DOI: <https://doi.org/10.24297/jam.v21i.9101>

Distributions generated by the boundary values of functions in Privalov spaces

Mejdin Saliji¹, Bedrije Bedzeti², Vesna Manova Erakovikj³

¹ Faculty of Education, Ss. Ukshin Hoti, Prizren, Kosovo

² Faculty of Mathematics and Natural Sciences, State University of Tetovo, Tetovo, Republic of North Macedonia.

³ Faculty of Mathematics and Natural Sciences, Ss. Cyril and Methodius University, Skopje, Republic of North Macedonia.

[mejdins@gmail.com,](mailto:mejdins@gmail.com) [bedrije_a@hotmail.com,](mailto:bedrije_a@hotmail.com) vesname@pmf.ukim.mk

Abstract

.

We characterise the distributions generated by the boundary values of functions from Privalov spaces.

1. Introduction

We use the following notation and preliminaries. U stands for the open unit disc in C and T is its boundary, i.e. $U = \{ z \in C | |z| < 1 \}$, $T = \partial U$, and Π^+ is the upper half plane, meaning $\Pi^+ = \{ z \in C | Im z > 0 \}$. For a function f holomorphic on a region Ω we right $f \in H(\Omega)$. $L^p(\Omega)$ is the space of measurable functions on Ω such that $\int_{\Omega} |f(x)|^p dx < \infty$; L_{loc}^p is the space of measurable functions on Ω such that for every compact set $K \subset \Omega$ the following holds $\int_K |f(x)|^p dx < \infty$.

Privalov spaces on U and Π^+ *and their properties: Privalov class, denoted with* N^p *,* $1 < p < \infty$ *, consists of all* functions $f \in H(U)$ such that

$$
\sup_{0\leq r<1}\frac{1}{2\pi}\int_0^{2\pi}(\log^+|f(re^{i\theta}|)^p d\theta<\infty.
$$

Theorem. ([8]) The function f, holomorphic on U, belongs to N^p if and only if for every $\varepsilon > 0$ there exist $\delta > 0$ such that for every measurable set $E \subset T$, satisfying $m(E) < \delta$ the following holds

$$
\int_{E} (\log^{+} |f(re^{i\theta})|)^{p} d\theta < \varepsilon, \quad \text{for all } 0 \le r < 1.
$$

Theorem. ([8]) The function f, holomorphic on U, belongs to N^p if and only if the subharmonic function $z \mapsto$ $(log^{+}|f(z)|)^{p}$ ($z \in U$) has a harmonic majorant.

Every function in Nevalina class, $N(U)$, because of Fatou's lemma, has a nontangentional (radial) limit on T almost everywere; every function in Privalov class, $N^p(U)$, has a nontangentional (radial) limit on T almost everywere, in both cases we denote the boundary value with $f^*(e^{i\theta}) = \lim_{r \to 1} f(e^{i\theta}).$

The class $N^p(\Pi^+)$, $p > 1$, is introduced analogously to $N^p(U)$, and is the set of all holomorphic functions on Π^+ satisfying

$$
\sup_{0 < y < \infty} \int_{-\infty}^{\infty} (\log\left(1 + |f(x + iy)|)^p \right) dx < \infty.
$$

Every $f \in N^p(\Pi^+)$ has a nontangentional limit $f^*(x)$ almost everywhere on the real axis.

Theorem. ([12]) The set L is bounded in $N^p(\Pi^+)$ if and only if

i) There exist $C > 0$ such that

$$
\int_{R} (\log(1+|f^*(x)|)^p dx < C
$$

for all $f \in L$.

ii) For every $\varepsilon > 0$, exist $\delta > 0$ such that

$$
\int_{E} (\log(1+|f^*(x)|)^p dx < \varepsilon
$$

for all $f \in L$, and every Lebesque measurable $E \subset R$ satisfying $m(E) < \delta$. Distributions: $C^{\infty}(R^n)$ denotes the set of all complex valued functions infinitely differentiable on R^n ; $C_0^{\infty}(R^n)$ is the subset of $C^{\infty}(R^n)$ which contains compactlly supported functions. Support of the function f denoted with *suppf* is the cloasure of the set $\{x: f(x) \neq 0\}$ in R^n . $D = D(R^n)$ denotes the space $C_0^\infty(R^n)$ in which the convergence is defined in the following way: the sequence $\{\varphi_\lambda\}$, of functions $\varphi_\lambda \epsilon D$, converges to $\rho \epsilon D$ when $\lambda \to \lambda_0$ if and only if there exist compact subset of R^n such that $supp \varphi_\lambda \subseteq K$ for all λ , $supp \varphi \subseteq K$, and for every n-tuple α of nonegative integers the sequence $\{D_x^{\alpha}(\varphi_\lambda(x))\}$ converges to $\{D_x^{\alpha}(\varphi(x))\}$ uniformly on K when $\lambda \to \lambda_0$. With $D' = D'(R^n)$ is denoted the space of all continuous, linear functionals on D, where the continuity is in the sense: from $\varphi_\lambda\to\varphi$ in D when $\lambda\to\lambda_0$ it follows that $\langle T,\varphi_\lambda\rangle\to\langle T,\varphi\rangle$ in C, when $\lambda\to\lambda_0$.

The space D['] is called the space of distributions. We use the convention $\langle T,\varphi\rangle = T(\varphi)$ for the value of the functional Tacting on the function φ .

Let $\varphi \in D$ and $f(x) \in L^1_{loc}(R^n)$. Then the functional T_f on *D* defined with

$$
\langle T_f, \varphi \rangle = \int_{R^n} f(t) \varphi(t) dt, \varphi \in D,
$$

is an element in $D[']$ and it is called the regular distribution generated by the function f .

2. Main results

Theorem. ([5]) Sufficient and necessary condition for the measurable function $\varphi(e^{it})$ defined on T to coincide almost everywhere on T with the boundary value $f^*(e^{it})$ of some function $f(z)$ in $N(U)$, is to exist a sequence of polynomials $\{P_n(z)\}\$ such that:

i. $\{P_n(e^{i\theta})\}$ converges to $\varphi(e^{i\theta})$ almost everywhere on T; $\lim_{n\to\infty}\int_0^{2\pi}(\log^+|P_n(e^{i\theta})|)$ $\int_0^{2\pi}$ (log⁺| $P_n(e^{i\theta})$ |)d $\theta < \infty$.

Theorem 1. Let $T_{f^*} \in D'$ is generated by the boundary value $f^*(x)$ of a function $f(z)$ in $N^p(\Pi^+)$. There exist sequence of polynomials $\{P_n(z)\}\$, $z \in \Pi^+$, and respectivelly $\{T_n\}$, $T_n \in D$, generated by the boundary values $P_n^*(x)$ of the polynomials $P_n(z)$, i.e. $T_n = T_{P_n^*}$ such that:

 $i.T_n \to T_{f^*}$ in *D'* when $n \to \infty$, ii. $\lim_{n\to\infty}\int_{-\infty}^{\infty} (\log (1+|P_n^*(x)|))^p |\varphi(x)|)$ $\int_{-\infty}^{\infty} (\log (1 + |P_n^*(x)|))^p |\varphi(x)| dx < \infty$ for every $\varphi \in D$.

Proof. Let the assumptions of the theorem hold. Since $f \in N^p(\Pi^+)$, one has $f \in H(\Pi^+)$ and there exist a constant $C > 0$ such that

 $\int_{-\infty}^{\infty} \log(1+|f(x+iy)|)^p dx \leq C$ $\int_{-\infty}^{\infty} \log(1 + |f(x + iy)|)^p dx \le C$ for every $z = x + iy \in \Pi^+$ (1)

Let $\{y_n\}$ be a sequence of positive real numbers satisfying $\lim\limits_{n\to\infty}y_n=0.$ We define a sequence of complex functions ${F_n(z)}$ $(z)\}$ with

$$
F_n(z) = f(z + iy_n).
$$

The functions $F_n(z)$ are holomorphic on $\Pi^+ \cup R$. Margelijan theorem implies that for arbitrary compact subset K of $\Pi^+ \cup R$ with complement being connected, for the functions $F_n(z)$ there exist polynomials $P_n(z)$ such that $|F_n(z) - P_n(z)| < \varepsilon_n$, for all $z \in K$, where $\varepsilon_n > 0$ and $\varepsilon_n \to 0$ when $n \to \infty$.

In what follows we prove i. and ii.

i. Let
$$
\varphi \in D
$$
, $supp \varphi = K$. Then

$$
\left| \langle T_n, \varphi \rangle - \langle T_{f^*}, \varphi \rangle \right| = \left| \int_{-\infty}^{\infty} P_n^*(x) \varphi(x) dx - \int_{-\infty}^{\infty} f^*(x) \varphi(x) dx \right|
$$

$$
= \left| \int_{-\infty}^{\infty} [P_n^*(x) - f^*(x)] \varphi(x) dx \right| = \left| \int_K [P_n^*(x) - f^*(x)] \varphi(x) dx \right|
$$

$$
\leq M\left(\int_K [P_n^*(x) - f^*(x)]dx\leq M\varepsilon_n'm(K)\to 0\right)
$$

when $n \to \infty$.

In the previous calculations we use the notation $m(K)$ for the Lebesgue measure of the set *K, M* = $max{\varphi(x): x \in K}$ and $\varepsilon_n = \varepsilon_n + [f^*(x) - F_n(x)]$. It is obvious that $\varepsilon_n \to 0$ when $n \to \infty$. The Later calculation implies that $\langle T_n, \varphi \rangle \to \langle T_{f^*}, \varphi \rangle$ when $n \to \infty$ for every, but fixed, $\varphi \in D$, meaning $T_n \to T_{f^*}$ weakly in D'. To prove the convergence in the strong topology it sufficies to prove the same convergence for $\varphi \in B$ for an arbitrary bounded set in D. Choose $B \subset D$, arbitrary bounded set. The condition of boundnes implies that there exists a compact set K such that $supp \varphi \in K$, $||\varphi||_{D(K)} < M$, for every $\varphi \in B$. Note that the calculations at the beginning of the paragraph hold for every $\varphi \in B$ and the new compact set chosen for the boundness condition. Hence, $T_n \to T_{f^*}$ in *D'*.

(ii)

$$
\int_{-\infty}^{\infty} (\log(1+|P_n^*(x)|)^p |\varphi(x)| dx
$$

\n
$$
= \int_K (\log(1+|P_n^*(x)+F_n(x)-F_n(x)|)^p |\varphi(x)| dx
$$

\n
$$
\leq \int_K (\log(1+|P_n^*(x)-F_n(x)|+|F_n(x)|))^p |\varphi(x)| dx
$$

\n
$$
\leq \int_K (\log(1+|F_n(x)|+|P_n^*(x)-F_n(x)|))^p |\varphi(x)| dx
$$

\n
$$
\leq M 2^{p-1} \int_K (\log(1+|F_n(x)|)^p dx + M 2^{p-1} \int_K |P_n^*(x)-F_n(x)|)^p dx
$$

\n
$$
\leq M C + M \varepsilon_n^p m(K).
$$

Because $\varepsilon_n \to 0$, $n \to \infty$ we get $\int_R (Log(1 + |P_n^*(x)|)^p |\varphi(x)| dx < C'$ meaning

 $\overline{\lim}_{n\to\infty}\int_{-\infty}^{\infty}(\log(1+|P_n^*(x)|)^n|\varphi(x)|)$ $\int_{-\infty}^{\infty} (\log (1+|P_n^*(x)|)^n |\varphi(x)| dx < \infty$, for all $\varphi \in D$.

In the proof of ii. We use the inequalities $|a + b| \le |a| + |b|$, $\log(1 + a + b) \le \log(1 + a) + b$, for $a, b > 0$ and $(a + b)^p \leq 2^{p-1}(a^p + b^p)$, for $p \geq 1$.

Theorem 2. Let φ_0 be a localy integrable function and $T_{\varphi_0} \in D'$ is generated by the function φ_0 . Let there exist sequence of polynomials $P_n(z)$ satisfying the conditions:

i. The sequence of distributions generated by the boundary values $P_n^*(x)$ *of* $P_n(z)$ converges to T_{φ_0} in D when $n \to \infty$;

ii.
$$
\lim_{n\to\infty}\int_{-\infty}^{\infty}(\log(1+P_n(x+iy))^p|\varphi(x)|dx
$$

There exists a function $f \in H(\Pi^+)$ such that

$$
\int_K (\log (1+|f(x+iy)|)^p dx < C < \infty, \forall \, z = x + iy \in \Pi^+,
$$

for every compact $K \subset R$, and

$$
\lim_{y\to 0^+}\int_{-\infty}^\infty f(x+iy)\varphi(x)\,dx=\,\langle T_{\varphi_0},\varphi\rangle.
$$

Proof. Let the assumptions of the theorem are fulfilled. In [3] it is proven that from i., i.e.

 $\lim_{n\to\infty}\int_R P_n^*(x)\varphi(x)dx = \int_R \varphi_0(x)\varphi(x)dx, \varphi \in D,$

implies the existence of $f \in H(\Pi^+)$ such that the sequence of polynomials converges to f, uniformly on arbitrary compact subsets of Π^+ when $n \to \infty$.

Firstly we will prove that this function f is holomorphic and satisfies the condition

$$
\int_K \log(1+|f(x+iy)|)^p \ dx \le C
$$

for all $z = x + iy \in \Pi^+$ and arbitrary compact set $K \subset R$.

Indeed, we use the condition ii., i.e.

$$
\overline{\lim}_{n\to\infty}\int_{-\infty}^{\infty}(\log(1+|P_n(x+iy)|)^p|\varphi(x)|dx
$$

Let K be compact set. There exists $\varphi(x) \in C_0^\infty(R^n)$, $\varphi(x) = 1$, $\forall x \in K$. To obtain the last statement, it is enough to take characteristic function of the set K and to regularize it. Substitution of such φ in to ii., implies that for every $n \in N$,

$$
\int_K (\log(1+|P_n(x+iy)|))^p dx < C < \infty, \forall z = x+iy \in \Pi^+.
$$

Now,

$$
\int_{K} \log (1 + |f(x + iy)|)^{p} dx = \int_{K} \lim_{n \to \infty} (\log(1 + |P_{n}(x + iy)|)^{p}) \le \lim_{n \to \infty} \int_{-\infty}^{\infty} (\log (1 + |P_{n}(x + iy)|)^{p} dx < C < \infty,
$$

i.e.

 $\int_K \log(1+|f(x+iy)|)^p dx \le C < \infty$ for arbitrary compact set $K \subset R$ and every $z = x + iy \in \Pi^+$. It remains to be proved that $\lim_{y\to 0^+}\int_{-\infty}^{\infty} f(x+iy)\varphi(x)$ $\int_{-\infty}^{\infty} f(x+iy)\varphi(x) dx = \langle T_{\varphi_{0}}, \varphi \rangle$, for every $\varphi \in D$.

Let $\varphi \in D$ and $supp \varphi = K \subset R$. Then

$$
\lim_{y \to 0^+} \int_R (f(x+iy)\varphi(x)) dx = \lim_{y \to 0^+} \int_R \lim_{n \to \infty} (P_n(x+iy)\varphi(x)) dx =
$$
\n
$$
= \lim_{y \to 0^+} \lim_{n \to \infty} \int_K (P_n(x+iy)\varphi(x)) dx = \lim_{n \to \infty} \lim_{y \to 0^+} \int_K (P_n(x+iy)\varphi(x)) dx =
$$
\n
$$
= \lim_{n \to \infty} \int_K P_n^*(x+iy)\varphi(x) dx = \int_R \varphi_0(x)\varphi(x) dx = \langle T_{\varphi_0}, \varphi \rangle,
$$

for every $\omega \in D$.

The previous equalities are obvious, exept the following

$$
\lim_{y \to 0^+} \lim_{n \to \infty} \int_K P_n(x+iy)\varphi(x)dx = \lim_{n \to \infty} \lim_{y \to 0^+} \int_K P_n(x+iy)\varphi(x)dx \dots (*)
$$

for $z = x + iy \in \Pi^+$.

We will prove (∗).

To do that we consider the sequence of functions $\{g_n(y)\}$ defined by

$$
g_n(y) = \int_K (P_n(x+iy)\varphi(x)dx, x+iy \in K_1.
$$

for K_1 compact subset of Π^+ such that $z \in K_1$ for $Re(z) \in K$. Because $\{P_n(x+iy)\}$ converges to $(x+iy)$ uniformly on K_1 , when $n \to \infty$, one obtains that for fixed y

$$
\lim_{n \to \infty} g_n(y) = \int_K (P_n(x+iy)\varphi(x)dx = \int_K (f(x+iy)\varphi(x)dx = g(y),
$$

i.e. the sequence $\{g_n(y)\}$ converges to $g(y)$ when $n \to \infty$. We will prove that this convergence is uniform on ImK₁, which will imply the statement. Indeed,

$$
0 \le \sup_{y} |g_n(x + iy) - g(x + iy)| = \sup_{y} \left| \int_K P_n(x + iy) \varphi(x) dx - \int_K f(x + iy) \varphi(x) dx \right|
$$

\n
$$
= \sup_{y} \left| \int_K [P_n(x + iy) - f(x + iy)] \varphi(x) dx \right|
$$

\n
$$
\le \sup_{y} \int_K |(P_n(x + iy) - (f(x + iy))||\varphi(x)| dx
$$

\n
$$
\le M \sup_{y} \int_K |P_n(x + iy) - f(x + iy)| dx.
$$

\n
$$
P_n(x + iy) \to f(x + iy) \qquad \text{uniformly} \qquad \text{on} \qquad K_1, \qquad \text{it} \qquad \text{follows} \qquad \text{that}
$$

Since

$$
\int\limits_K |P_n(x+iy) - f(x+iy)| dx
$$

converges to 0 uniformly on $Im(K_1)$ meaning

$$
\limsup_{n \to \infty} \int_{y} |(P_n(x + iy) - f(x + iy))| dx = 0.
$$

Finally, $\lim_{n \to \infty} \sup_{y} |g_n(x + iy) - g(x + iy)| = 0.$

\mathcal{Y} **3. Conclusion**

We obtain necessary and sufficient condition for a distribution generated from an element of the Privalov class to be boundary value of analytic functions on upper half space. The boundary values are taken in the distributional sense.

References

- 1. Ansari,A.H., Liu,X. and Mishra ,V.N.(2017) On Mittag-Leffler function and beyond. *Nonlinear Science Letters A*, Vol. 8, No. 2, pp. 187-199.
- 2. Bremermann, G. Raspredelenija, kompleksnije permenenije i preobrazovanija Fourie.1968. Moskva.Mir
- 3. Duren, P. L., Theory of HP Spaces. 1970. New York. Acad. Press.
- 4. Iida, Y. (2017). Bounded Subsets of Smirnov and Privalov Classes on the Upper Half Plane. Hindawi International Journal of Analysis. Article ID 9134768, 4 pages. doi.org/10.1155/2017/9134768.
- 5. Manova, E. V. (2002). Bounded subsets of distributions in D' generated with boundary values of functions of the space H^p, 1 ≤ p < ∞. *Godisenj zbornik na Insitut za matematika*, Annuaire, ISSN 0351-724, pp. 31-40.

- 6. Manova, E. V.(2001). Distributions generated by boundary values of functions of the Nevanlina class N. *Matematichki vesnik*, Knjiga 54, Sveska 3-4, Beograd, Srbija i Crna Gora, YU ISSN 0025-5165, pp.133-138.
- 7. Meštrović,R. and Pavićević, Z.(2017). A short survey of some topologies on Privalov spaces on the unit disk", *Math. Montisnigri* 40, pp. 5–13.
- 8. Meštrović,R. and Pavićević, Z.(2014). A topological property of Privalov spaces on the unit disk. *Math. Montisnigri* 31, pp. 1–11.
- 9. Meštrović,R. and Sušić, Z.(2013). Interpolation in the spaces Np (1 < p < ∞). *Filomat* 27, pp. 293– 301.
- 10. Meštrović, R. and Pavićević, Z.(2015). On some metric topologies on Privalov spceson the unit disc. *Math. FA.*
- 11. Privalov, I. I.,1941. Granicnije svojstva odnoznacnih analitickih funkcijii. Moskva,Nauka.
- 12. Reckovski, V., Manova, E.V. and Reckoski N.(2015). Convergence of some special harmonic functions. Proceedings of the V Congress of the Mathematicians of Macedonia, Vol. 2 СММ, Macedonia, p.p. 53-57.
- 13. Reckovski, V., Manova,E.V. Bedjeti,B.and Iseni,E.(2019). For some boundary value problems in distributions. *Journal of Advances in Mathematics*, Volume 16, Khalsa Publications, ISSN: 2347-1921, pp. 8331-8339.

Conflicts of Interest

The authors don't have competing for any interests

Acknowledgments

The authors are grateful to the referees for their valuable suggestions.

