# Existence of a bounded variation solution of a nonlinear integral equation in $L_{1}\left(R^{+}\right)$ 

Wagdy G. El-Sayed ${ }^{1}$, Ragab O. Abd El-Rahman ${ }^{2}$, Sheren A. Abd El-Salam ${ }^{3}$, Asmaa A. El Shahawy ${ }^{4}$<br>${ }^{1}$ Department of mathematics and computer science, Faculty of Science, Alexandria University, Alexandria, Egypt<br>${ }^{2,3,4}$ Department of mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt<br>${ }^{1}$ wagdygoma@alexu.edu.eg, ${ }^{2}$ dr.ragab@sci.dmu.edu.eg, ${ }^{3}$ shrnahmed@yahoo.com, ${ }^{4}$ asmaashahawy91@yahoo.com


#### Abstract

In this paper, we study the existence of a unique solution of a nonlinear integral equation in the space of bounded variation on an unbounded interval by using measure of noncompactness and Darbo fixed point theorem.

Keywords: Nemytskii operator, Volterra integral operator, Hausdorff measure of noncompactness, Functions of bounded variation, Darbo fixed point theorem.


## 1 Introduction

Integral equations create a very important and significant part of mathematical analysis and their applications to real world problems (cf. [1], [3], [7], [22, ,24]). The theory of integral equations has been well developed with the help of various tools from functional analysis, topology and fixed-point theory.
This paper studies the existence of a unique solution of the following nonlinear integral equation

$$
\begin{equation*}
x(t)=g(t)+h(t) f(t, x(t))+\int_{0}^{\phi(t)} k(t, s) f(s, x(s)) d s, \quad t \in R^{+} \tag{1}
\end{equation*}
$$

in the space $L_{1}\left(R^{+}\right)$of functions of bounded variation.

## 2 Preliminaries

This section is devoted to recall some notations and results that will be needed in the sequel. Let $R$ be the field of real numbers and $R^{+}$be the interval $[0, \infty)$. Denote by $L_{1}=L_{1}\left(R^{+}\right)$the space of Lebesgue integrable functions on the interval $[0, \infty)$, with the standard norm

$$
\|x\|=\int_{0}^{\infty}|x(t)| d t
$$

The most important operator in nonlinear functional analysis is the so-called Nemytskii operator ([2], [11], [12], [21]).

Definition 2.1 If $f(t, x)=f: R^{+} \times R \rightarrow R$ satisfies Carathéodory conditions i.e. it is measurable in $t$ for any $x \in R$ and continuous in $x$ for almost all $t \in R^{+}$. Then to every function $x(t)$ being measurable on $R^{+}$we may assign the function

$$
(F x)(t)=f(t, x(t)), \quad t \in R^{+} .
$$

The operator $F$ is called the Nemytskii (or superposition) operator generated by $f$.

Furthermore, we propose a theorem which gives necessary and sufficient condition for the Nemytskii operator to map the space $L_{1}$ into itself continuously.

Theorem 2.1 ([2], [15]) If $f$ satisfies Carathéodory conditions, then the Nemytskii operator $F$ generated by the function $f$ maps continuously the space $L_{1}$ into itself if and only if

$$
|f(t, x)| \leq a(t)+b|x|,
$$

for every $t \in R^{+}$and $x \in R$, where $a(t) \in L_{1}$ and $b \geq 0$ is a constant.

Definition 2.2 (Volterra integral operator) [25]
Let $k: \Delta \rightarrow R$ be a function that is measurable with respect to both variables, where $\Delta=\{(t, s): 0 \leq s \leq t<\infty\}$. For an arbitrary function $x \in L_{1}\left(R^{+}\right)$, we define

$$
(V x)(t)=\int_{0}^{t} k(t, s) x(s) d s, \quad t \geq 0
$$

The above operator $V$ is the well-known linear Volterra integral operator. Obviously, if $V: L_{1} \rightarrow L_{1}$ then it is continuous [23].

Definition 2.3 ([5], [10], [20])

The Hausdorff measure of noncompactness $\chi(X)$ (see also [16]-[18]) is defined as

$$
\chi(X)=\inf \left\{r>0: \text { there exists a finite subset } Y \text { of } E \text { such that } x \subset Y+B_{r}\right\}
$$

Another regular measure was defined in the space $L_{1}(I)([4],[9])$. For any $\varepsilon>0$, let $c$ be a measure of equintegrability of the set $X$ :

$$
\begin{equation*}
c(X)=\lim _{\varepsilon \rightarrow 0}\left\{\sup _{x \in X}\left\{\sup \left[\int_{D}|x(\tau)| d \tau: D \subset R^{+}, \text {meas } D \leq \varepsilon\right]\right\}\right\}=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
d(X)=\lim _{T \rightarrow \infty}\left\{\sup \left[\int_{T}^{\infty}|x(\tau)| d \tau: x \in X\right]\right\} \tag{3}
\end{equation*}
$$

where meas $D$ represents the Lebesgue measure of subset $D$.
Put

$$
\begin{equation*}
\gamma(X)=c(X)+d(X) \tag{4}
\end{equation*}
$$

Then we have the following theorem [19, which connects between the two measures $\chi(X)$ and $\gamma(X)$.

Theorem 2.2 Let $X \in M_{E}$ and compact in measure, then

$$
\chi(X) \leq \gamma(X) \leq 2 \chi(X)
$$

Now, we give Darbo fixed point theorem (cf. [8], [13], [14], [21]).

Theorem 2.3 If $Q$ is nonempty, bounded, closed and convex subset of $E$ and let $A: Q \rightarrow Q$ be a continuous transformation which is a contraction with respect to the measure of noncompactness $\mu$, i.e. there exists a constant $k \in[0,1)$ such that

$$
\mu(A X) \leq k \mu(X)
$$

for any nonempty subset $X$ of $Q$. Then $A$ has at least one fixed point in the set $Q$.

Definition 2.4 (Functions of bounded variation) ([6], [20])
Let $x:[a, b] \rightarrow R$ be a function. For each partition $P: a=t_{0}<t_{1}<\ldots<t_{n}=b$ of the interval $[a, b]$, we define

$$
\operatorname{Var}(x,[a, b])=\sup \sum_{i=1}^{n}\left|x\left(t_{i}\right)-x\left(t_{i-1}\right)\right|
$$

where the supremum is taken over the interval $[a, b]$. If $\operatorname{Var}(x)<\infty$, we say that $x$ has bounded variation and we write $x \in B V$.
We denote by $B V=B V[a, b]$ the space of all functions of bounded variation on $[a, b]$.

Theorem 2.4 [4] Assume that $X \subset L_{1}(I)$ is of locally generalized bounded variation, then Conv $X$ (convex hull of $X$ ) and $\bar{X}$ are of the same type.

Corollary 2.1 [4] Let $X \subset L_{1}(I)$ is of locally generalized bounded variation, then Conv $X$ is also such.

Next, we will have the following theorem, which we will further use (cf. [4]).

Theorem 2.5 Assume that $X \subset L_{1}$ is a bounded set have the following hypotheses:
(i) there exists $t_{0} \geq 0$ such that the set $x\left(t_{0}\right): x \in X$ is bounded in $R$,
(ii) $X$ is of locally generalized bounded variation on $R^{+}$,
(iii) for any $a>0$ the following equality holds

$$
\lim _{T \rightarrow \infty}\left\{\sup _{x \in X}\{\text { meas }\{t>T:|x(t)| \geq a\}\}\right\}=0
$$

Then the set $X$ is compact in measure.

Corollary 2.2 [4] If $X \subset L_{1}$ is a bounded set satisfies the hypotheses of Theorem 2.5. Then Conv $X$ is compact in measure.

## 3 Main result

Equation (1) can be written in operator form as

$$
\begin{equation*}
(G x)(t)=g(t)+h(t) F x(t)+V F x(t) \tag{5}
\end{equation*}
$$

where $(F x)(t)=f(t, x)$ and $(V x)(t)=\int_{0}^{\phi(t)} k(t, s) x(s) d s$.

We will treat equation (1) under the following assumptions listed below:
(i) $g, h: R^{+} \rightarrow R, \quad g \in L_{1}\left(R^{+}\right)$and $h(t)$ is bounded function such that $\sup _{t \in R^{+}}|h(t)| \leq M$.
(ii) $f: R^{+} \times R \rightarrow R$ satisfies Carathéodory conditions and there exist a function $a \in L_{1}\left(R^{+}\right)$and a constant $b \geq 0$ such that $|f(t, x)| \leq a(t)+b|x|$, for all $t \in R^{+}$and $x \in R$.
(iii) there exists $L>0$ such that

$$
|f(t, x)-f(s, y)| \leq L(|t-s|+|x-y|)
$$

(iv) $k(t, s): \Delta \rightarrow R$ is measurable in both variables and such that the integral operator $V$ generated by maps $L_{1}$ into $L_{1},(\Delta=\{(t, s): 0 \leq s \leq t<\infty\})$.
Moreover, $\forall h>0$.

$$
\lim _{T \rightarrow \infty}\{\operatorname{meas}\{t>T:|(V x)(t)| \geq h\}\}=0
$$

uniformly with respect to $x \in X$, where $X$ is an arbitrary bounded subset of $L_{1}$.
(v) The generalized variation of the function $t \rightarrow k(t, s)$ is essentially bounded on $[0, T] \forall T>0$ and uniformly on $s \in[0, T]$.
Also, the function $v(T)$ is defined as

$$
v(T)=\operatorname{ess} \sup \left\{\operatorname{var}_{t} k(t, s),[0, T]: s \in[0, T]\right\}
$$

then we get $v(T)<\infty \forall T \geq 0$.
(vi) $\phi: R^{+} \rightarrow R^{+}$is increasing and continuous function such that $\phi(t)<t, \forall t \in R^{+}$and it is bounded on $R^{+}$.
(vii) $b(M+\|V\|)<1$.

Theorem 3.1 Under the above assumptions (i)-(vii), equation (1) has at least one solution $x \in L_{1}\left(R^{+}\right)$which is a function of locally bounded variation on the interval $R^{+}$.

Proof. First of all observe that by assumption (ii) the operator $F$ maps the space $L_{1}\left(R^{+}\right)$into itself and is continuous. By assumption (iv) the Volterra operator $V$ maps $L_{1}\left(R^{+}\right)$into itself and is continuous. Finally, for every $x \in L_{1}\left(R^{+}\right)$ and by assumption (i) we can deduce that $G x \in L_{1}\left(R^{+}\right)$.
Moreover, we get

$$
\begin{aligned}
\|G x\| & =\|g+h F x+V F x\| \\
& \leq\|g\|+\int_{0}^{\infty} \mid h(t) f\left(t, x(t)\left|d t+\int_{0}^{\infty} \int_{0}^{\phi(t)}\right| k(t, s) f(s, x(s)) \mid d s d t\right. \\
& \leq\|g\|+M \int_{0}^{\infty}[a(t)+b|x(t)|] d t+\int_{0}^{\infty} \int_{0}^{t}|k(t, s) \| f(s, x(s))| d s d t \\
& \leq\|g\|+M\|a\|+b M \int_{0}^{\infty}|x(t)| d t+\|V\| \int_{0}^{\infty}|f(s, x(s))| d t \\
& \leq\|g\|+M\|a\|+b M\|x\|+\|V\| \int_{0}^{\infty}[a(t)+b|x(t)|] d t \\
& \leq\|g\|+M\|a\|+b M\|x\|+\|V\|\|a\|+b\|V\|\|x\| \\
& \leq\|g\|+M\|a\|+\|V\|\|a\|+b(M+\|V\|) r \\
& \leq r .
\end{aligned}
$$

From the above estimate, the operator $G$ transforms the ball $B_{r}$ into itself, where

$$
r=\frac{\|g\|+M\|a\|+\|V\|\|a\|}{1-b(M+\|V\|)}>0
$$

Next, let us choose an arbitrary $x \in B_{r}$. Observe that

$$
\begin{align*}
|(G x)(0)| & =|g(0)+h(0) f(0,0)| \\
& \leq|g(0)|+|h(0)||f(0,0)| \\
& <\infty \tag{6}
\end{align*}
$$

Hence we infer that all functions belonging to $G B_{r}$ are bounded at the point $t=0$ by the same constant.
Further, let us fix $T>0$ and take a sequence $t_{i}$ such that $0=t_{0}<t_{1}<t_{2} \ldots<t_{n}=T$. Then using our assumptions, we obtain

$$
\begin{aligned}
& \sum_{i=1}^{n}\left|(G x)\left(t_{i}\right)-(G x)\left(t_{i-1}\right)\right| \leq \sum_{i=1}^{n}\left|g\left(t_{i}\right)-g\left(t_{i-1}\right)\right| \\
&+\sum_{i=1}^{n}\left|h\left(t_{i}\right) f\left(t_{i}, x\left(t_{i}\right)\right)-h\left(t_{i-1}\right) f\left(t_{i-1}, x\left(t_{i-1}\right)\right)\right| \\
&+\sum_{i=1}^{n}\left|\int_{0}^{\phi\left(t_{i}\right)} k\left(t_{i}, s\right) f(s, x(s)) d s-\int_{0}^{\phi\left(t_{i-1}\right)} k\left(t_{i-1}, s\right) f(s, x(s)) d s\right| \\
& \leq V(g, T)+\sum_{i=1}^{n}\left|h\left(t_{i}\right) f\left(t_{i}, x\left(t_{i}\right)\right)-h\left(t_{i}\right) f\left(t_{i}, x\left(t_{i-1}\right)\right)\right| \\
&+\sum_{i=1}^{n}\left|h\left(t_{i}\right) f\left(t_{i}, x\left(t_{i-1}\right)\right)-h\left(t_{i-1}\right) f\left(t_{i}, x\left(t_{i-1}\right)\right)\right| \\
&+\sum_{i=1}^{n}\left|h\left(t_{i-1}\right) f\left(t_{i}, x\left(t_{i-1}\right)\right)-h\left(t_{i-1}\right) f\left(t_{i-1}, x\left(t_{i-1}\right)\right)\right| \\
&+\sum_{i=1}^{n}\left|\int_{0}^{\phi\left(t_{i}\right)} k\left(t_{i}, s\right) f(s, x(s)) d s-\int_{0}^{\phi\left(t_{i}\right)} k\left(t_{i-1}, s\right) f(s, x(s)) d s\right| \\
&+\sum_{i=1}^{n}\left|\int_{0}^{\phi\left(t_{i}\right)} k\left(t_{i-1}, s\right) f(s, x(s)) d s-\int_{0}^{\phi\left(t_{i-1}\right)} k\left(t_{i-1}, s\right) f(s, x(s)) d s\right| \\
& \leq V(g, T)+L \sum_{i=1}^{n}\left|h\left(t_{i}\right)\right|\left|x\left(t_{i}\right)-x\left(t_{i-1}\right)\right| \\
&+\sum_{i=1}^{n}\left|h\left(t_{i}\right)-h\left(t_{i-1}\right)\right| \mid f\left(t_{i}, x\left(t_{i-1}\right) \mid\right. \\
&+L \sum_{i=1}^{n}\left|h\left(t_{i-1}\right)\right|\left|t_{i}-t_{i-1}\right| \\
&+\int_{0}^{\phi\left(t_{i}\right)}\left(\sum_{i=1}^{n}\left|k\left(t_{i}, s\right)-k\left(t_{i-1}, s\right)\right|\right)|f(s, x(s))| d s \\
&+\sum_{i=1}^{n} \int_{\phi\left(t_{i}-1\right)}^{\phi\left(t_{i}\right)}\left|k\left(t_{i-1}, s\right)\right||f(s, x(s))| d s \\
&+V(g, T)+L M V(x, T)+V(h, T)+M N \\
&+\int_{0}^{t_{i}} v(T)[a(s)+b|x(s)|] d s+\sum_{i=1}^{n} \int_{t_{i}-1}^{t_{i}}\left|k\left(t_{i-1}, s\right)\right|[a(s)+b|x(s)|] d s \\
& \leq V \int_{0}^{T} a(s) d s+k_{0} b \int_{0}^{T}|x(s)| d s \\
& V(G x, T)+L M V(x, T)+V(h, T)+M N
\end{aligned}
$$

$$
\begin{align*}
& +\int_{0}^{T} v(T) a(s) d s+b \int_{0}^{T} v(T)|x(s)| d s+k_{0} \int_{0}^{T} a(s) d s+k_{0} b \int_{0}^{T}|x(s)| d s \\
& \leq V(g, T)+L M V(x, T)+V(A, T)+M N \\
& +v(T)\|a\|+b v(T) r+k_{0}\|a\|+k_{0} b r<\infty \tag{7}
\end{align*}
$$

where $N=L\left|t_{i}-t_{i-1}\right|$.
In view of the above estimate all functions belonging to $G B_{r}$ have variation majorized by the same constant on every closed subinterval of the interval $R^{+}$.
Next, let us consider the set $Q_{r}=$ Conv $G B_{r}$, obviously $Q_{r} \subset B_{r}$. we will prove that $Q_{r}$ is nonempty, bounded, convex, closed and compact in measure.
$Q_{r}$ being nonempty follows by considering the nonincreasing function $x(t)=\frac{r}{\pi}\left(\frac{1}{1+t^{2}}\right)$ where

$$
\|x\|=\int_{0}^{\infty}|x(t)| d t=\int_{0}^{\infty}\left|\frac{r}{\pi}\left(\frac{1}{1+t^{2}}\right)\right| d t=\left.\frac{r}{\pi} \arctan \right|_{0} ^{\infty}=\frac{r}{\pi}\left(\frac{\pi}{2}\right) \leq r
$$

Also $Q_{r}$ is bounded as a subset of $B_{r}$.
To show that $Q_{r}$ is convex. Let $x_{1}, x_{2} \in Q_{r}$, then $\left\|x_{i}\right\| \leq r, \quad i=1,2$.
Let

$$
z(t)=\lambda x_{1}(t)+(1-\lambda) x_{2}(t), \quad t \in R^{+}, \lambda \in R^{+}
$$

Then

$$
\begin{aligned}
\|z\| & \leq \lambda\left\|x_{1}\right\|+(1-\lambda)\left\|x_{2}\right\| \\
& \leq \lambda r+(1-\lambda) r=r .
\end{aligned}
$$

So the convexity of $Q_{r}$ is established.
To show that $Q_{r}$ is closed. Let $\left\{x_{n}\right\}$ be a sequence of elements in $Q_{r}$ convergent in $L_{1}\left(R^{+}\right)$to $x$, then the sequence is convergent in measure and as a consequence of the Vitali convergence theorem and the characterization of convergence in measure (the Riesz theorem) we obtain the existence of a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ which converges to $x$ almost uniformly on $R^{+}$which means that $x \in Q_{r}$ and so the set $Q_{r}$ is closed.
Further, in virtue of (6), (7) and Theorem 2.5 we conclude that the set $G B_{r}$ is compact in measure. By Corollary 2.2 this yields that the set $Q_{r}$ is also compact in measure. Moreover, Corollary 2.1 implies that the set $Q_{r}$ is of locally generalized bounded variation on $R^{+}$. Now, from assumption (i), and since $Q_{r} \subset B_{r}$, then $G$ is a self-mapping of the set $Q_{r}$ into it self and is continuous.
In what follows, we will show that the operator $G$ is a contraction with respect to the measure of noncompactness $\chi$. Assume that $X$ is a nonempty subset of $Q_{r}$ and let $\varepsilon>0$ is fixed, then for any $x \in X$ and for a set $D \subset R^{+}, \operatorname{meas} D \leq \varepsilon$, we obtain

$$
\begin{aligned}
\int_{D}|(G x)(t)| d t & \leq \int_{D} g\left(t\left|d t+\int_{D}\right| h(t)| | f(t, x(t))\left|d t+\int_{D} \int_{0}^{t}\right| k(t, s) \| f(s, x(s)) \mid d s d t\right. \\
& \leq \int_{D} g(t) d t+M \int_{D}[a(t)+b|x(t)|] d t+\|V\| \int_{D}[a(s)+b|x(s)|] d t d s \\
& \leq \int_{D} g(t) d t+M \int_{D} a(t)+b M \int_{D}|x(s)| d s+\|V\| \int_{D} a(s) d s+b\|V\| \int_{D} \mid x(s \mid d s
\end{aligned}
$$

Now, using the fact that

$$
\lim _{\varepsilon \rightarrow 0} \sup \left\{\int_{D} g(t) d t: D \subset R^{+}, \text {meas } D \leq \varepsilon\right\}=0
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \sup \left\{\int_{D} a(t) d t: D \subset R^{+}, \text {meas } D \leq \varepsilon\right\}=0
$$

Then using (2), we get

$$
\begin{equation*}
c(G X) \leq b(M+\|V\|) c(X) \tag{8}
\end{equation*}
$$

Furthermore, fixing $T>0$ we arrive at the following estimate

$$
\int_{T}^{\infty}|(G x)(t)| d t \leq \int_{T}^{\infty} g(t) d t+M \int_{T}^{\infty} a(t) d t+M b \int_{T}^{\infty}|x(t)| d t+\|V\| \int_{T}^{\infty} a(s) d s+b\|V\| \int_{T}^{\infty} \mid x(s \mid d s
$$

As $T \rightarrow \infty$, the above inequality yields

$$
\begin{equation*}
d(G X) \leq b(M+\|V\|) d(X) \tag{9}
\end{equation*}
$$

where $d(X)$ has been defined before in (3).
Hence combining (8) and (9) we get

$$
\gamma(G X) \leq b(M+\|V\|) \gamma(X)
$$

Since $X \subset Q_{r}$ and $Q_{r}$ is compact in measure, then we have

$$
\chi(G X) \leq b(M+\|V\|) \chi(X)
$$

Thus in virtue of assumption (vii) we can apply Darbo fixed point theorem which guarantees equation (1) has at least one solution. This completes the proof.

## 4 Example

. Consider the integro-differential equation

$$
\begin{equation*}
x(t)=g(t)+\int_{0}^{t} p(t, s) f\left(s, x^{\prime}(s)\right) d s, \quad t \in R^{+} \tag{10}
\end{equation*}
$$

Differentiate both sides of equation with respect to $t$, we get

$$
\begin{equation*}
x^{\prime}(t)=g^{\prime}(t)+p(t, t) f\left(t, x^{\prime}(t)\right)+\int_{0}^{t} p^{\prime}(t, s) f\left(s, x^{\prime}(s)\right) d s \tag{11}
\end{equation*}
$$

Put $x^{\prime}(t)=y(t), \quad g^{\prime}(t)=h(t), \quad p(t, t)=q(t)$ and $p^{\prime}(t, s)=k(t, s)$ in 11)
Then we have

$$
\begin{equation*}
y(t)=h(t)+q(t) f(t, y(t))+\int_{0}^{t} k(t, s) f(s, y(s)) d s, \quad t \in R^{+} \tag{12}
\end{equation*}
$$

Taking into account all assumptions of Theorem 3.1 with $\phi(t)=t$, then equation 10 has at least one solution $x \in L_{1}\left(R^{+}\right)$which is a function of locally bounded variation on $R^{+}$.

## 5 Uniqueness of the solution

Now, we can prove the existence of our unique solution.

Theorem 5.1 Let the assumptions of Theorem 3.1 be satisfied but instead of assumption (vii), let $M+\|V\|<1$. Then, equation (1) has a unique solution on $R^{+}$.

Proof. To prove the unique solution of equation (1), let $x(t), y(t)$ be any two solutions of equation (11) in $B_{r}$, we have

$$
\begin{aligned}
\|x-y\| & =\left\|h(t)[f(t, x(t))-f(t, y(t))]+\int_{0}^{\phi(t)} k(t, s)[f(s, x(s))-f(s, y(s))] d s\right\| \\
& \leq \int_{0}^{\infty}\left|h(t)\left\|f(t, x(t))-f(t, y(t))\left|d t+\int_{0}^{\infty} \int_{0}^{\phi(t)}\right| k(t, s)\right\| f(s, x(s))-f(s, y(s))\right| d s \\
& \leq M \int_{0}^{\infty}|x(t)-y(t)| d t+\|V\| \int_{0}^{t}|x(s)-y(s)| d s \\
& \leq(M+\|V\|)\|x-y\| .
\end{aligned}
$$

Therefore,

$$
[1-(M+\|V\|)]\|x-y\|_{L_{1}} \leq 0
$$

This yields $\|x-y\|=0, \Rightarrow x=y$, which completes the proof.

## Data Availability (excluding Review articles)

Applicable.

## References

[1] R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Positive solutions of differential, difference and integral equations, Kluwer Academic Publishers, Dordrecht, 1999.
[2] J. Appell and P. P. Zabrejko, Continuity properties of the superposition operator, Preprint No. 131, Univ. Augsburg, 1986.
[3] I. K. Argros, Quadratic equations and applications to Chandrasekhar's and related equations, Bull. Austral. Math. Soc., 32, (1985), 275-292.
[4] J. Banas and W. G. El-Sayed, Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, J. Math. Anal. Appl. 167 (1) (1992), 133-151.
[5] J. Banas and K. Goebel, Measures of noncompactness in Banach spaces, Lect. Notes in Math. 60, M. Dekker, New york and Basel 1980.
[6] D. Bugajewski, On BV-solutions of some nonlinear integralequations,Integral Equations and Operator Theory, vol. 46, no. 4, pp. 387-398, 2003.
[7] J. Caballero, J. Rocha and K. Sadarangani, Solvability of a Volterra integral equation of convolution type in the class of monotonic functions, Intern. Math. Journal, 4, no.1, (2001), 69-77.
[8] G. Darbo, Punti untiti in transformazioni a condominio noncompatto, Rend. Sem. Mat. Univ. Padora 24 (1955) 84-92.
[9] F. S. De Blasi, On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Sci. Math. R. S. Roum. 21 (1977), 259-262.
[10] M. M. El-Borai, W. G. El-Sayed \& R. M. Bayomi, Solvability of non-linear integro-differential equation, Inter. J. Sc. \& Eng. Res., Vol. 10, Issu. 7, July-2019, ISSN 2229-5518, pp. 1085-1093.
[11] M. M. El-Borai, W. G. El-Sayed \& F. N. Ghaffoori, On the solvability of nonlinear integral functional equation, Inter. J. Math. Tren. \& Tech. (IJMTT), Vol. 34, No. 1, June 2016, 39-44.
[12] M. M. El-Borai, W. G. El-Sayed \& F. N. Ghaffoori, Existence Solution For a Fractional Nonlinear Integral Equation of Volterra Type, Aryabhatta J. M. \& Inform., Vol. 08, Iss.-02, (Jul.-Dec. 2016), 1-15.
[13] W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, On the solvability of a nonlinear functional integral equations via measure of noncompactness in $L^{P}\left(R^{N}\right)$, J. Adv. Math. (JAM), Vol 19 (2020) ISSN: 2347-1921, 74-88.
[14] W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, An existence theorem for a nonlinear integral equation of Urysohn type in $L^{P}\left(R^{N}\right)$, Adv. Math. Sci. J. 9 (2020), no. 11, ISSN: 1857-8365, 9995-10005.
[15] W. G. El-Sayed, M. M. El-Borai, M. M. metwali and N. I. Shemais, On Monotonic Solutions of Nonlinear Quadratic Integral Equation of Convolution Type, Case Studies J., ISSN (2305-509X)- Vol. 9, Issue 10-oct-2020, 78-87.
[16] M. M. El-Borai, W. G. El-Sayed, A. M. Moter, Continuous Solutions of a Quadratic Integral Equation, Inter. J. Life Science and Math. (IJLSM), Vol. 2 (5)-4, (2015), 21-30.
[17] W. G. El-Sayed, Nonlinear functional integral equations of convolution type, Portugaliae Mathematica 54 (4) (1997) 449-456.
[18] W.G. El-Sayed, A.A. El-Bary, M.A. Darwish, Solvability of Urysohn integral equation, Appl. Math. Comput. 145 (2003) 487-493.
[19] W. G. El-Sayed, On the Solvability of a Functional Integral Equation, East-West J. Math. Vol. 10 (2),( 2008) pp. 153-160.
[20] W. G. El-Sayed, R. O. Abd El-Rahman, S. A. Abd El-Salam, A. A. El Shahawy, Bounded variation solutions of a functional integral equation in $L_{1}\left(R^{+}\right)$, Int. J. Mech. Eng., ISSN: 0974-5823, Vol. 7 No. 2 February 2022, 2600-2605.
[21] W. G. El-Sayed, R. O. Abd El-Rahman, S. A. Abd El-Salam, A. A. El Shahawy, On the existence of a bounded variation solution of a fractional integral equation in $L_{1}[0, T]$ due to the spread of COVID 19, J. Adv. Math. (JAM),Vol. 21 (2022) ISSN: 2347-1921, 107-115.
[22] S. Hu, M. Khavanin and W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Analysis, 34, (1989), 261-266.
[23] M. A. krasnosel'ski, P. P. Zabrejko, J. I. Pustyl'nik and P. J. Sobolevskii, Integral operators in spaces of summable functions, Noordhoff, Leyden, (1976).
[24] D. O'Regan and M. Meehan, Existence theory for nonlinear integral and integrodifferential equations, Kluwer Academic, Dordrecht, 1998.
[25] P. P. Zabrejko, A. I. Koshelev, M. A. krasnosel'ski, S.G. Mikhlin, L. S. Rakovshchik and V. J. Stecenco, Integeral Equations, Noordhoff, Leyden, (1975).

## Supplementary Materials

Not applicable.

## Conflicts of Interest

The authors declare that they have no competing interests.

## Funding Statement

The research was self-sposored by the author.

## Acknowledgments

The authors like to thank the anonymous referees for their valuable comments and suggestions, which greatly improved the presentation of this paper.

