 0.

A solution (x(n)) of (1.1) is called oscillatory, if the terms x(n) of the sequence are neither eventually positive nor
eventually negative. Otherwise, the solution is said to be nonoscillatory. An equation is oscillatory if all its solutions
oscillate.

For a long time, the oscillatory behavior and the existence of nonoscillatory solutions of difference equations have been
extensively studied, see, for example, papers [1–28] and references cited therein. Most of these papers concern the
special case where the arguments are delayed or advanced, while a small number of these papers [see, 9] are dealing
with the case where the arguments are mixed.

In [1], Agarwal et al. and in [27], Zhang obtained some oscillatory results for the following equation, which is a special
case of equation (1.1)

∆m [x(n) + p(n)x(n− k)] + q(n)f (x(n− l)) = 0, n = 0, 1, 2, . . . , (1.3)

where (p(n)) and (q(n)) are real sequences with 0 ≤ p(n) < 1 and q(n) ≥ 0 for n ∈ N, and k, l are fixed nonnegative
integers, f : R → R is continuous with uf(u) > 0 for all u ̸= 0.

In [12], Kaleeswari and in [13], Kaleeswari and Selvaraj investigated the oscillatory behaviour of solutions for the
following equation,

∆m [x(n) + p(n)x(σ(n))] + q(n)f (x(τ(n))) = 0, n = 0, 1, 2, . . . , (1.4)

where (p(n)) and (q(n)) are real sequences with 0 ≤ p(n) < 1 and q(n) ≥ 0 for n ∈ N, f : R → R is continuous with
uf(u) > 0 for all u ̸= 0, which is another special case of equation (1.1).

For m = 1, p(n) ≡ 0 and f(x) = x, Eq.(1.1) reduce to

∆x(n) + q(n)x(τ(n)) = 0, n = 0, 1, 2, . . . . (1.5)

When τ(n) ≤ n, (where they can be τ(n) = n for some n ∈ N, or τ(n) ≡ n for n ∈ N) and τ(n) is nondecreasing, in
1998, Zhang and Tian [24] proved that, if

lim sup
n→∞

q(n) > 0 and lim inf
n→∞

n−1∑
j=τ(n)

q(j) >
1

e
, (1.6)

then all solutions of (1.5) are oscillatory, while, in 2020, the present author [16] proved that, if

lim inf
n→∞

n−1∑
j=τ(n)

q(j) >
1

e
, (1.7)

then all solutions of (1.5) are oscillatory, which is the best result in the literature when τ(n) ≤ n, n ∈ N and τ(n) is
nondecreasing, involving only lower limit condition.

In 2006 Braverman and Karpuz [6] obtained that, if

lim sup
n→∞

n∑
j=τ(n)

q(j)

τ(n)−1∏
i=τ(j)

1

1− q(i)
> 1, (1.8)
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then all solutions of (1.5) are oscillatory, which is the best result in the literature when τ(n) ≤ n, n ∈ N and τ(n) is
nondecreasing, involving only upper limit condition.

When τ(n) < n, n ∈ N and τ(n) is nondecreasing, in 2006, W. Yan, Meng and J. Yan [21] improved the condition (1.7)
with the following

lim inf
n→∞

n−1∑
j=τ(n)

q(j)

(
j − τ(j) + 1

j − τ(j)

)j−τ(j)+1

> 1, (1.9)

which is the best result in the literature, involving only lower limit condition.

Finally, when τ(n) < n, n ∈ N and τ(n) is nondecreasing, for the all solutions of (1.5) to be oscillatory, involving only
upper limit condition, which is the best result obtained in the literature so far is given in [17] by Öcalan, which is as
follows; if

lim sup
n→∞

n∑
j=τ(n)

q(j)

(
j − τ(j) + 1

j − τ(j)

)j−τ(j)+1 τ(n)−1∏
i=τ(j)

1

1− q(i)
> e, (1.10)

then all solutions of (1.5) oscillate.

For m = 1 and p(n) ≡ 0, Eq. (1.1) reduce to

∆x(n) + q(n)f (x(τ(n))) = 0, n = 0, 1, 2, . . . . (1.11)

When τ(n) ≤ n, n ∈ N and τ(n) is nondecreasing, in 2018, Öcalan, Özkan and Yıldız [14] (See also [15]) gave the
following result regarding (1.11).

THEOREM A. Assume that τ(n) ≤ n, n ∈ N and τ(n) is nondecreasing, (H2) and (H3) hold. Also, we suppose that

lim sup
x→0

x

f(x)
= M. (1.12)

Thus, if

lim inf
n→∞

n−1∑
j=τ(n)

q(j) >
M

e
, where 0 ≤ M < ∞, (1.13)

or

lim sup
n→∞

n∑
j=τ(n)

q(j) > M, where 0 < M < ∞, (1.14)

then all solutions of (1.11) oscillate.

For the oscillation results of some superlinear and sublinear equations, which are important special cases of equation
(1.1), see papers [5, 7, 10, 11, 18, 19, 20, 22, 23, 26].

In this study, we obtain some interesting results for the oscillation of the solutions of equation (1.1) by considering the
p(n) and q(n) coefficients more broadly than the conditions studied in the literature. Moreover, the results obtained
here are new when h(x) = x and f(x) = x.

We need following lemmas proved in [2].

Lemma 1. (Discrete Kneser’s Theorem) Let z(n) be defined for n ≥ a, and z(n) > 0 with ∆mz(n) of constant sign
for n ≥ a and not identically zero. Then, there exists an integer j, 0 ≤ j ≤ m with (m+ j) odd for ∆mz(n) ≤ 0, and
(m+ j) even for ∆mz(n) ≥ 0, such that

j ≤ m− 1 implies (−1)j+i∆iz(n) > 0, for all n ≥ a, j ≤ i ≤ m− 1,
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and
j ≥ 1 implies ∆iz(n) > 0, for all large n ≥ a, 1 ≤ i ≤ j − 1.

Lemma 2. Let z(n) be as in Lemma 2.1 and bounded. Then

(−1)i+1∆m−iz(n) > 0, for all large n ≥ a, 1 ≤ i ≤ m− 1,

and
lim
n→∞

∆iz(n) = 0, 1 ≤ i ≤ m− 1.

The following lemma is an extension of the discrete analogue of known results in [8, Theorem 5.1.1]; it can also be
found in [4, Lemma 6.2.2] and [25, Theorem 1]. The proof is immediate.

Lemma 3. Let (q(n)) be a sequence of nonnegative real numbers, (τ(n)) be a nondecreasing sequence of integers such
that τ(n) ≤ n, and f : R → R be a continuous nondecreasing function with uf(u) > 0 for all u ̸= 0. If the first order
delay inequality

∆y(n) + q(n)f (y(τ(n))) ≤ 0, n = 0, 1, 2, . . . ,

has an eventually positive solution, then so does the delay equation

∆y(n) + q(n)f (y(τ(n))) = 0, n = 0, 1, 2, . . . .

Equation (1.1) with m is even

In this section, when m is even, we obtain new result for the oscillation of the solutions of equation (1.1) under the
assumptions (H1)− (H3).

The following Theorem is the best result obtained so far in the literature when m is even for equation (1.1).

Theorem 1. Let m be even. Assume that σ(n), τ(n) are any delay or advanced arguments and (1.2), (H1)− (H3)

hold. Then, every solution of (1.1) oscillates.

Proof. Let (x(n)) be a nonoscillatory solution of (1.1), with x(n) > 0 eventually. Set

z(n) = x(n) + p(n)h (x(σ(n))) . (2.1)

So, we get z(n) ≥ x(n) > 0 and
∆mz(n) = −q(n)f (x(τ(n))) ≤ 0, n ≥ n0. (2.2)

Also, it is clear from Lemma 1.1 that ∆iz(n) is eventually constant sign for i = 1, 2, 3, ...,m− 1, ∆m−1z(n) > 0 and
nonincreasing, and there are two possible cases where ∆z(n) < 0 or ∆z(n) > 0. We claim that ∆z(n) < 0. If ∆z(n) > 0,

then limn→∞ z(n) = a, where 0 < a ≤ ∞. Summing both sides of (1.1) from n1 ≥ n0 to N repeatedly m-times, we get

z(N +m)− z(n1) +

N∑
j1=n1

N∑
j2=j1

· · ·
N∑

jm=jm−1

q(jm)f (x(τ(jm))) = 0. (2.3)

Letting N → ∞ in (2.3), we have

a− z(n1) +

∞∑
j1=n1

∞∑
j2=j1

· · ·
∞∑

jm=jm−1

q(jm)f (x(τ(jm))) = 0. (2.4)

Here, since ∆z(n) > 0, we get a > z(n1). Thus, by (H1) and since f(x) > 0, we obtain a contradiction to (2.4). So, our
claim is true, that is ∆z(n) < 0. Thus, in Lemma 1.1, we must have j = 0. On the other hand, we know from Lemma
1.1 that (m+ j) odd for ∆mz(n) ≤ 0. This is a contrediction to m is even and j = 0. The proof is complete.
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Example 1. Consider the fourth order difference equation

∆4
[
x(n) + 2nx

1
3 (n+ 1)

]
+

n

n+ 1
x

5
3 (n− 3) = 0, n ≥ 0. (2.5)

Clearly no paper in the literature answers this. However, all conditions of Theorem 2.1 are satisfied, and hence all
solutions of equation (2.5) are oscillatory.

Equation (1.1) with m is odd

In this section, when m is odd, we obtain new results for the oscillation of the solutions of equation (1.1) for the
different possible cases of (p(n)) and (q(n)).

Theorem 2. Let m be odd. Assume that σ(n), τ(n) are any delay or advanced arguments, (1.2), (H1)− (H3) and
lim supn→∞ q(n) > 0 hold. Then, every solution of (1.1) either oscillates, or every nonoscillatory solution of (1.1)
tends to zero as n → ∞.

Proof. Let (x(n)) be a nonoscillatory solution of (1.1), with x(n) > 0 eventually, and assume further that x(n) does
not tend to zero as n → ∞. By (2.1) and (2.2) , it is clear from Lemma 1.1 that ∆iz(n) is eventually constant sign
for i = 1, 2, 3, ...,m− 1. Moreover, by Lemma 1.1 that ∆m−1z(n) > 0 and nonincreasing. Thus, summing (1.1) from
n1 ≥ n0 to ∞, we get

∞∑
n=n1

∆mz(n) = −
∞∑

n=n1

q(n)f (x(τ(n))) ,

or

0 < ∆m−1z(n1)− L =

∞∑
s=n1

q(n)f (x(τ(n))) ,

where 0 ≤ L := limn→∞ ∆m−1z(n) < ∞. Since
∑∞

n=n1
q(n)f (x(τ(n))) < ∞, we have limn→∞ q(n)f (x(τ(n))) = 0. So,

in the view of lim supn→∞ q(n) > 0, we obtain limn→∞ f (x(τ(n))) = 0. Therefore, from our assumption about f, we
get that limn→∞ x(n) = 0, which is a contradiction to x(n) ↛ 0. The proof is complete.

Theorem 3. Let m be odd. Assume that σ(n) is any delay or advanced argument, τ(n) ≤ n and nondecreasing, (1.2),
(H1)− (H3) hold. If all solutions of the following difference equation

∆y(n) + q(n)f [c(τ(n))y(τ(n))] = 0, n = 0, 1, 2, . . . , (3.1)

where (c(n)) is a sequence such that limn→∞ c(n) = 0, are oscillatory, then every solution of (1.1) oscillates.

Proof. Let (x(n)) be a nonoscillatory solution of (1.1) with x(n) > 0 eventually. By (2.1), we have ∆mz(n) =

−q(n)f (x(τ(n))) ≤ 0, n ≥ n0. It is clear from Lemma 1.1 that ∆iz(n) is eventually constant sign for i = 1, 2, 3, ...,m−1,
∆m−1z(n) > 0 and nonincreasing. Since

(
∆m−1z(n)

)
is bounded, we can find a sequence (c(n)) such that limn→∞ c(n) =

0 and
x(n) ≥ c(n)∆m−1z(n), n ≥ n1 ≥ n0. (3.2)

So, by (1.1), (2.1) and (3.2), and since f is nondecreasing, we have

∆mz(n) + q(n)f
[
c(τ(n))

(
∆m−1z(τ(n))

)]
≤ 0, n ≥ n1. (3.3)

Letting y(n) = ∆m−1z(n) > 0. Thus, from (3.3), we obtain

∆y(n) + q(n)f (c(τ(n))y(τ(n))) ≤ 0, n ≥ n1, (3.4)

which means that inequality (3.4) has an eventually positive solution. Thus, we know from Lemma 1.3 that equation
(3.1) has also a positive solution. This contradicts to our assumption. The proof is complete.
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Theorem 4. Let m be odd. Assume that σ(n), τ(n) are any delay or advanced arguments, (1.2), (H1) − (H3),

limn→∞ q(n) = 0, lim supn→∞ p(n) = ∞ hold. Then, every solution of (1.1), which does not converge to zero as
n → ∞, is oscillatory. (In other words, there is no any nonoscillatory solution tends to zero).

Proof. Let (x(n)) be a nonoscillatory solution of (1.1) with x(n) > 0 eventually, and assume that x(n) does not
tend to zero as n → ∞. By (2.1) and (2.2) , it is clear from Lemma 1.1 that ∆iz(n) is eventually constant sign for
i = 1, 2, 3, ...,m− 1, ∆m−1z(n) > 0 and nonincreasing, and there are two possible cases where ∆z(n) < 0 or ∆z(n) > 0.

From (2.1) and our assumptions, we obtain

lim
n→∞

z(n) = ∞ and ∆z(n) > 0.

On the other hand, we know from the proof of Theorem 2.1 that ∆z(n) < 0. This is a contradiction and the proof is
complete.

Theorem 5. Let m be odd. Assume that σ(n), τ(n) are any delay or advanced arguments, (1.2), (H1) − (H3),

limn→∞ q(n) = 0 hold. Then, every unbounded solution of equation (1.1) oscillates.

Proof. Let (x(n)) be a unbounded nonoscillatory solution of (1.1) with x(n) > 0 eventually. By (2.1) and (2.2), it is clear
from Lemma 1.1 that ∆iz(n) is eventually constant sign for i = 1, 2, 3, ...,m− 1, ∆m−1z(n) > 0 and nonincreasing, and
there are two possible cases where ∆z(n) < 0 or ∆z(n) > 0. By (2.1), and since (x(n)) is unbounded, we have
limn→∞ z(n) = ∞ and ∆z(n) > 0. On the other hand, we know from the proof of Theorem 2.1 that ∆z(n) < 0. This is
a contradiction and the proof is complete.

Theorem 6. Let m be odd. Assume that σ(n) is any delay or advanced argument, τ(n) ≤ n and nondecreasing, (1.2),
(H1)− (H3), limn→∞ q(n) = 0, lim infn→∞ p(n) < ∞ hold. If all solutions of the following difference equation

∆y(n) + q(n)f (y(τ(n))) = 0, n = 0, 1, 2, . . . (3.5)

are oscillatory, then every bounded solution of equation (1.1), which does not converge to zero as n → ∞, is oscillatory.

Proof. Let (x(n)) be a bounded nonoscillatory solution of (1.1) with x(n) > 0 eventually. By (2.1) and (2.2), it is clear
from Lemma 1.1 that ∆iz(n) is eventually constant sign for i = 1, 2, 3, ...,m− 1, ∆m−1z(n) > 0 and nonincreasing, and
there are two possible cases where ∆z(n) < 0 or ∆z(n) > 0. Moreover, we know from the proof of Theorem 2.1 that
∆z(n) < 0 and (z(n)) is bounded. On the other hand, since (x(n)) is bounded and does not converge to zero as
n → ∞, we get 0 < lim supn→∞ x(n) < ∞. Moreover, since lim infn→∞ p(n) < ∞, we obtain limn→∞ x(n) = a, where
0 < a < ∞. So, we know from Lemma 1.2 that

lim
n→∞

∆m−1z(n) = 0.

Thus, since limn→∞ x(n) = a and limn→∞ ∆m−1z(n) = 0, we have

x(n) ≥ ∆m−1z(n), n ≥ n1 ≥ n0. (3.6)

So, by (1.1), (2.1) and (3.6), and since f is nondecreasing, we have

∆mz(n) + q(n)f
[
∆m−1z(τ(n))

]
≤ 0, n ≥ n1. (3.7)

Letting y(n) = ∆m−1z(n) > 0. Thus, from (3.7), we obtain

∆y(n) + q(n)f (y(τ(n))) ≤ 0, n ≥ n1, (3.8)

35



Journal of Advances in Mathematics Vol 22 (2023) ISSN: 2347-1921 https://rajpub.com/index.php/jam

which means that inequality (3.8) has an eventually positive solution. Thus, we know from Lemma 1.3 that equation
(3.5) has also a positive solution. This contradicts to our assumption. The proof is complete.

Example 2. Consider the third order difference equation

∆3

[
x(n) +

n+ 1

n
x(n+ 1) ln (e+ |x(n+ 1)|)

]
+ nx(n− 1) ln (e+ |x(n− 1)|) = 0, n ∈ N. (3.9)

Here, p(n) = n+1
n , q(n) = n, σ(n) = n+ 1, τ(n) = n− 1, h(x) = f(x) = x ln (e+ |x|) . So, if we take c(n) = 1

n , then

f [c(τ(n))y(τ(n))] = f [
1

n− 1
y(n− 1)] =

1

n− 1
y(n− 1) ln

(
e+

|y(n− 1)|
n− 1

)
. (3.10)

Thus, from (3.1) and (3.10), we obtain

∆y(n) +
n

n− 1
y(n− 1) ln

(
e+

|y(n− 1)|
n− 1

)
= 0. (3.11)

Now, we consider the equation (3.11). Let k(n) = n
n−1 , τ(n) = n− 1, g(y) = y ln

(
e+ |y|

n−1

)
. So, from (1.12), we get

lim sup
y→0

y

g(y)
= M = 1.

Therefore, by (1.13), we have

lim inf
n→∞

n−1∑
j=τ(n)

k(j) = lim inf
n→∞

n−1∑
j=n−1

j

j − 1
= 1 >

1

e
.

Thus, we know from Theorem A that every solution of (3.11) is oscillatory. Thus, all conditions of Theorem 3.2 are
satisfied, and hence all solutions of equation (3.9) are oscillatory. It should be noted that since the equation (3.9) is a
mixed type and p(n) > 1 for n ∈ N, no result in the literature answers this equation.

Example 3. Consider the fifth order difference equation

∆5

[
x(n) + p(n)x

([
3

2
n

])]
+

1

n+ 1
x
([n

2

])
= 0, n ∈ N. (3.12)

Here, p(n) =

{
2n, n is even
n

n+1 , n is odd
, q(n) = 1

n+1 , σ(n) =
[
3
2n

]
, τ(n) =

[
n
2

]
, where [.] is the greatest integer function,

h(x) = f(x) = x. Then from (3.5), we obtain

∆y(n) +
1

n+ 1
y
([n

2

])
= 0. (3.13)

Therefore, we see that, if n = 2k, then

n−1∑
j=τ(n)

q(j) =

2k−1∑
j=k

q(j) =

2k−1∑
j=k

1

j + 1
=

k

2k
=

1

2
>

1

e
,

and if n = 2k − 1, then
n−1∑

j=τ(n)

q(j) =

2k−2∑
j=k−1

1

j + 1
=

k

2k − 1
>

1

2
>

1

e
.

Hence, by (1.7), we have

lim inf
n→∞

n−1∑
j=τ(n)

q(j) ≥ 1

2
>

1

e
.

Thus, we know from (1.7) that every solution of (3.13) is oscillatory. Thus, all conditions of Theorem 3.5 are satisfied,
and hence all solutions of equation (3.12) are oscillatory. It should be noted that since the equation (3.12) is a mixed
type and limn→∞ p(2n) = ∞, no result in the literature answers this equation.
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Conclusions

In conclusion, our investigation has shed light on the oscillatory behavior of the high order nonlinear neutral mixed
type difference equation. The obtained results expand our understanding of the dynamic properties of this equation
and contribute to the broader field of difference equations. We hope that this work will inspire further research in this
area, leading to new insights and advancements in the study of nonlinear difference equations.
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