On the solvability of a functional Volterra integral equation

Wagdy G. El-Sayed ${ }^{1}$, Ragab O. Abd El-Rahman², Sheren A. Abd El-Salam ${ }^{3}$, Asmaa A. El Shahawy ${ }^{4}$
${ }^{1}$ Department of mathematics and computer science, Faculty of Science, Alexandria University, Alexandria, Egypt ${ }^{2,3,4}$ Department of mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt
${ }^{1}$ wagdygoma@alexu.edu.eg, ${ }^{2}$ dr.ragab@sci.dmu.edu.eg, ${ }^{3}$ shrnahmed@yahoo.com, ${ }^{4}$ asmaashahawy $91 @ y a h o o . c o m ~$

Abstract

In this article, we will investigate the existence of a unique bounded variation solution for a functional integral equation of Volterra type in the space $L_{1}\left(R^{+}\right)$of Lebesgue integrable functions.

Keywords: Nemytskii operator, Volterra integral operator, Hausdorff measure of noncompactness, Functions of bounded variation, Darbo fixed point theorem.

1 Introduction

Integral equations play an important role in the theory of nonlinear analysis and its applications in mathematical physics, biology, engineering, economics, radiation transfer theory and mechanics (see [7], [8], [11], [12], [26]). For a review of various integral equations and their applications, see ([1], [3, [10, [13, [15], [19], [21], [22]).
This paper studies the existence of a unique solution of the functional Volterra integral equation

$$
\begin{equation*}
x(t)=g(t)+f_{1}\left(t, \int_{0}^{t} k(t, s) f_{2}(s, x(s)) d s\right), \quad t \geq 0 \tag{1}
\end{equation*}
$$

in the space $L_{1}\left(R^{+}\right)$of functions of bounded variation.

2 Preliminaries

Let R be the field of real numbers and R^{+}be the interval $[0, \infty)$. Denote by $L_{1}=L_{1}\left(R^{+}\right)$the space of Lebesgue integrable functions on the interval $[0, \infty)$, with the standard norm

$$
\|x\|=\int_{0}^{\infty}|x(t)| d t
$$

The most important operator in nonlinear functional analysis is the so-called Nemytskii (or superposition) operator ([2], [14).

Definition 2.1 If $f(t, x)=f: I \times R \rightarrow R$ satisfies Carathéodory conditions i.e. it is measurable in t for any $x \in R$ and continuous in x for almost all $t \in R^{+}$. Then to every function $x(t)$ being measurable on R^{+}we may assign the function

$$
(F x)(t)=f(t, x(t)) \quad t \in I
$$

The operator F is called the Nemytskii (or superposition) operator generated by f.

Furthermore, we propose a theorem which gives necessary and sufficient condition for the Nemytskii operator to map the space L_{1} into itself continuously.

Theorem 2.1 [2] If f satisfies Carathéodory conditions, then the Nemytskii operator F generated by the function f maps continuously the space L_{1} into itself if and only if

$$
|f(t, x)| \leq a(t)+b|x|
$$

for every $t \in R^{+}$and $x \in R$, where $a(t) \in L_{1}$ and $b \geq 0$ is a constant.

Definition 2.2 (Volterra integral operator) [28]
Let $k: \Delta \rightarrow R$ be a function that is measurable with respect to both variables, where $\Delta=\{(t, s): 0 \leq s \leq t<\infty\}$. For an arbitrary function $x \in L_{1}\left(R^{+}\right)$, we define

$$
(V x)(t)=\int_{0}^{t} k(t, s) x(s) d s, \quad t \geq 0
$$

The above operator V is the well-known linear Volterra integral operator. Obviously, if $V: L_{1} \rightarrow L_{1}$ then it is continuous [27].

Definition 2.3 ([5], [23])

The Hausdorff measure of noncompactness $\chi(X)$ (see also [16], [17]) is defined as

$$
\chi(X)=\inf \left\{r>0: \text { there exists a finite subset } Y \text { of } E \text { such that } x \subset Y+B_{r}\right\} .
$$

A more general regular measure can be defined as the space [4:

$$
\begin{equation*}
c(X)=\lim _{\varepsilon \rightarrow 0}\left\{\sup _{x \in X}\left\{\sup \left[\int_{D}|x(\tau)| d \tau: D \subset R^{+}, \text {meas } D \leq \varepsilon\right]\right\}\right\}=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
d(X)=\lim _{T \rightarrow \infty}\left\{\sup \left[\int_{T}^{\infty}|x(\tau)| d \tau: x \in X\right]\right\} \tag{3}
\end{equation*}
$$

where meas D represents the Lebesgue measure of subset D.
Put

$$
\begin{equation*}
\gamma(X)=c(X)+d(X) \tag{4}
\end{equation*}
$$

Then we have the following theorem [18], which connects between the two measures $\chi(X)$ and $\gamma(X)$.

Theorem 2.2 Let $X \in M_{E}$ and compact in measure, then

$$
\chi(X) \leq \gamma(X) \leq 2 \chi(X)
$$

Now, we give Darbo fixed point theorem (cf.[9], [20], [24]).

Theorem 2.3 If Q is nonempty, bounded, closed and convex subset of E and let $A: Q \rightarrow Q$ be a continuous transformation which is a contraction with respect to the measure of noncompactness μ, i.e. there exists a constant $k \in[0,1)$ such that

$$
\mu(A X) \leq k \mu(X)
$$

for any nonempty subset X of Q. Then A has at least one fixed point in the set Q.

Definition 2.4 (Functions of bounded variation) ([6], [23])
Let $x:[a, b] \rightarrow R$ be a function. For each partition $P: a=t_{0}<t_{1}<\ldots<t_{n}=b$ of the interval $[a, b]$, we define

$$
\operatorname{Var}(x)=\sup \sum_{i=1}^{n}\left|x\left(t_{i}\right)-x\left(t_{i-1}\right)\right|,
$$

where the supremum is taken over all partitions P of the interval $[a, b]$.

If $\operatorname{Var}(x)<\infty$, we say that x has bounded variation and we write $x \in B V$. For functions $x:[a, b] \rightarrow R$ with $a<b$ we write $\operatorname{Var}(x,[a, b])$ instead of $\operatorname{Var}(x)$. We denote by $B V=B V[a, b]$ the space of all functions of bounded variation on $[a, b]$.

Theorem 2.4 ([4], [25]) Assume that $X \subset L_{1}(I)$ is of locally generalized bounded variation, then Conv X (convex hull of X) and \bar{X} are of the same type.

Corollary 2.1 ([4], [25]) Let $X \subset L_{1}(I)$ is of locally generalized bounded variation, then Conv X is also such.

Next, we will have the following theorem, which we will further use (cf. 4], 25]).

Theorem 2.5 Assume that $X \subset L_{1}$ is a bounded set have the following hypotheses:
(i) there exists $t_{0} \geq 0$ such that the set $x\left(t_{0}\right): x \in X$ is bounded in R,
(ii) X is of locally generalized bounded variation on R^{+},
(iii) for any $a>0$ the following equality holds

$$
\lim _{T \rightarrow \infty}\left\{\sup _{x \in X}\{\text { meas }\{t>T:|x(t)| \geq a\}\}\right\}=0 .
$$

Then the set X is compact in measure.

Corollary 2.2 [4] If $X \subset L_{1}$ is a bounded set satisfies the hypotheses of Theorem 2.5. Then Conv X is compact in measure.

3 Main result

We can write (1) in operator form as

$$
G x=g+F_{1} V F_{2} x
$$

where F_{1} and F_{2} are the Nemytskii operators generated by the functions $f_{1}(t, x)$ and $f_{2}(t, x)$ respectively, as V is the Volterra operator generated by $k(t, s)$.
We will solve equation (1) under the following hypotheses listed below:
(i) $g \in L_{1}\left(R^{+}\right)$and is of locally generalized bounded variation on R^{+}.
(ii) $f_{1}, f_{2}: R^{+} \times R \rightarrow R$ satisfy Carathéodory conditions and \exists functions $a_{1}, a_{2} \in L_{1}\left(R^{+}\right)$and constants b_{1}, b_{2} such that

$$
\left|f_{i}(t, x)\right| \leq a_{i}(t)+b_{i}|x|, \quad(i=1,2)
$$

for all $t \in(0,1)$ and $x \in R$.
(iii) There exists a constant $L>0$ such that

$$
\left|f_{i}(t, x)-f_{i}(t, y)\right| \leq L[|t-s|+|x-y|], \quad i=1,2
$$

(iv) $k: \Delta \rightarrow R$ is measurable in both variables such that the integral operator V generated by k maps L_{1} into itself $(\Delta=\{(t, s): 0 \leq s \leq t<\infty\})$.
Moreover, $\forall h>0$

$$
\lim _{T \rightarrow \infty}\{\operatorname{meas}\{t>T:|(V x)(t)| \geq h\}\}=0
$$

uniformly on $x \in X$, where $X \subset L_{1}$ is arbitrarily bounded.
(v) The generalized variation of the function $t \rightarrow k(t, s)$ is essentially bounded on $[0, T] \forall T>0$ and uniformly on $s \in[0, T]$. Also, the function $v(T)$ is defined as

$$
v(T)=\operatorname{ess} \sup \left\{\operatorname{var}_{t} k(t, s),[0, T]: s \in[0, T]\right\}
$$

then we get $v(T)<\infty \forall T \geq 0$.
(vi) $b_{1} b_{2}\|V\|<1$.

Theorem 3.1 Let the hypotheses (i)-(vi) be satisfied, then equation (1) has at least one solution $x \in L_{1}\left(R^{+}\right)$which is a function of locally bounded variation on R^{+}.

Proof. First by hypothesis (ii) and Theorem 2.1 the operators F_{1}, F_{2} map $L_{1}\left(R^{+}\right)$into itself and are continuous. secondly, by hypothesis (iv) the Volterra operator V maps $L_{1}\left(R^{+}\right)$into itself and is continuous. Finally, for any $x \in L_{1}\left(R^{+}\right)$and from a hypothesis (i) we get $G x \in L_{1}\left(R^{+}\right)$.
Moreover, we have

$$
\begin{aligned}
\|G x\| & \leq\|g\|+\left\|F_{1} V F_{2} x\right\| \\
& \leq\|g\|+\int_{0}^{\infty}\left|f_{1}\left(t, \int_{0}^{t} k(t, s) f_{2}(s, x(s)) d s\right)\right| d t \\
& \leq\|g\|+\int_{0}^{\infty}\left[a(t)+b_{1} \mid \int_{0}^{t} k(t, s) f_{2}(s, x(s)) d s\right) \mid d t \\
& \leq\|g\|+\int_{0}^{\infty}\left[a_{1}(t)+b_{1}\|V\|\left|f_{2}(s, x(s))\right|\right] d t \\
& \leq\|g\|+\int_{0}^{\infty}\left[a_{1}(t)+b_{1}\|V\|\left(a_{2}(t)+b_{2}|x(t)|\right)\right] d t \\
& \leq\|g\|+\left\|a_{1}\right\|+b_{1}\|V\|\left\|a_{2}\right\|+b_{1} b_{2}\|V\|\|x\| \\
& \leq\|g\|+\left\|a_{1}\right\|+b_{1}\|V\|\left\|a_{2}\right\|+b_{1} b_{2}\|V\| \cdot r \\
& \leq r
\end{aligned}
$$

From the above estimate, the operator $G: B_{r} \rightarrow B_{r}$, where

$$
r=\frac{\|g\|+\left\|a_{1}\right\|+b_{1}\|V\|\left\|a_{2}\right\|}{1-b_{1} b_{2}\|V\|}>0 .
$$

In what follows, consider $x \in B_{r}$. In view of assumption (i), we get

$$
\begin{align*}
|(G x)(0)| & =\left|g(0)+f_{1}(0,0)\right| \\
& \leq|g(0)|+\left|f_{1}(0,0)\right| \\
& <\infty . \tag{5}
\end{align*}
$$

So we get that all functions belonging to $G B_{r}$ are bounded at $t=0$.
Moreover, fix $T>0$ and assume that the sequence t_{i} such that $0=t_{0}<t_{1}<t_{2} \ldots<t_{n}=T$. Then, using the above hypotheses leads us to

$$
\begin{aligned}
\sum_{i=1}^{n}\left|(G x)\left(t_{i}\right)-(G x)\left(t_{i-1}\right)\right| & \leq \sum_{i=1}^{n}\left|g\left(t_{i}\right)-g\left(t_{i-1}\right)\right| \\
& +\sum_{i=1}^{n} \mid f_{1}\left(t_{i}, \int_{0}^{t_{i}} k\left(t_{i}, s\right) f_{2}(s, x(s)) d s\right) \\
& -f_{1}\left(t_{i-1}, \int_{0}^{t_{i-1}} k\left(t_{i-1}, s\right) f_{2}(s, x(s)) d s\right) \mid \\
V(G x, T) & \leq V(g, T)+\sum_{i=1}^{n} \mid f_{1}\left(t_{i}, \int_{0}^{t_{i}} k\left(t_{i}, s\right) f_{2}(s, x(s)) d s\right) \\
& -f_{1}\left(t_{i}, \int_{0}^{t_{i}} k\left(t_{i-1}, s\right) f_{2}(s, x(s)) d s\right) \mid \\
& +\sum_{i=1}^{n} \mid f_{1}\left(t_{i}, \int_{0}^{t_{i}} k\left(t_{i-1}, s\right) f_{2}(s, x(s)) d s\right) \\
& -f_{1}\left(t_{i}, \int_{0}^{t_{i}-1} k\left(t_{i-1}, s\right) f_{2}(s, x(s)) d s\right) \mid \\
& +\sum_{i=1}^{n} \mid f_{1}\left(t_{i}, \int_{0}^{t_{i-1}} k\left(t_{i-1}, s\right) f_{2}(s, x(s)) d s\right) \\
& -f_{1}\left(t_{i-1}, \int_{0}^{t_{i-1}} k\left(t_{i-1}, s\right) f_{2}(s, x(s)) d s\right) \mid \\
& \leq V(g, T)+L \sum_{i=1}^{n} \int_{0}^{t_{i}}\left|k\left(t_{i}, s\right)-k\left(t_{i-1}, s\right)\right|\left|f_{2}(s, x(s))\right| d s \\
& +L \sum_{i=1}^{n}\left|\int_{0}^{t_{i}} k\left(t_{i-1}, s\right)-\int_{0}^{t_{i-1}} k\left(t_{i-1}, s\right)\right|\left|f_{2}(s, x(s))\right| d s+M,
\end{aligned}
$$

where $M=L\left|t_{i}-t_{i-1}\right|$

$$
\begin{align*}
V(G x, T) & \leq V(g, T)+L \int_{0}^{T} \sum_{i=1}^{n}\left|k\left(t_{i}, s\right)-k\left(t_{i-1}, s\right)\right|\left[a_{2}(s)+b_{2}|x(s)|\right] d s \\
& +L \sum_{i=1}^{n} \int_{t_{i}-1}^{t_{i}}\left|k\left(t_{i-1}, s\right)\right|\left[a_{2}(s)+b_{2}|x(s)|\right] d s+M \\
& \leq V(g, T)+L \int_{0}^{T} v(T) a_{2}(s) d s+L b_{2} \int_{0}^{T}|x(s)| d s \\
& +L k_{0} \int_{0}^{T} a_{2}(s) d s+L b_{2} k_{0} \int_{0}^{T}|x(s)| d s+M \\
& \leq V(g, T)+L v(T)\left\|a_{2}\right\|+L b_{2} v(T) r+L k_{0}\left\|a_{2}\right\|+L b_{2} k_{0} r+M<\infty \tag{6}
\end{align*}
$$

from the previous estimate, all functions belonging to $G B_{r}$ have the same constant variation over each closed subinterval of R^{+}.

In the following, let the set $Q_{r}=$ Conv $G B_{r}$, it is clear that $Q_{r} \subset B_{r}$. We will show that Q_{r} is nonempty, bounded convex, closed and compact in measure.
To prove Q_{r} is nonempty, let $x(t)=\frac{r}{\pi}\left(\frac{1}{1+t^{2}}\right)$, we get

$$
\|x\|=\int_{0}^{\infty}|x(t)| d t=\int_{0}^{\infty}\left|\frac{r}{\pi}\left(\frac{1}{1+t^{2}}\right)\right| d t=\left.\frac{r}{\pi} \arctan \right|_{0} ^{\infty}=\frac{r}{\pi}\left(\frac{\pi}{2}\right) \leq r
$$

Since, $Q_{r} \subset B_{r}$ then it is bounded.
To prove the convexity of Q_{r}, take $x_{1}, x_{2} \in Q_{r}$ which gives $\left\|x_{i}\right\| \leq r, \quad i=1,2$. Let

$$
z(t)=\lambda x_{1}(t)+(1-\lambda) x_{2}(t), \quad t \in R^{+}, \lambda \in R^{+}
$$

Then

$$
\begin{aligned}
\|z\| & \leq \lambda\left\|x_{1}\right\|+(1-\lambda)\left\|x_{2}\right\| \\
& \leq \lambda r+(1-\lambda) r=r .
\end{aligned}
$$

So, we get Q_{r} is convex.
Now, we prove that the closeness of Q_{r}. To do this, suppose $\left\{x_{n}\right\}$ is the sequence of elements in Q_{r} that converges to x in $L_{1}\left(R^{+}\right)$, then this sequence is convergent in measure and as a result of the Vitali convergence theorem and the characterization of convergence in measure (the Riesz theorem) this leads to the existence of $\left\{x_{n_{k}}\right\} \subset\left\{x_{n}\right\}$ that converges to x almost uniformly on R^{+}that means $x \in Q_{r}$ and thus the set Q_{r} is closed.
Moreover, in view of (5), (6) and Theorem 2.5 we conclude that the set $G B_{r}$ is compact in measure. By Corollary 2.2 this yields that the set Q_{r} is also compact in measure. Moreover, Corollary 2.1 implies that the set Q_{r} is of locally generalized bounded variation on R^{+}. Now, from assumption (i), and since $Q_{r} \subset B_{r}$, then G is a self-mapping of the set Q_{r} into it self and is continuous.

Finally, we prove that the operator G is a contraction with respect to the measure of noncompactness χ.
Take a subset $X \subset Q_{r}$ and $\varepsilon>0$ is fixed, then $\forall x \in X$ and for a set $D \subset R^{+}$, meas $D \leq \varepsilon$, we get

$$
\begin{aligned}
\int_{D}|(G x)(t)| d t & \leq \int_{D} g\left(t\left|d t+\int_{D}\right| f_{1}\left(t, \int_{0}^{t} f_{2}(s, x(s)) d s\right) \mid d t\right. \\
& \leq \int_{D} g(t) d t+\int_{D}\left[a_{1}(t)+b_{1}\left|\int_{0}^{t} k(t, s) f_{2}(s, x(s)) d s\right|\right] d t \\
& \leq \int_{D} g(t) d t+\int_{D} a_{1}(t) d t+b_{1}\|V\| \int_{D} a_{2}(s) d s+b_{1} b_{2}\|V\| \int_{D}|x(s)| d s
\end{aligned}
$$

Therefore, using the fact that

$$
\lim _{\varepsilon \rightarrow 0} \sup \left\{\int_{D} g(t) d t: D \subset R^{+}, \operatorname{meas} D \leq \varepsilon\right\}=0
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \sup \left\{\int_{D} a_{i}(t) d t, i=1,2: D \subset R^{+}, \text {meas } D \leq \varepsilon\right\}=0
$$

Then using (2), we get

$$
\begin{equation*}
c(G X) \leq b_{1} b_{2}\|V\| c(X) \tag{7}
\end{equation*}
$$

Also, fixing $T>0$ we have

$$
\int_{T}^{\infty}|(G x)(t)| d t \leq \int_{T}^{\infty} g(t) d t+\int_{T}^{\infty} a_{1}(t) d t+b_{1}\|V\| \int_{T}^{\infty} a_{2}(t) d t+b_{1} b_{2}\|V\| \int_{T}^{\infty}|x(t)| d t
$$

As $T \rightarrow \infty$, the previous inequality yields

$$
\begin{equation*}
d(G X) \leq b_{1} b_{2}\|V\| d(X) \tag{8}
\end{equation*}
$$

where $d(X)$ has been defined before in (3).
Thus from (7) and (8) we get

$$
\gamma(G X) \leq b_{1} b_{2}\|V\| \gamma(X)
$$

where γ denotes the measure of noncompactness defined in (4).
Since X is a subset of Q_{r} and Q_{r} is compact in measure, we get

$$
\chi(G X) \leq b_{1} b_{2}\|V\| \chi(X)
$$

Therefore, by using hypothesis (vi) we can apply Darbo's fixed point theorem. This completes the proof.

4 Uniqueness of the solution

Now, we can prove the existence of our unique solution.

Theorem 4.1 If the hypotheses of Theorem 3.1 is satisfied but instead of assuming (vi), let $L^{2}\|V\|<1$. Then, equation (1) has a unique solution on R^{+}.

Proof. To prove that equation (1) has a unique solution, let $x(t), y(t)$ be any two solutions of equation (1) in B_{r}, we have

$$
\begin{aligned}
\|x-y\| & =\int_{0}^{\infty}\left|f_{1}\left(t, \int_{0}^{t} k(t, s) f_{2}(s, x(s)) d s\right)-f_{1}\left(t, \int_{0}^{t} k(t, s) f_{2}(s, y(s)) d s\right)\right| d t \\
& \leq L \int_{0}^{\infty} \int_{0}^{t}\left|k(t, s) \| f_{2}(s, x(s))-f_{2}(s, y(s))\right| d s d t \\
& \leq L^{2}\|V\|\|x-y\| .
\end{aligned}
$$

Therefore,

$$
\left(1-L^{2}\|V\|\right)\|x-y\|_{L_{1}} \leq 0
$$

This yields $\|x-y\|=0, \Rightarrow x=y$, which completes the proof.

5 Example

Consider the integral equation

$$
\begin{equation*}
x(t)=e^{-t}+\int_{0}^{t} \frac{1}{1+s^{2}+t^{2}}\left(e^{-s}+\frac{s x(s)}{s+2}\right) d s, \quad t \in R^{+} \tag{9}
\end{equation*}
$$

We have $g(t)=e^{-t}, g(t) \in L_{1}\left(R^{+}\right)$since

$$
\int_{0}^{\infty} e^{-t} d t=-\left.e^{-t}\right|_{0} ^{\infty}=1-0=1
$$

so, condition (i) is satisfied.
Also, $\left.f_{1}(t, x)=x, f_{2}(t, x)=e^{-t}+\frac{t x(t)}{t+2}\right)$, so we can see that $f_{i}, i=1,2$ satisfy Carathéodory conditions i.e. it is
measurable in t and continuous in x.
Also, we get

$$
\begin{aligned}
\left|f_{2}(t, x)\right| & =e^{-t}+\frac{t x(t)}{t+2} \\
& \leq e^{-t}+\frac{1}{3}|x(t)|
\end{aligned}
$$

Hence, $a_{2}(t)=e^{-t} \in L_{1}\left(R^{+}\right)$and $b_{2}=\frac{1}{3}>0$. Moreover, $a_{1}(t)=0$ and $b_{1}(t)=1>0$, then condition (ii) is satisfied. Also,

$$
\left|f_{1}(t, x)-f_{1}(t, y)\right| \leq|x-y|,
$$

and

$$
\left|f_{2}(t, x)-f_{2}(t, y)\right| \leq \frac{1}{2}|x-y|
$$

so that condition (iii)is satisfied. Furthermore, $k(t, s)=\frac{1}{1+s^{2}+t^{2}}$ is measurable for all t, s.
Let $x \in L_{1}$, we will show that the Volterra operator V maps continuously the space L_{1} into itself

$$
\begin{aligned}
\|V x\| & \leq \int_{0}^{\infty} \int_{0}^{t} \frac{|x(s)|}{1+s^{2}+t^{2}} d s d t \\
& \leq \int_{0}^{\infty} \int_{s}^{\infty} \frac{|x(s)|}{1+s^{2}+t^{2}} d t d s \\
& \leq \int_{0}^{\infty} \int_{s}^{\infty} \frac{|x(s)|}{1+t^{2}} d t d s \\
& \leq\left.\int_{0}^{\infty} \arctan t\right|_{s} ^{\infty}|x(s)| d s \\
& \leq \int_{0}^{\infty}\left(\frac{\pi}{2}-\arctan s\right)|x(s)| d s \\
& \leq \frac{\pi}{2}\|x\|,
\end{aligned}
$$

and hence condition (iv) is satisfied.
Finally, we have $b_{1} b_{2}\|V\|=\frac{\pi}{6}<1$ then condition (vi) is satisfied.
Therefore, the assumptions of our Theorem 3.1 are satisfied, so equation (9) has at least one solution $x \in B V$ on R^{+}.
Data Availability (excluding Review articles)
Applicable.

References

[1] J. Appel, On the solvability of nonlinear noncompact problems in function spaces with applications to integral and differential equations, Boll. Unione. Mat. Ital. 6 (1-B) (1982) 1161-1177.
[2] J. Appell and P. P. Zabrejko, Continuity properties of the superposition operator, Preprint No. 131, Univ. Augsburg, 1986.
[3] J. Banas, Integrable solutions of Hammerstein and Urysohn integral equations, J. Austral. Math. Soc. (Series A) 46 (1989) 61-68.
[4] J. Banas and W. G. El-Sayed, Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, J. Math. Anal. Appl. 167 (1) (1992), 133-151.
[5] J. Banas and K. Goebel, Measures of noncompactness in Banach spaces, Lect. Notes in Math. 60, M. Dekker, New york and Basel 1980.
[6] D. Bugajewski, On BV-solutions of some nonlinear integralequations,Integral Equations and Operator Theory, vol. 46, no. 4, pp. 387-398, 2003.
[7] S. Chandrasekhar, Radiative transfer, Oxford University Press, London, 1950.
[8] C. Corduneanu, Integral equations and applications, Cambridge University Press, Cambridge, 1991.
[9] G. Darbo, Punti untiti in transformazioni a condominio noncompatto, Rend. Sem. Mat. Univ. Padora 24 (1955) 84-92.
[10] N. Dunford, J. Schwartz, Linear operators I, Int. Publ., Leyden 1963.
[11] K. Deimling, Nonlinear functional analysis, Springer, Berlin, 1985.
[12] M. M. El-Borai, W. G. El-Sayed, A. M. Moter, Continuous Solutions of a Quadratic Integral Equation, Inter. J. Life Science and Math. (IJLSM), Vol. 2 (5)-4, (2015), 21-30.
[13] M. M. El-Borai, W. G. El-Sayed \& F. N. Ghaffoori, On the solvability of nonlinear integral functional equation, Inter. J. Math. Tren. \& Tech. (IJMTT), Vol. 34, No. 1, June 2016, 39-44.
[14] M. M. El-Borai, W. G. El-Sayed \& F. N. Ghaffoori, Existence Solution For a Fractional Nonlinear Integral Equation of Volterra Type, Aryabhatta J. M. \& Inform., Vol. 08, Iss.-02, (Jul.-Dec. 2016), 1-15.
[15] M. M. El-Borai, W. G. El-Sayed \& R. M. Bayomi, Solvability of non-linear integro-differential equation, Inter. J. Sc. \& Eng. Res., Vol. 10, Issu. 7, July-2019, ISSN 2229-5518, pp. 1085-1093.
[16] W. G. El-Sayed, Nonlinear functional integral equations of convolution type, Portugaliae Mathematica 54 (4) (1997) 449-456.
[17] W.G. El-Sayed, A.A. El-Bary, M.A. Darwish, Solvability of Urysohn integral equation, Appl. Math. Comput. 145 (2003) 487-493.
[18] W. G. El-Sayed, On the Solvability of a Functional Integral Equation, East-West J. Math. Vol. 10 (2),(2008) pp. 153-160.
[19] W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, On the existence of continuous solutions of a nonlinear quadratic fractional integral equation, J. Adv. Math. (JAM), Vol 18 (July, 2020) ISSN: 2347-1921, 14-25.
[20] W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, On the solvability of a nonlinear functional integral equations via measure of noncompactness in $L^{P}\left(R^{N}\right)$, J. Adv. Math. (JAM), Vol 19 (2020) ISSN: 2347-1921, 74-88.
[21] W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, An existence theorem for a nonlinear integral equation of Urysohn type in $L^{P}\left(R^{N}\right)$, Adv. Math. Sci. J. 9 (2020), no. 11, ISSN: 1857-8365, 9995-10005.
[22] W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, On Monotonic Solutions of Nonlinear Quadratic Integral Equation of Convolution Type, Case Studies J., ISSN (2305-509X)- Vol. 9, Issue 10-oct-2020, 78-87.
[23] W. G. El-Sayed, R. O. Abd El-Rahman, S. A. Abd El-Salam, A. A. El Shahawy, Bounded variation solutions of a functional integral equation in $L_{1}\left(R^{+}\right)$, Int. J. Mech. Eng., ISSN: 0974-5823, Vol. 7 No. 2 February 2022, 2600-2605.
[24] W. G. El-Sayed, R. O. Abd El-Rahman, S. A. Abd El-Salam, A. A. El Shahawy, On the existence of a bounded variation solution of a fractional integral equation in $L_{1}[0, T]$ due to the spread of COVID 19, J. Adv. Math. (JAM),Vol. 21 (July, 2022) ISSN: 2347-1921, 107-115.
[25] W. G. El-Sayed, R. O. Abd El-Rahman, S. A. Abd El-Salam, A. A. El Shahawy, Existence of a bounded variation solution of a nonlinear integral equation in $L_{1}\left(R^{+}\right)$, J. Adv. Math. (JAM),Vol. 21 (November, 2022) ISSN: 2347-1921, 182-191.
[26] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, New York, 2000.
[27] M. A. krasnosel'ski, P. P. Zabrejko, J. I. Pustyl'nik and P. J. Sobolevskii, Integral operators in spaces of summable functions, Noordhoff, Leyden, (1976).
[28] P. P. Zabrejko, A. I. Koshelev, M. A. krasnosel'ski, S.G. Mikhlin, L. S. Rakovshchik and V. J. Stecenco, Integeral Equations, Noordhoff, Leyden, (1975).

Supplementary Materials

Not applicable.

Conflicts of Interest

The authors declare that they have no competing interests.

Funding Statement

The research was self-sposored by the author.

Acknowledgments

The authors like to thank the anonymous referees for their valuable comments and suggestions, which greatly improved the presentation of this paper.

