
Journal of Advances in Mathematics Vol 21 (2022) ISSN: 2347-1921                 https://rajpub.com/index.php/jam 

 38 

DOI: https://doi.org/10.24297/jam.v21i.9101 

Distributions generated by the boundary values of functions in Privalov spaces 

Mejdin Saliji
1
, Bedrije Bedzeti

2
, Vesna Manova Erakovikj

3
 

1
Faculty of Education, Ss. Ukshin Hoti, Prizren, Kosovo 

2
Faculty of Mathematics and Natural Sciences, State University of Tetovo, Tetovo, Republic of North 

Macedonia. 

3
Faculty of Mathematics and Natural Sciences, Ss. Cyril and Methodius University, Skopje, Republic of North 

Macedonia. 

mejdins@gmail.com, bedrije_a@hotmail.com, vesname@pmf.ukim.mk 

 

Abstract  

We characterise the distributions generated by the boundary values of functions from Privalov spaces. 

1. Introduction 

We use the following notation and preliminaries. 𝑈 stands for the open unit disc in  C and 𝑇 is its boundary, i.e. 

𝑈 = {𝑧 ∈ 𝐶||𝑧| < 1}, 𝑇 = 𝜕𝑈, 𝑎𝑛𝑑 Π+
 is the upper half plane, meaning  Π

+ = {𝑧 ∈ 𝐶|𝐼𝑚𝑧 > 0}. For a function 𝑓 

holomorphic on a region  Ω we right 𝑓𝜖𝐻(Ω).  𝐿𝑝(Ω)  is the space of measurable functions on  Ω  such that   

∫ |𝑓(𝑥)|𝑝𝑑𝑥 < ∞
Ω

;  𝐿𝑙𝑜𝑐
𝑝

 is the space of measurable functions on Ω such that for every compact set  𝐾 ⊂ Ω the 

following holds  ∫ |𝑓(𝑥)|𝑝𝑑𝑥 < ∞
К

. 

 Privalov spaces on 𝑈 and  𝛱+ and their properties: Privalov class, denoted with 𝑁𝑝, 1 < 𝑝 < ∞,  consists of all 

functions 𝑓𝜖𝐻(U) such that  

sup
0≤𝑟<1

1

2𝜋
∫ (log

+
|𝑓(𝑟𝑒𝑖𝜃|

2𝜋

0

)𝑝𝑑𝜃 < ∞ . 

. 

Theorem. ([8]) The function  𝑓, holomorphic on 𝑈, belongs to 𝑁𝑝  if and only if for every  휀 > 0 there exist 𝛿 > 0 

such that for every measurable set 𝐸 ⊂ 𝑇, satisfying   𝑚(𝐸) < 𝛿 the following holds 

∫ (log
+

|𝑓(𝑟𝑒𝑖𝜃)|
𝐸

)𝑝𝑑𝜃 < 휀, for all 0 ≤ 𝑟 < 1. 

 Theorem. ([8]) The function 𝑓, holomorphic on  U,  belongs to 𝑁𝑝 if and only if the subharmonic function 𝑧 ↦

(𝑙𝑜𝑔+|𝑓(𝑧)|)𝑝 (𝑧𝜖𝑈)  has a harmonic majorant. 

Every function in  Nevalina class, 𝑁(𝑈), because of Fatou’s lemma, has a nontangentional (radial) limit on 𝑇 

almost everywere; every function in  Privalov class, 𝑁𝑝(𝑈),  has a nontangentional (radial) limit on 𝑇 almost 

everywere, in both cases we denote the boundary value with  𝑓∗(𝑒𝑖𝜃) = lim
𝑟→1

𝑓(𝑒𝑖𝜃). 

The class  𝑁𝑝(Π
+) , 𝑝 > 1, is introduced analogously to 𝑁𝑝(𝑈),  and is the set of all holomorphic functions on Π

+
 

satisfying   

𝑠𝑢𝑝
0<𝑦<∞

∫ (log (1 + |𝑓(𝑥 + 𝑖𝑦)|)𝑝𝑑𝑥 < ∞
∞

−∞

. 

Every 𝑓 ∈ 𝑁𝑝(Π
+) has a nontangentional limit 𝑓∗ (𝑥) almost everywhere on the real axis. 

Theorem. ([12])  The set 𝐿 is bounded in 𝑁𝑝(Π
+) if and only if  
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i)  There exist 𝐶 > 0 such that  

∫ (log(1 + |𝑓∗ (𝑥)|)𝑝𝑑𝑥
𝑅

< 𝐶    

for all 𝑓 ∈ 𝐿. 

ii) For every  휀 > 0,  exist 𝛿 > 0 such that 

∫ (log(1 + |𝑓∗ (𝑥)|)𝑝𝑑𝑥 < 휀
Е

  

for all 𝑓 ∈ 𝐿, and every Lebesgue measurable 𝐸 ⊂ 𝑅 satisfying  𝑚(𝐸) < 𝛿.  

Distributions: 𝐶∞(𝑅𝑛)   denotes the set of all complex valued functions infinitely differentiable on 𝑅𝑛; 𝐶0
∞(𝑅𝑛)  

is the subset of 𝐶∞(𝑅𝑛)  which contains compactlly supported functions. Support of the function 𝑓 denoted 

with 𝑠𝑢𝑝𝑝𝑓 is the cloasure of the set {𝑥: 𝑓(𝑥) ≠ 0} in 𝑅𝑛. 𝐷 = 𝐷(𝑅𝑛) denotes the space  𝐶0
∞(𝑅𝑛)  in which the 

convergence is defined in the following way: the sequence {𝜑𝜆} , of functions 𝜑𝜆𝜖𝐷, converges to   𝜑𝜖𝐷   when 

𝜆 → 𝜆0 if and only if there exist compact subset of 𝑅𝑛 such that 𝑠𝑢𝑝𝑝 𝜑𝜆 ⊆ К for all 𝜆, 𝑠𝑢𝑝𝑝 𝜑 ⊆ К, and for every 

n-tuple  𝛼 of nonegative integers the sequence {𝐷𝑥
𝛼(𝜑𝜆(𝑥))}  converges to {𝐷𝑥

𝛼(𝜑(𝑥))} uniformly on К when 

𝜆 → 𝜆0. With  𝐷′ = 𝐷′(𝑅𝑛)  is denoted the space of all continuous, linear functionals on 𝐷, where the continuity 

is in the sense: from 𝜑𝜆 → 𝜑 in 𝐷 when 𝜆 → 𝜆0 it follows that 〈𝑇, 𝜑𝜆〉 → 〈𝑇, 𝜑〉 in 𝐶, when 𝜆 → 𝜆0. 

The space  𝐷′ is called the space of distributions. We use the convention  〈𝑇, 𝜑〉 = 𝑇(𝜑) for the value of the 

functional 𝑇acting on the function 𝜑. 

Let  𝜑𝜖𝐷 and  𝑓(𝑥) ∈ 𝐿𝑙𝑜𝑐
1 (𝑅𝑛). Then the functional Т𝑓 on 𝐷 defined with 

〈Т𝑓 , 𝜑〉 = ∫ 𝑓(𝑡)𝜑(𝑡)𝑑𝑡, 𝜑𝜖𝐷,
𝑅𝑛

 

is an element in 𝐷′ and it is called the regular distribution generated by the function 𝑓. 

2. Main results 

Theorem. ([5]) Sufficient and necessary condition for the measurable function 𝜑(𝑒𝑖𝑡)  defined on 𝑇 to coincide 

almost everywhere on  𝑇 with the boundary value  𝑓∗(𝑒𝑖𝑡) of some function  𝑓(𝑧) in 𝑁(𝑈), is to exist a sequence 

of polynomials  {𝑃𝑛(𝑧)} such that: 

i.{𝑃𝑛(𝑒𝑖𝜃)} converges to 𝜑(𝑒𝑖𝜃)   almost everywhere on  T; 

ii. lim
𝑛→∞

̅̅ ̅̅ ̅ ∫ (log
+

|𝑃𝑛(𝑒𝑖𝜃)|
2𝜋

0
)𝑑𝜃 < ∞. 

Theorem 1. Let   𝑇𝑓∗ ∈  𝐷′ is generated by the boundary value 𝑓∗(𝑥) of a function 𝑓(𝑧) in 𝑁𝑝(Π
+). There exist 

sequence of polynomials {𝑃𝑛(𝑧)}, 𝑧 ∈ Π
+, and respectivelly {𝑇𝑛}, 𝑇𝑛 ∈ 𝐷′, generated by the boundary values  

𝑃𝑛
∗(𝑥) of the polynomials 𝑃𝑛(𝑧),  i.e. 𝑇𝑛 = 𝑇𝑃𝑛

∗  such that: 

i.𝑇𝑛 → 𝑇𝑓∗ in  𝐷′  when   𝑛 → ∞ , 

ii. lim
𝑛→∞

̅̅ ̅̅ ̅ ∫ (log  (1 + |𝑃𝑛
∗ (𝑥)|))𝑝|𝜑(𝑥)|

∞

−∞
𝑑𝑥 < ∞ for every  𝜑𝜖𝐷. 

Proof.  Let the assumptions of the theorem hold.  Since  𝑓 ∈ 𝑁𝑝(Π
+), one has 𝑓 ∈ 𝐻(Π

+) and there exist a 

constant  𝐶 > 0 such that 

∫ log(1 + |𝑓(𝑥 + 𝑖𝑦)|)𝑝 𝑑𝑥 ≤ 𝐶
∞

−∞
 for every 𝑧 =  𝑥 + 𝑖𝑦 ∈ Π

+
.                               (1) 

 

Let {𝑦𝑛} be a sequence of positive real numbers satisfying lim
𝑛→∞

𝑦𝑛 = 0. We define a sequence of complex functions 

{𝐹𝑛(𝑧)} with 

𝐹𝑛(𝑧) = 𝑓(𝑧 + 𝑖𝑦𝑛). 

The functions 𝐹𝑛(𝑧) are holomorphic on Π
+ ∪ 𝑅.  Margelijan theorem implies that for arbitrary compact subset 

𝐾 of  Π
+ ∪ 𝑅   with complement being connected, for the functions  𝐹𝑛(𝑧) there exist polynomials 𝑃𝑛(𝑧) such 

that |𝐹𝑛(𝑧) − 𝑃𝑛(𝑧)| < 휀𝑛,  for all  𝑧 ∈ 𝐾,   where  휀𝑛 > 0 and 휀𝑛 → 0 when 𝑛 → ∞. 

In what follows we prove  i. and   ii. 
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i. Let  𝜑 ∈ 𝐷, 𝑠𝑢𝑝𝑝 𝜑 = 𝐾. Then      

 

|〈𝑇𝑛, 𝜑〉 − 〈𝑇𝑓∗ , 𝜑〉| = |∫ 𝑃𝑛
∗ (𝑥)𝜑(𝑥)𝑑𝑥 − ∫ 𝑓∗ (𝑥)𝜑(𝑥)𝑑𝑥

∞

−∞

∞

−∞

| 

 

     = |∫ [𝑃𝑛
∗(𝑥) − 𝑓∗(𝑥)]𝜑(𝑥)𝑑𝑥

∞

−∞

| = |∫ [𝑃𝑛
∗(𝑥) − 𝑓∗ (𝑥)]𝜑(𝑥)𝑑𝑥

𝐾

| 

 

      

≤ 𝑀(∫ [𝑃𝑛
∗(𝑥) − 𝑓∗ (𝑥)]𝑑𝑥

𝐾

≤ 𝑀휀𝑛
′ 𝑚(𝐾) → 0   

when 𝑛 → ∞. 

In the previous calculations we use the notation 𝑚(𝐾) for the Lebesgue measure of the set K, 𝑀 =

max{𝜑(𝑥): 𝑥 ∈ 𝐾} and 휀𝑛
′ = 휀𝑛 + [𝑓∗ (𝑥) − 𝐹𝑛(𝑥)].  It is obvious that 휀𝑛

′ → 0 when 𝑛 → ∞. The Later calculation 

implies that  〈𝑇𝑛, 𝜑〉 → 〈𝑇𝑓∗ , 𝜑〉 when 𝑛 → ∞  for every, but fixed, 𝜑𝜖𝐷, meaning 𝑇𝑛 → 𝑇𝑓∗  weakly in 𝐷′. To prove 

the convergence in the strong topology it sufficies to prove  the same convergence for 𝜑 ∈ 𝐵 for an arbitrary 

bounded set in 𝐷. Choose 𝐵 ⊂ 𝐷, arbitrary bounded set. The condition of boundnes implies that there exists a 

compact set 𝐾 such that 𝑠𝑢𝑝𝑝 𝜑 ∈ 𝐾, ||𝜑||
𝐷(𝐾)

< 𝑀,  for every 𝜑 ∈ 𝐵. Note that the calculations at the beginning 

of the paragraph hold for every 𝜑 ∈ 𝐵 and the new compact set chosen for the boundness condition. Hence,  

𝑇𝑛 → 𝑇𝑓∗ in 𝐷′. 

(ii) 

∫ (log(1 + |𝑃𝑛
∗ (𝑥)|)𝑝|𝜑(𝑥)|𝑑𝑥

∞

−∞

 

                                  

= ∫ (log(1 + |𝑃𝑛
∗ (𝑥) + 𝐹𝑛(𝑥) − 𝐹𝑛(𝑥)|)𝑝|𝜑(𝑥)|𝑑𝑥

𝐾

 

                 ≤ ∫ (log(1 + |𝑃𝑛
∗ (𝑥) − 𝐹𝑛(𝑥)| + |𝐹𝑛(𝑥)|))𝑝|𝜑(𝑥)|𝑑𝑥

𝐾

 

                 ≤ ∫ (log(1 + |𝐹𝑛(𝑥)| + |𝑃𝑛
∗ (𝑥) − 𝐹𝑛(𝑥)|))𝑝|𝜑(𝑥)|𝑑𝑥

𝐾

 

≤ 𝑀2
𝑝−1 ∫ (log(1 + |𝐹𝑛(𝑥)|)𝑝𝑑𝑥 + 𝑀2

𝑝−1 ∫ |𝑃𝑛
∗ (𝑥) − 𝐹𝑛(𝑥)|)𝑝

𝐾

𝑑𝑥
𝐾

 

≤ 𝑀𝐶 + 𝑀휀𝑛
𝑝

 𝑚(𝐾). 

Because 휀𝑛 → 0, 𝑛 → ∞ we get  ∫ (Log(1 + |Pn
∗  (x)|)p|𝜑(𝑥)|𝑑𝑥

𝑅
< 𝐶′  meaning 

 lim
𝑛→∞

̅̅ ̅̅ ̅ ∫ (log (1 + |𝑃𝑛
∗ (𝑥)|)п|𝜑(𝑥)|

∞

−∞
𝑑𝑥 < ∞, for all  𝜑𝜖𝐷. 

In the proof of ii. We use the inequalities |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|,  log(1 + 𝑎 + 𝑏) ≤ log(1 + 𝑎) + 𝑏, 𝑓𝑜𝑟 𝑎, 𝑏 > 0 and 

(𝑎 + 𝑏)𝑝 ≤ 2
𝑝−1(𝑎𝑝 + 𝑏𝑝), 𝑓𝑜𝑟 𝑝 ≥ 1.  

Theorem 2.  Let  𝜑0 be a localy integrable function and 𝑇𝜑0
∈ 𝐷′  is generated by the function 𝜑0. Let there exist 

sequence of polynomials 𝑃𝑛(𝑧) satisfying the conditions: 

i. The sequence of distributions generated by the boundary values 𝑃𝑛
∗(𝑥)  𝑜𝑓 𝑃𝑛(𝑧) converges to  𝑇𝜑0

 in 𝐷′ 

when 𝑛 → ∞; 

ii. lim
𝑛→∞

̅̅ ̅̅ ̅ ∫ (log (1 + 𝑃𝑛(𝑥 + 𝑖𝑦))𝑝∞

−∞
|𝜑(𝑥)| 𝑑𝑥 < 𝐶 < ∞, ∀𝑧 = 𝑥 + 𝑖𝑦 ∈  Π+

, 𝜑𝜖𝐷. 

There exists a function 𝑓 ∈ 𝐻(Π
+) such that 
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∫ (log (1 + |𝑓(𝑥 + 𝑖𝑦)|)𝑝𝑑𝑥 < 𝐶 < ∞, ∀ 𝑧 = 𝑥 + 𝑖𝑦 ∈
𝐾

Π
+, 

for every compact  𝐾 ⊂ 𝑅, and 

lim
𝑦→0

+
∫ 𝑓(𝑥 + 𝑖𝑦)𝜑(𝑥)

∞

−∞

𝑑𝑥 =  〈Т𝜑0
, 𝜑〉. 

 

Proof.  Let the assumptions of the theorem are fulfilled. In [3] it is proven that from i., i.e. 

lim
𝑛→∞

∫ 𝑃𝑛
∗

𝑅
(𝑥)𝜑(𝑥)𝑑𝑥 = ∫ 𝜑0(𝑥)𝜑(𝑥)𝑑𝑥,

𝑅
𝜑𝜖𝐷, 

implies the existence of 𝑓 ∈ 𝐻(Π
+) such that the sequence of polynomials converges to 𝑓 , uniformly on arbitrary 

compact subsets of Π
+

 when 𝑛 → ∞. 

Firstly we will prove that this function 𝑓  is holomorphic and satisfies the condition 

∫ log(1 + |𝑓(𝑥 + 𝑖𝑦)|)𝑝 𝑑𝑥 ≤ 𝐶
𝐾 

 

for all 𝑧 = 𝑥 + 𝑖𝑦 ∈ Π
+
and arbitrary compact set 𝐾 ⊂ 𝑅. 

Indeed, we use the condition  ii., i.e. 

lim
𝑛→∞

̅̅ ̅̅ ̅ ∫ (log(1 + |𝑃𝑛(𝑥 + 𝑖𝑦)|)𝑝∞

−∞
|𝜑(𝑥)| 𝑑𝑥 < 𝐶 < ∞, ∀ 𝑧 = 𝑥 + 𝑖𝑦 ∈  Π+

, 𝜑𝜖𝐷. 

Let 𝐾 be compact set. There exists 𝜑(𝑥)𝜖𝐶0
∞(𝑅𝑛), 𝜑(𝑥) = 1, ∀𝑥𝜖𝐾. To obtain the last statement, it is enough to 

take characteristic function of the set 𝐾 and to regularize it. Substitution of such 𝜑 in to ii., implies that for every 

𝑛 ∈ 𝑁,  

∫ (log(1 + |𝑃𝑛(𝑥 + 𝑖𝑦)|))𝑝

𝐾

 𝑑𝑥 < 𝐶 < ∞, ∀ 𝑧 = 𝑥 + 𝑖𝑦 ∈  Π+. 

Now, 

∫ log (1 + |𝑓(𝑥 + 𝑖𝑦)|)𝑝 𝑑𝑥 = ∫ lim
𝑛→∞

(log(1 + |𝑃𝑛(𝑥 + 𝑖𝑦)|)𝑝

КК

 

≤ lim
𝑛→∞

̅̅ ̅̅ ̅ ∫ (log (1 + |𝑃𝑛(𝑥 + 𝑖𝑦)|)𝑝
∞

−∞

 𝑑𝑥 < 𝐶 < ∞, 

i.e. 

∫ log(1 + |𝑓(𝑥 + 𝑖𝑦)|)𝑝 𝑑𝑥 ≤ 𝐶
К

< ∞ for arbitrary compact set  𝐾 ⊂ 𝑅 and every  𝑧 = 𝑥 + 𝑖𝑦 ∈  Π+
. 

It remains to be proved that lim
𝑦→0

+
∫ 𝑓(𝑥 + 𝑖𝑦)𝜑(𝑥)
∞

−∞
𝑑𝑥 = 〈Т𝜑0

, 𝜑〉, for every 𝜑 ∈ 𝐷. 

Let  𝜑𝜖𝐷 and 𝑠𝑢𝑝𝑝𝜑 = К ⊂ 𝑅. Then 

lim
𝑦→0

+
∫ (𝑓(𝑥 + 𝑖𝑦)𝜑(𝑥)

𝑅

𝑑𝑥 = lim
𝑦→0

+
∫ lim

𝑛→∞
(𝑃𝑛(𝑥 + 𝑖𝑦)𝜑(𝑥)

𝑅

𝑑𝑥 = 

= lim
𝑦→0

+
lim
𝑛→∞

∫ (𝑃𝑛(𝑥 + 𝑖𝑦)𝜑(𝑥)𝑑𝑥 =
𝐾

lim
𝑛→∞

lim
𝑦→0

+
∫ (𝑃𝑛(𝑥 + 𝑖𝑦)𝜑(𝑥)𝑑𝑥 =

𝐾

 

= lim
𝑛→∞

∫ 𝑃𝑛
∗(𝑥 + 𝑖𝑦)𝜑(𝑥)𝑑𝑥 =

𝐾

∫ 𝜑0
𝑅

(𝑥)𝜑(𝑥)𝑑𝑥 = 〈Т𝜑0
, 𝜑〉, 

 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝜑𝜖𝐷. 

The previous equalities are obvious, exept the following  

lim
𝑦→0

+
lim
𝑛→∞

∫ 𝑃𝑛(𝑥 + 𝑖𝑦)𝜑(𝑥)𝑑𝑥 =
𝐾

lim
𝑛→∞

lim
𝑦→0

+
∫ 𝑃𝑛(𝑥 + 𝑖𝑦)𝜑(𝑥)𝑑𝑥 … . (∗)

𝐾

 

for 𝑧 = 𝑥 + 𝑖𝑦 ∈ Π
+

. 



Journal of Advances in Mathematics Vol 21 (2022) ISSN: 2347-1921                 https://rajpub.com/index.php/jam 

 42 

We will prove (∗). 

To do that we consider the sequence of functions {𝑔𝑛(𝑦)} defined by   

𝑔𝑛(𝑦) = ∫ (𝑃𝑛(𝑥 + 𝑖𝑦)𝜑(𝑥)𝑑𝑥
𝐾

, 𝑥 + 𝑖𝑦 ∈ 𝐾1. 

for  𝐾1 compact subset of Π
+

 such that 𝑧 ∈ 𝐾1 for 𝑅𝑒(𝑧) ∈ 𝐾. Because {𝑃𝑛(𝑥 + 𝑖𝑦)}  converges to (𝑥 + 𝑖𝑦) 

uniformly on 𝐾1, when  𝑛 → ∞,  one obtains that for fixed 𝑦  

lim
𝑛→∞

𝑔𝑛(𝑦) = ∫ (𝑃𝑛(𝑥 + 𝑖𝑦)𝜑(𝑥)𝑑𝑥 =
𝐾

∫ (𝑓(𝑥 + 𝑖𝑦)𝜑(𝑥)𝑑𝑥 = 𝑔(𝑦),
К

 

i.e. the sequence {𝑔𝑛(𝑦)} converges to 𝑔(𝑦)  when 𝑛 → ∞. We will prove that this convergence is uniform on 

𝐼𝑚𝐾1, which will imply the statement. Indeed, 

0 ≤ sup
𝑦

|𝑔𝑛(𝑥 + 𝑖𝑦) − 𝑔(𝑥 + 𝑖𝑦)| = sup
𝑦

|∫ Pn(x + iy)φ(x)dx −
𝐾

∫ 𝑓(𝑥 + 𝑖𝑦)𝜑(𝑥)𝑑𝑥
К

| 

= sup
𝑦

|∫ [𝑃𝑛(𝑥 + 𝑖𝑦) − 𝑓(𝑥 + 𝑖𝑦)]𝜑(𝑥)𝑑𝑥
𝐾

| 

   ≤ sup
𝑦

∫ |(𝑃𝑛(𝑥 + 𝑖𝑦) − (𝑓(𝑥 + 𝑖𝑦)||𝜑(𝑥)|𝑑𝑥
𝐾

 

≤ 𝑀sup
𝑦

∫ |𝑃𝑛(𝑥 + 𝑖𝑦) − 𝑓(𝑥 + 𝑖𝑦)|𝑑𝑥.
𝐾

 

Since 𝑃𝑛(𝑥 + 𝑖𝑦) → 𝑓(𝑥 + 𝑖𝑦) uniformly on 𝐾1, it follows that 

∫  |𝑃𝑛(𝑥 + 𝑖𝑦) − 𝑓(𝑥 + 𝑖𝑦)|𝑑𝑥 

𝐾

 

converges to 0 uniformly on 𝐼𝑚(𝐾1) meaning 

lim
𝑛→∞

sup
𝑦

∫ |(𝑃𝑛(𝑥 + 𝑖𝑦) − 𝑓(𝑥 + 𝑖𝑦)|𝑑𝑥 = 0.
𝐾

 

Finally, 𝑙𝑖𝑚
𝑛→∞

sup
𝑦

|𝑔𝑛(𝑥 + 𝑖𝑦) − 𝑔(𝑥 + 𝑖𝑦)| = 0. 

3. Conclusion 

We obtain necessary and sufficient condition for a distribution generated from an element of the Privalov class 

to be boundary value of analytic functions on upper half space. The boundary values are taken in the 

distributional sense. 
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