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Abstract

In this article, we will investigate the existence of a unique bounded variation solution for a functional integral equation
of Volterra type in the space L1(R+) of Lebesgue integrable functions.
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1 Introduction

Integral equations play an important role in the theory of nonlinear analysis and its applications in mathematical
physics, biology, engineering, economics, radiation transfer theory and mechanics (see [7], [8], [11], [12], [26]). For a
review of various integral equations and their applications, see ([1], [3], [10], [13], [15], [19], [21], [22]).
This paper studies the existence of a unique solution of the functional Volterra integral equation

x(t) = g(t) + f1(t,
∫ t

0
k(t, s)f2(s, x(s))ds), t ≥ 0 (1)

in the space L1(R+) of functions of bounded variation.

2 Preliminaries

Let R be the field of real numbers and R+ be the interval [0,∞). Denote by L1 = L1(R+) the space of Lebesgue
integrable functions on the interval [0,∞), with the standard norm

‖x‖ =
∫ ∞

0
|x(t)|dt.

The most important operator in nonlinear functional analysis is the so-called Nemytskii (or superposition) operator
([2], [14]).

Definition 2.1 If f(t, x) = f : I ×R→ R satisfies Carathéodory conditions i.e. it is measurable in t for any x ∈ R
and continuous in x for almost all t ∈ R+. Then to every function x(t) being measurable on R+ we may assign the
function

(Fx)(t) = f(t, x(t)) t ∈ I

The operator F is called the Nemytskii (or superposition) operator generated by f .
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Furthermore, we propose a theorem which gives necessary and sufficient condition for the Nemytskii operator to map
the space L1 into itself continuously.

Theorem 2.1 [2] If f satisfies Carathéodory conditions, then the Nemytskii operator F generated by the function f
maps continuously the space L1 into itself if and only if

|f(t, x)| ≤ a(t) + b|x|,

for every t ∈ R+ and x ∈ R, where a(t) ∈ L1 and b ≥ 0 is a constant.

Definition 2.2 (Volterra integral operator) [28]
Let k : ∆→ R be a function that is measurable with respect to both variables, where ∆ = {(t, s) : 0 ≤ s ≤ t <∞}. For
an arbitrary function x ∈ L1(R+), we define

(V x)(t) =
∫ t

0
k(t, s)x(s)ds, t ≥ 0.

The above operator V is the well-known linear Volterra integral operator. Obviously, if V : L1 → L1 then it is continuous
[27].

Definition 2.3 ([5], [23])

The Hausdorff measure of noncompactness χ(X) (see also [16], [17]) is defined as

χ(X) = inf{r > 0 : there exists a finite subset Y of E such that x ⊂ Y +Br}.

A more general regular measure can be defined as the space [4]:

c(X) = lim
ε→0
{sup
x∈X
{sup[

∫
D

|x(τ)|dτ : D ⊂ R+, measD ≤ ε]}} = 0 (2)

and
d(X) = lim

T→∞
{sup[

∫ ∞
T

|x(τ)|dτ : x ∈ X]}, (3)

where measD represents the Lebesgue measure of subset D.
Put

γ(X) = c(X) + d(X). (4)

Then we have the following theorem [18], which connects between the two measures χ(X) and γ(X).

Theorem 2.2 Let X ∈ME and compact in measure, then

χ(X) ≤ γ(X) ≤ 2χ(X).

Now, we give Darbo fixed point theorem (cf.[9], [20], [24]).

Theorem 2.3 If Q is nonempty, bounded, closed and convex subset of E and let A : Q → Q be a continuous
transformation which is a contraction with respect to the measure of noncompactness µ, i.e. there exists a constant
k ∈ [0, 1) such that

µ(AX) ≤ kµ(X),

for any nonempty subset X of Q. Then A has at least one fixed point in the set Q.
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Definition 2.4 (Functions of bounded variation) ([6], [23])
Let x : [a, b]→ R be a function. For each partition P : a = t0 < t1 < . . . < tn = b of the interval [a, b], we define

V ar(x) = sup
n∑
i=1
|x(ti)− x(ti−1)|,

where the supremum is taken over all partitions P of the interval [a, b].

If V ar(x) <∞, we say that x has bounded variation and we write x ∈ BV . For functions x : [a, b]→ R with a < b we
write V ar(x, [a, b]) instead of V ar(x). We denote by BV = BV [a, b] the space of all functions of bounded variation on
[a, b].

Theorem 2.4 ([4], [25]) Assume that X ⊂ L1(I) is of locally generalized bounded variation, then Conv X (convex
hull of X) and X̄ are of the same type.

Corollary 2.1 ([4], [25]) Let X ⊂ L1(I) is of locally generalized bounded variation, then Conv X is also such.

Next, we will have the following theorem, which we will further use (cf. [4], [25]).

Theorem 2.5 Assume that X ⊂ L1 is a bounded set have the following hypotheses:

(i) there exists t0 ≥ 0 such that the set x(t0) : x ∈ X is bounded in R,

(ii) X is of locally generalized bounded variation on R+,

(iii) for any a > 0 the following equality holds

lim
T→∞

{sup
x∈X
{meas {t > T : |x(t)| ≥ a}}} = 0.

Then the set X is compact in measure.

Corollary 2.2 [4] If X ⊂ L1 is a bounded set satisfies the hypotheses of Theorem 2.5. Then Conv X is compact in
measure.

3 Main result

We can write (1) in operator form as
Gx = g + F1V F2x,

where F1 and F2 are the Nemytskii operators generated by the functions f1(t, x) and f2(t, x) respectively, as V is the
Volterra operator generated by k(t, s).
We will solve equation (1) under the following hypotheses listed below:

(i) g ∈ L1(R+) and is of locally generalized bounded variation on R+.
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(ii) f1, f2 : R+ ×R→ R satisfy Carathéodory conditions and ∃ functions a1, a2 ∈ L1(R+) and constants b1, b2 such
that

|fi(t, x)| ≤ ai(t) + bi|x|, (i = 1, 2)

for all t ∈ (0, 1) and x ∈ R.

(iii) There exists a constant L > 0 such that

|fi(t, x)− fi(t, y)| ≤ L[|t− s|+ |x− y|], i = 1, 2.

(iv) k : ∆→ R is measurable in both variables such that the integral operator V generated by k maps L1 into itself
(∆ = {(t, s) : 0 ≤ s ≤ t <∞}).
Moreover, ∀ h > 0

lim
T→∞

{meas {t > T : |(V x)(t)| ≥ h}} = 0.

uniformly on x ∈ X, where X ⊂ L1 is arbitrarily bounded.

(v) The generalized variation of the function t→ k(t, s) is essentially bounded on [0, T ] ∀ T > 0 and uniformly on
s ∈ [0, T ]. Also, the function v(T ) is defined as

v(T ) = ess sup{vartk(t, s), [0, T ] : s ∈ [0, T ]},

then we get v(T ) <∞ ∀ T ≥ 0.

(vi) b1b2‖V ‖ < 1.

Theorem 3.1 Let the hypotheses (i)–(vi) be satisfied, then equation (1) has at least one solution x ∈ L1(R+) which is
a function of locally bounded variation on R+.

Proof. First by hypothesis (ii) and Theorem 2.1 the operators F1, F2 map L1(R+) into itself and are continuous.
secondly, by hypothesis (iv) the Volterra operator V maps L1(R+) into itself and is continuous. Finally, for any
x ∈ L1(R+) and from a hypothesis (i) we get Gx ∈ L1(R+).
Moreover, we have

‖Gx‖ ≤ ‖g‖+ ‖F1V F2x‖

≤ ‖g‖+
∫ ∞

0
|f1(t,

∫ t

0
k(t, s)f2(s, x(s))ds)|dt

≤ ‖g‖+
∫ ∞

0
[a(t) + b1|

∫ t

0
k(t, s)f2(s, x(s))ds)|dt

≤ ‖g‖+
∫ ∞

0
[a1(t) + b1‖V ‖|f2(s, x(s))|]dt

≤ ‖g‖+
∫ ∞

0
[a1(t) + b1‖V ‖(a2(t) + b2|x(t)|)]dt

≤ ‖g‖+ ‖a1‖+ b1‖V ‖‖a2‖+ b1b2‖V ‖‖x‖

≤ ‖g‖+ ‖a1‖+ b1‖V ‖‖a2‖+ b1b2‖V ‖.r

≤ r

From the above estimate, the operator G : Br → Br, where

r = ‖g‖+ ‖a1‖+ b1‖V ‖‖a2‖
1− b1b2‖V ‖

> 0.
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In what follows, consider x ∈ Br. In view of assumption (i), we get

|(Gx)(0)| = |g(0) + f1(0, 0)|

≤ |g(0)|+ |f1(0, 0)|

< ∞. (5)

So we get that all functions belonging to GBr are bounded at t = 0.
Moreover, fix T > 0 and assume that the sequence ti such that 0 = t0 < t1 < t2 . . . < tn = T . Then, using the above
hypotheses leads us to

n∑
i=1
|(Gx)(ti)− (Gx)(ti−1)| ≤

n∑
i=1
|g(ti)− g(ti−1)|

+
n∑
i=1
|f1(ti,

∫ ti

0
k(ti, s)f2(s, x(s))ds)

− f1(ti−1,

∫ ti−1

0
k(ti−1, s)f2(s, x(s))ds)|

V (Gx, T ) ≤ V (g, T ) +
n∑
i=1
|f1(ti,

∫ ti

0
k(ti, s)f2(s, x(s))ds)

− f1(ti,
∫ ti

0
k(ti−1, s)f2(s, x(s))ds)|

+
n∑
i=1
|f1(ti,

∫ ti

0
k(ti−1, s)f2(s, x(s))ds)

− f1(ti,
∫ ti−1

0
k(ti−1, s)f2(s, x(s))ds)|

+
n∑
i=1
|f1(ti,

∫ ti−1

0
k(ti−1, s)f2(s, x(s))ds)

− f1(ti−1,

∫ ti−1

0
k(ti−1, s)f2(s, x(s))ds)|

≤ V (g, T ) + L

n∑
i=1

∫ ti

0
|k(ti, s)− k(ti−1, s)||f2(s, x(s))|ds

+ L

n∑
i=1
|
∫ ti

0
k(ti−1, s)−

∫ ti−1

0
k(ti−1, s)||f2(s, x(s))|ds+M,

where M = L|ti − ti−1|

V (Gx, T ) ≤ V (g, T ) + L

∫ T

0

n∑
i=1
|k(ti, s)− k(ti−1, s)|[a2(s) + b2|x(s)|]ds

+ L

n∑
i=1

∫ ti

ti−1
|k(ti−1, s)|[a2(s) + b2|x(s)|]ds+M

≤ V (g, T ) + L

∫ T

0
v(T )a2(s)ds+ Lb2

∫ T

0
|x(s)|ds

+ Lk0

∫ T

0
a2(s)ds+ Lb2k0

∫ T

0
|x(s)|ds+M

≤ V (g, T ) + Lv(T )‖a2‖+ Lb2v(T )r + Lk0‖a2‖+ Lb2k0r +M <∞, (6)

from the previous estimate, all functions belonging to GBr have the same constant variation over each closed subinterval
of R+.
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In the following, let the set Qr=Conv GBr, it is clear that Qr ⊂ Br. We will show that Qr is nonempty, bounded
convex, closed and compact in measure.
To prove Qr is nonempty, let x(t) = r

π ( 1
1+t2 ), we get

‖x‖ =
∫ ∞

0
|x(t)|dt =

∫ ∞
0
| r
π

( 1
1 + t2

)|dt = r

π
arctan |∞0 = r

π
(π2 ) ≤ r.

Since, Qr ⊂ Br then it is bounded.
To prove the convexity of Qr, take x1, x2 ∈ Qr which gives ‖xi‖ ≤ r, i = 1, 2. Let

z(t) = λx1(t) + (1− λ)x2(t), t ∈ R+, λ ∈ R+.

Then

‖z‖ ≤ λ‖x1‖+ (1− λ)‖x2‖

≤ λr + (1− λ)r = r.

So, we get Qr is convex.
Now, we prove that the closeness of Qr. To do this, suppose {xn} is the sequence of elements in Qr that converges
to x in L1(R+), then this sequence is convergent in measure and as a result of the Vitali convergence theorem and
the characterization of convergence in measure (the Riesz theorem) this leads to the existence of {xnk

} ⊂ {xn} that
converges to x almost uniformly on R+ that means x ∈ Qr and thus the set Qr is closed.
Moreover, in view of (5),(6) and Theorem 2.5 we conclude that the set GBr is compact in measure. By Corollary 2.2
this yields that the set Qr is also compact in measure. Moreover, Corollary 2.1 implies that the set Qr is of locally
generalized bounded variation on R+. Now, from assumption (i), and since Qr ⊂ Br, then G is a self-mapping of the
set Qr into it self and is continuous.

Finally, we prove that the operator G is a contraction with respect to the measure of noncompactness χ.
Take a subset X ⊂ Qr and ε > 0 is fixed, then ∀x ∈ X and for a set D ⊂ R+, measD ≤ ε, we get∫

D

|(Gx)(t)|dt ≤
∫
D

g(t|dt+
∫
D

|f1(t,
∫ t

0
f2(s, x(s))ds)|dt

≤
∫
D

g(t)dt+
∫
D

[a1(t) + b1|
∫ t

0
k(t, s)f2(s, x(s))ds|]dt

≤
∫
D

g(t)dt+
∫
D

a1(t)dt+ b1‖V ‖
∫
D

a2(s)ds+ b1b2‖V ‖
∫
D

|x(s)|ds.

Therefore, using the fact that
lim
ε→0

sup{
∫
D

g(t)dt : D ⊂ R+, measD ≤ ε} = 0,

and
lim
ε→0

sup{
∫
D

ai(t)dt, i = 1, 2 : D ⊂ R+, measD ≤ ε} = 0,

Then using (2), we get
c(GX) ≤ b1b2‖V ‖c(X). (7)

Also, fixing T > 0 we have∫ ∞
T

|(Gx)(t)|dt ≤
∫ ∞
T

g(t)dt+
∫ ∞
T

a1(t)dt+ b1‖V ‖
∫ ∞
T

a2(t)dt+ b1b2‖V ‖
∫ ∞
T

|x(t)|dt
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As T →∞, the previous inequality yields
d(GX) ≤ b1b2‖V ‖d(X), (8)

where d(X) has been defined before in (3).
Thus from (7) and (8) we get

γ(GX) ≤ b1b2‖V ‖γ(X),

where γ denotes the measure of noncompactness defined in (4).
Since X is a subset of Qr and Qr is compact in measure, we get

χ(GX) ≤ b1b2‖V ‖χ(X).

Therefore, by using hypothesis (vi) we can apply Darbo’s fixed point theorem. This completes the proof.

4 Uniqueness of the solution

Now, we can prove the existence of our unique solution.

Theorem 4.1 If the hypotheses of Theorem 3.1 is satisfied but instead of assuming (vi), let L2‖V ‖ < 1. Then, equation
(1) has a unique solution on R+.

Proof. To prove that equation (1) has a unique solution, let x(t), y(t) be any two solutions of equation (1) in Br, we
have

‖x− y‖ =
∫ ∞

0
|f1(t,

∫ t

0
k(t, s)f2(s, x(s))ds)− f1(t,

∫ t

0
k(t, s)f2(s, y(s))ds)|dt

≤ L

∫ ∞
0

∫ t

0
|k(t, s)||f2(s, x(s))− f2(s, y(s))|dsdt

≤ L2‖V ‖‖x− y‖.

Therefore,
(1− L2‖V ‖)‖x− y‖L1 ≤ 0,

This yields ‖x− y‖ = 0,⇒ x = y, which completes the proof.

5 Example

Consider the integral equation

x(t) = e−t +
∫ t

0

1
1 + s2 + t2

(e−s + sx(s)
s+ 2 )ds, t ∈ R+ (9)

We have g(t) = e−t, g(t) ∈ L1(R+) since ∫ ∞
0

e−tdt = −e−t|∞0 = 1− 0 = 1,

so, condition (i) is satisfied.
Also, f1(t, x) = x, f2(t, x) = e−t + tx(t)

t+2 ), so we can see that fi, i = 1, 2 satisfy Carathéodory conditions i.e. it is
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measurable in t and continuous in x.
Also, we get

|f2(t, x)| = e−t + tx(t)
t+ 2

≤ e−t + 1
3 |x(t)|.

Hence, a2(t) = e−t ∈ L1(R+) and b2 = 1
3 > 0. Moreover, a1(t) = 0 and b1(t) = 1 > 0, then condition (ii) is satisfied.

Also,
|f1(t, x)− f1(t, y)| ≤ |x− y|,

and
|f2(t, x)− f2(t, y)| ≤ 1

2 |x− y|,

so that condition (iii)is satisfied. Furthermore, k(t, s) = 1
1+s2+t2 is measurable for all t, s.

Let x ∈ L1, we will show that the Volterra operator V maps continuously the space L1 into itself

‖V x‖ ≤
∫ ∞

0

∫ t

0

|x(s)|
1 + s2 + t2

dsdt

≤
∫ ∞

0

∫ ∞
s

|x(s)|
1 + s2 + t2

dtds

≤
∫ ∞

0

∫ ∞
s

|x(s)|
1 + t2

dtds

≤
∫ ∞

0
arctan t|∞s |x(s)|ds

≤
∫ ∞

0
(π2 − arctan s)|x(s)|ds

≤ π

2 ‖x‖,

and hence condition (iv) is satisfied.
Finally, we have b1b2‖V ‖ = π

6 < 1 then condition (vi) is satisfied.
Therefore, the assumptions of our Theorem 3.1 are satisfied, so equation (9) has at least one solution x ∈ BV on R+.

Data Availability (excluding Review articles)

Applicable.
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