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Abstract:

In this paper, an analytic approximate method for solving the unsteady two-dimensional convection-diffusion
equations is introduced. Also, the convergence of the approximate methods is analyzed. Three test examples
are presented, two have exact and one has not exacted solutions. The results obtained show that these methods
are powerful mathematical tools for solving linear and nonlinear partial differential equations, moreover, new
analytic Taylor method (NATM), reduced differential transform method (RDTM), and homotopy perturbation
method (HPM), are more accurate and have less CPU time than the other methods.
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1-Introduction

This work is interested in two unsteady state two-dimensional initial-boundary value problems, which were
formulated as follows;

Problem-I: Linear transport (convection-diffusion) equation.

a a a 82 82

St Bt By — i ey e =0, (1Y) €[0,L] X [0,L] X [0,T] )
with initial condition

u(x,v,0) =0,(x,y),0<x,y <L, 2)

and the boundary conditions

u(x,0,t) = fo(x,t),ulx, L,t) = f1(x,t),0<x <Lt =0 } 3)
u(o'y't) = go(y' t),u(L,y,t) = gl(y' t)'o < y < th = o)y

where u(x, y,t) is a transported variable, 8, and p,, are arbitrary constants witch show the speed of convection,

a, and a,, are positive constants of diffusion coefficients, and f; f; go g1 and @, are known functions.

Problem-II: Nonlinear Burgers equation:

ou ou ou 1 (0%*u , 0%u
o qul+ ava—R—e(ax—z+ﬁ) =0, (x,yt)€[0,L] x[0,L] X [0,T] )
ov ov ov 1 (0%v  9%v
E+CIUE+(XU£—R—6(E+W)—O, (5)

with initial conditions
u(x!y' 0) = a1(x,)’)}

x,V) € Q, 6

v(x5,y,0) = ay(x, ) ) ©
and boundary conditions
u(x,y,t) = by (x,y, t),}
v(x’y’ t) — bz(x’y’ t), (x;)’) E Q! t > 01 (7)
where O ={(x,y):a<x <b,c <y <d} is the computational domain, dQ is its boundary, u(x,y,t) and
v(x,y,t) are the velocity components to be determined, a,, a,, b; and b, are the known functions, and Re is the
Reynolds number.
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These problems are essential examples of partial differential equations that are represent a wide range of
phenomena such as heat transfer, mass transfer, petroleum reservoir modeling, subsurface pollution
remediation, continuum mechanics, shock waves, acoustic waves, gas dynamics, elasticity, and so on [1, 2, 3, 4].
There is a wide body of literature on many forms of transport equations that are solved using various numerical
and analytical approaches, for example: Tanaka and Chen [5] studied coupling dual reciprocity boundary
element method and differential quadrature method for time-dependent diffusion problems. Bahadir [6] applied
fully implicit finite-difference scheme for solving two-dimensional Burgers equations .Al-Saif and Al-Kanani [2]
suggested alternative direction implicit formulation of the differential quadrature method for solving the
unsteady state two-dimensional convection-diffusion equations. Abdou and Soliman [7] used variational
iteration method for solving Burger's and coupled Burger's equations. Dijidjeli et al. [8] studied global and
compact meshless schemes for the unsteady convection-diffusion equation. Sharma and Methi [9] presented
homotopy perturbation method approach for the solution of equation to unsteady flow of a polytropic gas. You
[10] proposed a high-order pade' ADI method for solving unsteady convection-diffusion equations. Ali [11]
studied radial basis function based meshless methods for the solution of Burger's equations.We will solve the
two problems specifically utilizing these methods. The first is HPM that is created by Ji-Huan He for the first time
in 1999. This method was further developed and improved by He, and applied it to nonlinear oscillators with
discontinuities[12], nonlinear wave equation [13] and boundary value problem[14]. The second is RDTM, this
method suggested by the Turkish mathematician Keskin [15-17] for the first time in 2009. It has received much
attention since it has applied to solve a wide variety of problem by many author([7,18,19]. The third method is
NATM this method suggested by Sabah [20] in 2018, based on Taylors expansion in calculating non-linear
terms, the new technique provided analytical solutions (approximate and exact). Comparison these methods
with fourth-order Range-Kutta (RK-4) method. The aim of this study is to comparison between these methods
in terms of accuracy of the solution and speed of the convergence. The results obtained indicate that the
RDTM,HPM and NATM have high accuracy and less CPU time than the other methods.

2- The solution methods

In what follows, we will highlight briefly the main points of each of HPM, RDTM, and NATM to know each one
how to works when apply to handle the equations of the problem.

2.1 The basic ideas of new analytic Taylor method:

The new analytic Taylor method is analytical method introduced in 2018, by Sabah [20], this technique based on
Taylor's expansion in calculating non-linear terms in two-dimensional non-linear initial value problems.

To illustration the methodology of the proposed method, consider an equation of two-dimensional space and
first order in time as the follows:

ut(xly' t) = F[u] + g(x,J’): (8)
with the initial condition
u(x!y' tO) = f(x:}’). (9)

where, u unknown function , F[u] is linear and non-linear operator and g(x, y) is the known function.
Firstly, let us define Taylor's formula that we will use in the next theorem.

Definition 2.1.1 (Taylors Formula)[21]

Supposef:(a,b) = R has n + 1 derivatives on (a,b), and let a < ¢ < b. For every a < x < b, there exists w
between ¢ and x such that
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" (n)
_ﬂ@=f@)+f@Xx—@+ff”( o 4t L ()(—CY+RA@,
_ fD) n+1
where, R, (x) = D — o)™

Theorem 2.1.1[21]

Let u be the analytic solution of Egs. (8)-(9) and F(u) is the analytic of his arguments. Then we can find the

Taylor series about t, for the solution u(x, y, t) by using the following formula:

n
ulx,y,t) = ap + a; At + a, —— (At) +a &4_ ‘+a (A:? +o (10)

Flu] 0°F[u]
ag =ulx,y,ty),a; = g(x,y) + F[u] | t=tg»d2 = T | t=tg A3 = otz | t=tg

" F[]

el [ (1)
To illustrate the above theorem, we need to integrate Eq.(8) from ¢, to t, to obtain :

t
u(x,y,t) = ux,y, to) + g, y)At + [, Flu] dt, (12)

Where, At =t — t,and F[u] can be expressed by the expand Taylor's series about ¢, as:
_ " (At)z " (At) (n) (At)
Flu] = [Fulle, + [F'lulle, 3+ [F/Tulle, S+ [[F[ull, S+ FO ], S +... (13)

3!

Substituting Eq. (13) into Eqg. (12) and integrating resulting equation to obtain the series solution (10). Eq. (10) is
corresponding with the expand Taylors series of u about t, that means a;,i = 1,2 ... is having another represent,

which is
@ = ou @ = 0%u Q= a3u @ = o"u
1™ 3¢ t=t0’ 27 g2 t=t0' 37 9¢3 t=t0' o Mn T gen t=t0’

That is very important in the process a solutions, because it is the key of the present method to find more terms
of series solutions. To computing, the derivatives of F[u], we will use the chain rule

F’[u] = ‘{l=0 Z§'=O F i ][u]u i- ]y]t (14)
F'[u] = OZ] 0 (Zk OZr oFu NEWANS ryr[u]u i=jyitUyk-TyTe +F, il [u]uxi—fyftt) ' (15)
. . . N at
where, n is the highest partial derivative of u JUyinjyj = Fjuayj,uxi—jyj = Uy jyioj Fypi- jyj[u] =
aF[u] 02F[u]

,F, Uy Ul=—————
auxi_j j Ul—jy o k=T r[ 1= ou Jyi ou - ryr
The series solution (10) at |n|t|al tlme (to =0)is

Tl

u(xy,t)—a0+a1t+a2 +a33l+ +an e (16)

2.2 The basic ideas of reduced differential transform method:

The reduced differential transform method is an analytical-numerical technique introduced for the first time by
Keskin [15,16] to study the analytical solutions of linear and nonlinear wave equations. It has received much
attention since it has been applied to solve a wide variety of problems by many authors [22]. This suggested
technique is highly efficient and powerful in obtaining the exact solutions as well as approximate solutions of
mathematical modeling of many problems in technology, finance, engineering disciplines, natural sciences such
as biology, physics, chemistry, and earth science, gives the solution in the form of rapidly convergent successive
approximations, and is capable of handling Linear and nonlinear equations in a similar manner. The basic
definitions and operations of Two-dimensional reduced differential transform method [23-27] are introduced
as follows.
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Definition 2.2.1
If function u(x, y, t) is analytic and differentiated continuously with respect to time and space in the domain of
interest, then let

Up(x,y) = [%"(x' Y t)]Fo' -

Where, the t-dimensional spectrum function U, (x,y) is the transformed function. In this paper, the lowercase
u(x,y, t) represents the original function, while the uppercase U (x,y)stand for the transformed function.

Definition 2.2.2

The differential inverse transform of U, (x,y) is defined as;

u(x,y,t) = Ximo U (x, ) (t — )", (18)
then by combining Egs. (17), and (18) we obtain

_yoo 1[0F k
ulx,y,t) =X E[mu(x,y, t)]t=0 t*. (19)
Note that the function u(x, y, t) can be written in a finite series as follows:
U, (x,y,8) = Xieo U (x, y)(t — o) + Ry (x, 3, ). (20)

Where the tail function R, (x,y,t), is negligibly small. Therefore the exact solution of problem is given
u(x,y, t) = lim, e u,(x, ¥, t).

Table 1: The fundamental operations of RDTM

Functional Form Transformed Form
( ) Ur(x,y) ! [ak ( t)]
u(x,y,t k(XY) = 5| 3 Ul Y,
k!|ot =0
w(x,y, t) = au(x,y,t) £ pv(x,y,t) Wi (x,y) = aUi(x,y) £ BV (x,y)
Wi (x,y) = X720 V- (6, V) Ui (%, )
w(x,y,t) =ulx,y, t)v(x,y,t o
(62,8 = uoy, vy, 0 = 30Uy (6 Y)Vie—r (1, 7)
a" (k+7)
wx,y,t) = o u(x,y,t) Wi y) = — 7 Ukr (%, 9)
62 2
w(x,y,t) = a—yzu(x: v, t) Wi (x,y) = a—yzUk(x: y)
62 2
w(x,y,t) = ﬁu(x, y,t) Wi (x,y) = ﬁuk(x' y)

To illustration the methodology of the proposed method, consider the following nonlinear partial differential

equation written in an operator form

L(u(x,y,t)) + R(u(x,y,t)) + N(u(x,y, 1)) = g(x,y,¢), (21)
with initial condition
u(x,y,0) = f(x,y). (22)
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Where, L and R are a linear differential operators, Nu is a nonlinear operator and g(x,y,t) is an
inhomogeneous term.

According to the RDTM and Table 1, we can construct the following iteration formula:

(k + DUxs1 (63, 8) = G(x,y) = RU(x,y) — NU(x,¥), (23)
where, U, (x,v),and G, (x,y) are the transformations of the functions u(x, y, t),and g(x, y, t) respectively.

From the initial condition (22), we have

Up(x,y) = f(x, ). (24)
Substituting Eq.(24) into Eq.(23) and by straightforward iterative calculations, we get Uy (x, y), values.Then the
inverse transformation of the set of values {U, (x,y)};=, gives the n-terms approximation solution as,

U(x,y,t) = Xk=o Ui (x, 1)EX, (25)
Where n is order of approximation solution, Therefore, the exact solution of the problem is given by
u(x,y,t) =lim, L, t,(x,y,t). (26)

2.3 The basic ideas of homotopy perturbation method:

The homotopy perturbation method was found for the first time by Chinese Mathematician, He [12]. The method
is a powerful and efficient method to find the solutions to nonlinear equations. The coupling of the perturbation
and homotopy methods is called the homotopy perturbation method. In this method, the solution is considered
as the summation of an infinite seriesu = Y., u,, which usually converges rapidly to the exact solutions. By the
homotopy technique in topology, a homotopy is constructed with an embedding parameterp € [0, 1], which is
considered as a "small parameter”, to illustrate the basic idea of Homotopy technique [28]. We consider the
following nonlinear differential equation in operator form:

Aw) —f(r)=0,re€Q, 27)
with boundary conditions
B(wS)=orer, (28)

where, A is a general differential operator, B is a boundary operator, f(r) is a known analytic function, and T is
the boundary of the domain Q . The operator A can generally be divided into two parts L and N, where L a linear
operator is and N is a nonlinear operator as;

A(u) = L(w) + N(u). (29)
Thus, Eq. (27) can be rewritten as follows:

Lw)+Nm) —f()=0. (30)
By the homotopy technique, one constructs a homotopy v(r,p): Q % [0,1] = R, which satisfies

H(v,p) = 1 =p)[L(W) = L(up)] + p[Aw) = f(r)] = 0,p € [0,1],7 € Q. €2y

Where p € [0,1] is embedding parameter, and u, is an initial approximation of Eq.(27), which satisfies the
boundary conditions. Clearly, from Eq. (31) we have

H(v,0) = L(v) — L(ug) =0, (32)
H(w,1) =AW) - f(r)=0. (33)
In addition, the process of changing p from zero to unity is just that of changing v(r,p) from uy(r) to u(r) in
topology, this is called deformation, and L (v) — L (uy),A (v) — f(r) are called homotopic. We consider v as
follows:

v =0y +pvy +p*v, +pPvs + o = X0 D" (34)
According to the homotopy perturbation method, the best approximation solution of Eq.(30) can be explained
as a following series of powers of p:

u=lirr%v=v0+v1+v2+v3+~-'=2;’l°=0 vy (35)
p—)
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In the next, we will test these analytical —approximate methods by its application on three convection- diffusion
problems.

3- Applications:

In this section, we solve the issues stated in (1) and (4,5) using analytical techniques to demonstrate the accuracy,
efficiency, and convergence of the recommended methods NATM, RDTM, and HPM identified in the previous.

Problem-I (The Unsteady state two-dimensional convection - diffusion equation) [29]
Consider Eq.(1) with g, = B, = —1, and L = 1.Then Eq.(1) can be written as:

ou ou du 0%u 0%u
E(x:yv t) - a(x,y, t) - E(xvy't) — Oy ﬁ(xvy't) - ayay_z(x:y, t) - 0: (36)
with initial condition, u(x,y,0) = a(e™** + e »7),0<x,y < 1,t >0, (37)
Where, Cx:w>0 w>0

[«2% 2ay

To solve this problem by NATM, we note that the highest derivative of u isn = 2 and t, = 0, then according to
relations in Eq. (11), we get

ap =u(x,y,0) = a(e™** + e~ ¥7), (38)
a, =[F[u]]lo = a ((c,%ax —¢p) — e + (cEay, — cy)e‘cy'y), (39)
a, = [F'[ullo = 2o XicoFul Ty [ag](a)x Ty,

=a (c,%(cxax —1)%e % 4 cf(cyay - 1)Ze'cy'y), (40)

= [F"[ullo = Xio Zi’:ﬂ ( U i) j[ao](az) i=jyj
+3Eo0 Beo Foiy 1 ery [001(@1)gimsy i (@1) oryr)

=a (c,%(cxax —1)%e~* + c3(cya, — 1)3e'cy'3’), (41)

From Eq.(16), we get the exact solution
u(x,y,t) = Yoo Uk (5, )tk = a(e** + e™Y) + at ((cf ay — e + (cZa, — cy)e‘cy'y)+a§ (c,% (cpay —
1)2e~** + c2(cya, — 1) ) ~Cy y)
=ale™x* 4+ e~YY) [1 + bt + —— (bt) + - ] = a(e ¥ 4 e~ V)ebt, 42)
This is the same exact solution of Eq.(I) [29].
Also, the analytical-approximate solution of the convection-diffusion equation can be found by using RDTM, as
follows;

By taking the differential transform technique for Eq.(36), with the initial condition (37), we get the recurrence
relation of the approximate solutions in the form

a a a a
(k + DUps1(x,y) = EUk(x' y) + 2 Up(x,y) + x5z Ur(x,y) + ayﬁuk(x, y) (43)
From the initial condition (37), we have
Up(x,y) = a(e™** + e~»Y). 44)
Now, substituting Eq.(44) into Eq.(43), we obtain
U =a ((cfax — e % + (cka, — cy)e_cy‘y). (45)
U, = %a (c,%(cxax - 1)%e™ " + cZ(cyay, — 1)2) e‘cy‘y), (46)

3 e

U = %a (cfg ((cxax —1)3e = + c(ayc, — 1) e y), (47)
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Uy = ia (Cx ((Cx“x — Dfe ™ + C; (aycy - 1)4e_cy.y)’ (48)

Finally, the differential inverse transform of Uy (x,y) gives

u(x,y,t) = Yoo Uk (x, y)tk (49)
2

t
=a(e™* +e )+ at ((c,% ay — e + (cZa, — cy)e‘cy'y) ta— (c2(cy ay — 1)%e™xX
2 _
+ci(cya, —1) e DY) + -
= ae™* +e ) [14+bt + &t | = aleox + e Y)et . (50)

This is the same exact solution of Eq.(1) [29].

Now, for soIving Eq (36) by HPM, we construct the following homotopies:

ou  dug 9%u %u  dug
Ju_ o _ p[o a, 25— 2] 1
at ot ox + + U 0xy o, T ay2 ot ! 1)

Suppose that the solutlon of the problem (36) is in the form
U =puy +plugpiup + - (52)
Substitute Eq.(52) into Eq.(51) and equating the coefficients of like power p; we will have the following set of

differential equations:
0.9uo0 _ Juo _ 0

T ot at

L%=%+%+x%+%%]

2:%=aail+%+ax%+ay% (53)
2

3;%=%+%+ax‘;—:+ay%)

Solve equations in (53) to get the solutions:

Uy = ale™** + ee_cy'y), (54)
u, = at ((Cfax — e ** + (cia, — Cy)e_Cy'y).

U, = %at2 (c,% (Cxax - 1D2e " + c2(cya, — 1)ze_cy'y), (55)
Uz = %at3 (c,%(cxax —1%e % + c3(cyay, — 1)3e'cy-y), (56)

Therefore, the approximate solution will be
u(x,y,t) =ug+tuy +u; +uzg+ - =ale”* +e” ny)(l +bt+(bt) +)
=a(e** + e vY).ebt (57)

This is the same exact solution of Eqg. (1)[29].

Problem-II (System of two-dimensional Burgers’ equations)[30]
Consider the Egs. (4) and (5) with @ = 1. Then these equations becomes

u ou 1 (0%u azu)
v—= —] =0,
+ T (0x2 + ay?

dx [i5%
(58)
v v _ 1 (0% | 8%v\ _
+ 0x+v£ (0x2+ﬁ)_0'
W|th initial condltlons
3 1 1
PII-1.u(x,y, 0) —Z—W. v(x y,O) - m (59)

Re(y—x)
P

To solve this problem by NATM, we comparing these equations with Eq.(8) to get:
91(x,y) =0,92(x,y) =0 (60)
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1 (9%u | 8%u ou
F[u 17] (6x2 +0y ) (u$+vay) 61)
1 (0%v 9%v v
0w vl = 5 (G +58) - (w5 +v3).
we note that the highest derivative of u isn = 2 and t, = 0, then according to(11), we get

5 1
a _u(x,y,O)—Z_m'
1

3
4 + 4[1+exp(w(x,))]'

-1 Re exp(w(x,y))
ar = [F[u,v]]o = 128 [1+exp (@Gy)]? (64)

(62)
by =v(x,y,0) = (63)

_ = L _Reexplo@y)
by = [G[u,v]], = 128 [1+exp (@ (x,y))]?’

a; = [F'[u, V]]O =Y Zﬁ':o Fuxi—jyj[ao'bo](a1)xi—1‘yi
_ _L[—1+exp((u(x,y))]Re‘2 exp(w(x,y)) (65)
4096 [1+exp(w(xy))]3 ’
b, = [G'[w,v]], = Z] =0 Guxl ]y][aOJ bo](b1) i=jyi
_ ;[—1+exp((u(xy))]Re exp(w(x,y)) (66)
4096 [1+exp(w(x,y))]3 ’
From Eq.(16), we get the analytical approximate solution
_ (f) _ (f)
S, =2, a;—=~ o and K, = Y2, b; o (67)

Also, the analytlcal—approximate solution can be found by using RDTM for the two-dimensional Burgers’
equations. By taking the differential transform technique for equations in (58), with the initial conditions in (59),
we get the recurrence relation of the approximate solutions in the form

a a
(k + DU (,3) = (axz (G0 Y) + 2 U, y)) = Teo Up 3=Upor = Zhoo Vy g Ui (68)

a d
(k + DViypi(x,y) = (0 2 Vie(x,y) + y? Vk(x J’)> - Z’rczo Uravk—r - Z’rczo VTEVk—r' (69)

where the t-dimensional spectrum functions Uy (x,y) and Vi (x,y) are transform functions . From equations in
(59), we have

Uy(x,y) = u(x,y,0) = %— 4%, (70)
Vo(x,y) = v(x,7,0) =2+ —, (71

Embed the initial conditions (70) and (71) in the recurrence relations (68) and (69), give us the values of U, (x,y)
and Vi (x,y) as follows;

U,(x,y) = —Re e“™*¥) /128(w™)?, (72)
U,(x,y) = —Re?e® ™) (—w™)/8192(w™*)?, (73)
Us(x,y) = —(e2@IRe — 4owlxIRe 4 1)Re3eW®YIRe /786432 (w*)*, (74)
And

Vi(x,y) = Re e®®¥) /128(w™)?, (75)
Vo(x,y) = Re2e®®¥) (—w™)/8192(w*)?, (76)

Va(x,y) = (e20*») — 49 4 1)Re3e®™Y) /786432 (w )%, (77)

After taking the inverse differential transformations of the set of values, we obtain

k_3_ 1 —Re®(®Y) _ Re2e®M (w7 ,
ulny, ) = Xizo Ur(x, )t = 407t + 128(w*)2 8192(w+)3
=Z —1/4[1+ exp(w(x,y) — (Re/32)t)]. (78)
v k_3, 1 Re®@®Y) Re2e@(Y) (»™) £2
U(x, Y, t) - Zk:O Vk(x' Y)t ) + 40+ + 128(w™)? 8192(wt)3 +-
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=2+ 1/4[1 + exp(w(x,) — (Re/32)t)], (79)
Where, o~ =1 — exp (w(x,y)) ,and w™ = 1 + exp (w(x,y)) .
These are the exact solutions of Burger equations in (58) with initial conditions (59) [30].
Now, for solving equations in (58) by HPM, we construct the following homotopies:

oo plyRoy 2 i(az_u az_u)_%

at ot Pl-u ax v ay + Re \9x2 ' dy?2 at (80)
at ot ax dy  Re \ax2 = ay? at

We assume that the solutions for the system (58) as power series in P, of the form:

u=p°u, +ptu +p’u, + } 81)
v =p%, + plv, + p%v, + )

Substitute these solutions(81) in system(80) and equating the coefficients of like power P, we will have the sets
of differential equations :-

0,0 _ U _
Tt at
0vg 0vy _
at ot 0
1,0 O, Ok L[ﬂzuo 62uo]
Toot 0 gx 09y ' Relox? ay?
vy dug dug 1 [0%uq 62u0]
D gy ey, Ty -
at 0 gx 0 5y + Re | 0x2 ay?
2 Ouy ou, dug ouy dug . 1 [0%uq |, 0%u,y (82)
e Uy — U — — Vg — Uy —
at 0 ax ax ay ay Re | 0x2 ay2
v, v, vy vy vy 1 [d%v; 62V1]
L=y LU vy -V —+—
at 0 ax 1 9x 0 5y 1oy Re | 0x2 ay?
ou ou ou ou ou ou ou 1 [0%u 0%u ]
3.0% . _,, ¥ %1, J¥0 o, ZF2 o, 001 o, ZR0 4 - 2 2
T ot Uo ax U ax Uz ax Yo ay ¢! ay V2 ay Re [6x2 ay?
vy _ v, vy vy v, vy g 1 [azvz 62112]
at Uo ax bt dx Uz ax Yo ay U1 ay V2 ay + Re L 9x2 ay?

The solutions of the above equations give the same result as solutions in equations (70-77), and the same
analytical solutions (78) and (79).

Problem-2(ll) (System of two-dimensional Burgers’ equations) [31]

Consider the same system that is given in (58) with initial conditions;

PlI-2: u(x,y,0) = S*SY,v(x,y,0) = (§* + 25*C*)(§¥ + 257(C?), (89)
where, $* = sin(nx), SY = sin(wy), C* = cos (mx), C¥ = cos (wy).

To solve this problem by NATM, we have been used the same definitions that are given in Egs. (60) and (61).
We note that the highest derivative of u is n = 2 andt, = 0, then according to (11), we get

a, =u(x,y,0)=S5*S7, (90)
by = u(x,y,0) = (S* + 25*C¥)(S¥ + 257 CY), 91)
a; = [F[u,v]], = —S*[2ReCYS*C*(SY + 25YCY) + 2ReS*SY(CY)?* — ReSY(CY)* +

ReS*SYCY + ReC” + 2mSY]/Re (92)

by = [61w,v]lo = — 47 (Re (26597¢% + 1= (2) € (€9 = 52) (€ = (5"))

_ (%) ReCY((C¥)? — (S¥)?)? + (%) ReS*SY((C*)? — (S¥)?) + ((%) ReS*CY + 27_[> 2§30

H{(resrer+ Qr)er- (reere-2)asre

+Res? (2059267 +1 - (3) (€7 = (3) (€97 = 8)2) (€ - ("))
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~(3) ReS (€92 ~ (572) ~ (3) ReS™(C” ~ D(E + D(CEH? ~ (59
4 2

+2 G (ReS"Cy + (;) n)) (S)2C* + ((%) 7Y — G) ReC*(CY — 1)(C” + 1)) s*

— (3)Res7C¥((c¥)? - 2))], (93)
from equation (16), we get the analytical approximate solution
O _y1 @
§1 = Zi:o a; ) andkl - 21:0 bl o (94)

To solve this problem by using RDTM, we have been used the same definitions that are given in equations
(68-71) and obtain on the same analytical solutions (90-94) .Also, for solving this problem by using HPM, we
have been used the same definitions that are given in equations (80-82) and obtain on the same analytical

solutions (90-94), such that
u0=a0 u1=a1.t e,

poz{vo = bO ] pl: {1]1 = bl.t' 1 (95)

therefore, the approximate solution given as:

ulx,y,t) =ug+uy + -

v(x,y,t) =vy + v + - (96)

4- Convergence Analysis

In this subject, we study the analysis of convergence depending on the theorem, which we will mention it in the
next paper.

Theorem 4.1]32]

Let M be an operator from a Hilbert space H into H and u be the exact solution .The approximate solution

i
YiZoUi = Z‘f;oai(i—g is convergence to exact solution u when 30 < a <1 llujqll < ally;ll, Vi € N U {0}

Proof: We want to show that {S,};-, is a Cauchy sequence,

1Sp41 = Sall = lupiall < allupll < @llup4ll < - < a®llugll < @™l
Now forn,m e Nyn > m
IS, — Sl = ”(Sn - Sn—l) + (Sn—l - Sn—z) +oet (Sm+1 - Sm)"
S NS = Snoall + 181 = Suall + -+ + Sim41 — Sl

< a™lugll + a™ Mgl + -+ + a™ lugll
n-m

1 —
Hence, lim,, ;0 IS, — S|l = 0 that is mean {S,,};-, is a Cauchy sequence in the Hilbert space H then there exist
S € H such thatlim,,_, S, = S, whereS = u.

< @™+ a™? et a)llull = a™ lluoll

Corollary 4.1.1

i
From theorem (4.1) Y2 u; = Z?‘;Oai% convergence to exact solution u when 0 < a; < 1,i =0,1,2, ...

Now, to illustrate the convergence of analytical approximate solutions for the two problems of equation, we
applied Corollary (4.1.1) as in the table on (4).
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5- Discussions

In this section, we show the three-dimensional figures obtained by using HPM, RDTN, NATM and RK-4, we give
data for the errors between the numerical solution and analytical solutions of two-dimensional convection
diffusion equation .Figs. (1-3) show that the exact solution, approximate solution and RK-4 solution for problems
I and (ll), figs. (4-5) show that the approximate solution for problem 2(Il) obtained by applying the suggested
methods NATM, HPM, RDTM and RK-4. L, For the series approximation solutions of the two-test problem
computed by:

NE Nl = l.ljfgigfw(lpexact (%, ) = Papprox (X, 1))

Where t is fixed. Table (1) shows comparison of errors and CPU time between RDTM, HPM, NATM, RK4, LDQM
and BDQM for different values of h and att = 0.1. The result confirms that the NATM, RDTM, and HPM more
accurate and less CPU time compared to other methods. Tables (2, 3) are clarify errors of u and v obtained in
solving problem (ll) for different values of h ,at t = 0.01 and R = 100 . We can say that NATM, RDTM and HPM
are effective and good approaches to find the solution of non-linear system of two-dimensional Burgers
equation. To test the convergence of the proposed methods, that is, the convergence of the approximate
solution to the exact solution, we have successfully applied Corollary(4.1.1); this is explained in the tables
(4).With exception of the RK-4, because the solution is not in a formK,, = Y.i-, v;.

6- Conclusion and remarks

In this study, as a conclusion, we have four methods that have been successfully applied to find the solutions of
the convection-diffusion equations. We use maple 16 to calculate the functions obtained from the suggested
methods. Results show that RDTM, HPM, and NATM are powerful mathematical tools for solving systems of
nonlinear partial differential equations. , also NATM, RDTM, and HPM are more accurate and have less CPU time

compared to other methods.

Fig.1.Graphics of u(x, y, t)for problem(l) (a) Exact (b) Approximate solution (Ss) , (c) RK-4Att = 0.1,a, = @), =
0.1.
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(dy

Fig.4. Graphics u(x, y, t)(S;) of problem 2(II) for

(@) NATM, (b)HPM, (c)RDTM, (d) RK4at R =
100,¢ = 0.01

Fig.5. Graphics v(x,y,t)(K;) of problem 2(II) for
(@)NAM,(b) HPM, (c) RDTM, (d) RK at R = 100,t =
0.01

Table 1: Comparison Leo and CPU for problem I between RDTM, HPM, NATM (Ss), and RK4.at a, = a,, = 0.1,

(SO

Method with t =0.1
h Error

RDTM HPM NATM RK-4 LDQM BDQM
Loo | 1.67F —12 | 1.67F — 12 | 1.67E —12 0.2849 2.57E — 06 | 4.18E — 07

025 1 pu | 0031 0.031 0.031 22820 0.509 0.503
0.17 Lo | 1.67E —12 | 1.67E —12 | 1.67E — 12 0.2691 1.38E —05 | 5.64E — 06

' CPU 0.047 0.047 0.047 1.3120 0.509 0.503
0.125 Lo | 1.67E —12 | 1.67E —12 | 1.67E — 12 0.2130 3.22E—-05 | 7.95E —-06

) CPU 0.031 0.031 0.031 1.5310 0.772 0.757
0.1 Leo | 1.67E—12 | 1.67E —12 | 1.67E —12 0.1609 5.35E—05 | 9.18E — 06

) CPU 0.031 0.031 0.031 2.4530 1.047 1.015
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Table2: Comparison Leo and CPU for problem (Il) between RDTM, NATM, HPM (Ss)and RK-4.at Re = 100.for u.

Method with t = 0.01
h Error
RDTM HPM NATM RK-4
0.25 Loo 155E —-11 155 E —-11 155 E —-11 1.219E — 01
' CPU 0.031 0.031 0.031 1.310
017 Loo 155E —11 155 E —-11 155 E —11 7.83E —02
' CPU 0.016 0.016 0.016 1.328
0 125 Leo 155E —-11 155 E —-11 155 E - 11 3.70E — 02
) CPU 0.032 0.032 0.032 1.406
0.1 Loo 155E —11 155 E —-11 1.55E —11 196 F — 02
' CPU 0.047 0.047 0.047 1.641

Table3: Comparison Leo and CPU for problem (ll) between RDTM, NATM, HPM(ks)and RK-4.at Re = 100.for v.

Method with t = 0.01
h Error
RDTM HPM NATM RK-4
0.25 Loo 155E —11 1.55EF —11 155 E —11 1.219E - 01
' CPU 0.031 0.031 0.031 1.310
0.17 Loo 155E —-11 155E —-11 155E —11 783 E —02
' CPU 0.016 0.016 0.016 1.328
0.125 Loo 155E —-11 155E —11 155E —11 3.70E — 02
' CPU 0.032 0.032 0.032 1.406
01 Loo 1.55EF —11 1.55EF —11 155 E —11 196 E — 02
' CPU 0.047 0.047 0.047 1.641

Table4: Convergence solutions problems I with t = 0.1 and (I1)&2(ll) with t = 0.01, and Re = 100,

solutions Usg Vg

Problem/method NATM HPM RDTM NATM HPM RDTM

I @, 0.1000001 | 0.1000001 | 0.1000001 | =--=--=mmmm | =mmmmmmmmmm | —cmommmeee
a, 0.0050000 | 0.0050000 | 0.0050000 | =------=--= | ==zmmmmmmn | —cmoememne-
a, 0.0033333 | 0.0033333 | 0.0033333 | ---m--mmm-m | mmmmmmmmmn | cmmeemeee-

(m ) 0.0013711 | 0.0013711 | 0.0013711 | 0.0009861 | 0.0009861 | 0.0009861
a, 0.0067586 | 0.0067586 | 0.0067586 | 0.0067586 | 0.0067586 | 0.0067586
a, 0.0091022 | 0.0091022 | 0.0091022 | 0.0091022 | 0.0091022 | 0.0091022

2« 0.0373419 | 0.0373419 | 0.0373419 | 0.0713448 | 0.0713448 | 0.0713448
a, 0.0731304 | 0.0731304 | 0.0731304 | 0.1132454 | 0.1132454 | 0.1132454
a, 0.1222978 | 0.1222978 | 0.1222978 | 0.1428962 | 0.1428962 | 0.1428962
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