DOI: https://doi.org/10.24297/jam.v21i.9193

Some Properties of Meromrphic Univalent Functions with Negative Coefficients Defined by Dziok-Srivastava Operator

Zainab Aodeh A. Mohmmed

Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya-Iraq

zainab.aodeh@qu.edu.iq

Abstract: The main aim of the present investigation is to introduce a new class of meromorphic univalent functions with negative coefficients defined by Dziok-Srivastava operator. Some geometric properties are introduced, like coefficient estimate, integral operator, Feket-Szegö bounds for this class of meromorphic functions.

Keywords: Dziok-Srivastava operator, integral operator, Feket-Szegö inequality.

Introduction

Let $\mathcal{U}^* = \{z \in \mathbb{C}: 0 < |z| < 1\}$ be the punctured unit disk in the complex plane. we denote by Σ the class of meromorphic functions in \mathcal{U}^* with $\mathcal{G}(0) = \mathcal{G}^{'}(0) - 1 = 0$ of the form

$$\mathcal{G}(z) = \frac{1}{z} - a_l z^l - a_{l+1} z^{l+1} - \dots, 0 < |z| < 1, l \ge 0.$$

A function $G \in \Sigma$ is meromorphic starlike of order η ($0 \le \eta < 1$) if

$$-R_e\left\{\frac{z\mathcal{G}'(z)}{\mathcal{G}(z)}\right\} > \eta$$
, $\mathcal{G}(z) \neq 0$ for $z \in \mathcal{U}^*$,

the class of all such family of functions is denoted by Σ^* (η) .A function $\mathcal{G} \in \Sigma$ is meromorphic convex of order η ($0 \le \eta < 1$) if

$$-R_e\left\{1+\frac{z\mathcal{G}^{''}(z)}{\mathcal{G}^{'}(z)}\right\} > \eta, \mathcal{G}^{'}(z) \neq 0 \text{ for } z \in \mathcal{U}^*$$

The class of all such functions is denoted by $\sum_{l=0}^{l} (\eta)$. Let $\mathcal{G}(z)$ be a function given by 1.1 and $\chi(z) = z^{-1} - \sum_{l=0}^{\infty} \mathcal{E}_{l} z^{l}$ we define the hadamard product of \mathcal{G} and χ by

$$(\mathcal{G} * \chi)(z) = z^{-1} - \sum_{l=0}^{\infty} a_l \mathcal{E}_l z^l$$

For complex parameters μ_t and ρ_s , where $(t = 1, 2, ..., t; j = 1, 2, ..., s \ and \ \rho_s \neq 0, -1, -2, ...)$, the generalized hypergeometric function $t_t \psi_s(z)$ is defined as

$$t\psi_{s} \ (\mu_{1}, \mu_{2}, \dots, \mu_{t}, \rho_{1}, \rho_{2}, \dots, \rho_{s})(z) = \sum_{l=0}^{\infty} \frac{(\mu_{1})_{l} (\mu_{2})_{l} \dots (\mu_{t})_{l}}{(\rho_{1})_{l} (\rho_{2})_{l} \dots (\rho_{s})_{l}} \frac{z^{l}}{l!} \ (t \leq s+1, t, s \in \mathbb{N}_{0} = \{0, 1, 2, \dots \}; z \in \mathcal{U}^{*}), \text{ were}$$

$$(v)_{l} = \frac{\Gamma(v+l)}{l} = \begin{cases} 1 & \text{if } l = 0, v \in \mathbb{C}^{*} = \mathbb{C} \setminus \{0\}, \\ l \in \mathbb{N}; v \in \mathbb{C}, v \in \mathbb{C}^{*} \end{cases}$$

$$1.2$$

Is the Pochhammer symbol defined in terms of Gamma function.

Let the function $_t\psi_s$ $(\mu_1, \mu_2, ..., \mu_t, \rho_1, \rho_2, ..., \rho_s; z)$ be defined as

$$\mathcal{R}(\mu_1, \mu_2, \dots, \mu_t, \rho_1, \rho_2, \dots, \rho_s; z) = z^{-1} {}_t \psi_s (\mu_1, \mu_2, \dots, \mu_t, \rho_1, \rho_2, \dots, \rho_s; z)$$
.

The Liu-Srivastava linear operator $\mathcal{K}(\mu_1, \mu_2, \dots, \mu_t, \rho_1, \rho_2, \dots, \rho_s): \Sigma \to \Sigma$ is defined by

$$\mathcal{K}(\mu_1, \mu_2, \dots, \mu_t, \rho_1, \rho_2, \dots, \rho_s)\mathcal{G}(z) = \mathcal{R}(\mu_1, \mu_2, \dots, \mu_t, \rho_1, \rho_2, \dots, \rho_s; z) * \mathcal{G}(z)$$

$$=z^{-1}-\sum_{l=0}^{\infty}a_{l}\Gamma_{l}z$$

Where

$$\Gamma_{l} = \left| \frac{(\mu_{1})_{l} (\mu_{2})_{l} \dots (\mu_{t})_{l}}{(\rho_{1})_{l} (\rho_{2})_{l} \dots (\rho_{s})_{l}} \frac{1}{(l)!} \right| ,$$
 1.3

for simplicity, we use a shorter symbol $\mathcal{K}_s^t(\mu_1)$ instead of $\mathcal{K}(\mu_1, \mu_2, ..., \mu_t, \rho_1, \rho_2, ..., \rho_s)$.

Some interesting subfamilies of analytic functions associated with the generalized hypergeometric function, were considered recently by Srivastava et al. [7]. The family Σ^* (η) and various other subfamilies of Σ have been

studied rather extensively in [4] , [5].By using of the generalized Dziok-Srivastava operator \mathcal{K}_s^t , we define a new subfamily of functions in Σ as follows:

For $0 \le \eta < 1$ and $\xi \in \mathbb{C} - (0,1]$,we let $\mathcal{S}(\xi,\eta)$,denote a subfamily of Σ consisting functions of the form 1.1 satisfying the condition

$$R_{e} \left\{ \frac{\xi z^{2} \left(\mathcal{K}_{S}^{t} \mathcal{G}(z) \right)^{"} + z \left(\mathcal{K}_{S}^{t} \mathcal{G}(z) \right)^{"}}{\left(\xi - 1 \right) \mathcal{K}_{S}^{t} \mathcal{G}(z) + \xi \left(z^{2} \left(\mathcal{K}_{S}^{t} \mathcal{G}(z) \right)^{"} + z \left(\mathcal{K}_{S}^{t} \mathcal{G}(z) \right)^{"} \right)} \right\} > \eta \quad . \tag{1.4}$$

Coefficient inequalities, properties of certain integral operator, as well as the Fekete- Szegö like inequality are discussed for a new class of meromorphic functions $S(\xi, \eta)$.

Coefficient inequalities for a function in the class $S(\xi, \eta)$

In the following theorem we introduce a necessary and sufficient condition for function $\mathcal G$ to be in $\mathcal S(\xi,\eta)$

Theorem 1 Let $G \in \Sigma$ given by 1.1 .Then $G \in \mathcal{S}(\xi, \eta)$ if and only if

$$\sum_{l=0}^{\infty} Y(l,\xi,\eta) \Gamma_l a_l < (2\xi - 1)(1 - \eta) .$$
 2.1

Where
$$Y(l, \xi, \eta) = l[1 + \xi((l-1) - \eta l)] + \eta(1 - \xi), 0 \le \eta < 1 \text{ and } \xi \in \mathbb{C} - (0, 1)$$
.

The result is sharp for the function

$$\mathcal{K}_{s}^{t}\mathcal{G}(z) = z^{-1} - \frac{(2\xi - 1)(1 - \eta)}{Y(l, \xi, \eta)\Gamma_{l}} z^{l}, l = 0, 1, 2, \dots$$
 2.3

Proof. If $G \in \mathcal{S}(\xi, \eta)$ then

$$R_{e}\left\{\frac{\xi z^{2}\left(\mathcal{K}_{s}^{t}\mathcal{G}(z)\right)^{"}+z\left(\mathcal{K}_{s}^{t}\mathcal{G}(z)\right)^{'}}{(\xi-1)\mathcal{K}_{s}^{t}\mathcal{G}(z)+\xi\left(z^{2}\left(\mathcal{K}_{s}^{t}\mathcal{G}(z)\right)^{"}+z\left(\mathcal{K}_{s}^{t}\mathcal{G}(z)\right)^{'}\right)}\right\}=$$

$$R_{e}\left\{\frac{2\xi-1-\sum_{l=1}^{\infty}(l+\xi l(l-1))a_{l}\Gamma_{l}z^{l+1}}{2\xi-1+\sum_{l=1}^{\infty}(1-\xi(l^{2}+1))a_{l}\Gamma_{l}z^{l+1}}\right\} > \eta, \text{since } z \to 1^{-} \text{ we have}$$

$$\frac{2\xi-1-\sum_{l=1}^{\infty}(l+\xi l(l-1))a_{l}\Gamma_{l}}{2\xi-1+\sum_{l=1}^{\infty}(1-\xi(l^{2}+1))a_{l}\Gamma_{l}}>\eta\;.$$

This shows that 2.1 holds.

Conversely assume that 2.1 holds ,since $R_e(w) > \eta$ if and only if $|w - (1 + \eta)| < |w + (1 - \eta)|$.

It is sufficient to show that

$$\frac{\left|\frac{\xi z^2 \left(\mathcal{K}_S^t \mathcal{G}(z)\right)^{''} + z \left(\mathcal{K}_S^t \mathcal{G}(z)\right)^{''}}{(\xi-1)\mathcal{K}_S^t \mathcal{G}(z) + \xi \left(z^2 \left(\mathcal{K}_S^t \mathcal{G}(z)\right)^{''} + z \left(\mathcal{K}_S^t \mathcal{G}(z)\right)^{''}\right) - (1+\eta)}{\left|\frac{\xi z^2 \left(\mathcal{K}_S^t \mathcal{G}(z)\right)^{''} + z \left(\mathcal{K}_S^t \mathcal{G}(z)\right)^{''}}{(\xi-1)\mathcal{K}_S^t \mathcal{G}(z) + \xi \left(z^2 \left(\mathcal{K}_S^t \mathcal{G}(z)\right)^{''} + z \left(\mathcal{K}_S^t \mathcal{G}(z)\right)^{''}\right)}\right|} = \\ = \frac{\left|\frac{\xi z^2 \left(\mathcal{K}_S^t \mathcal{G}(z) + \xi \left(z^2 \left(\mathcal{K}_S^t \mathcal{G}(z)\right)^{''} + z \left(\mathcal{K}_S^t \mathcal{G}(z)\right)^{''}\right) - (1+\eta)}{(\xi-1)\mathcal{K}_S^t \mathcal{G}(z) + \xi \left(z^2 \left(\mathcal{K}_S^t \mathcal{G}(z)\right)^{''} + z \left(\mathcal{K}_S^t \mathcal{G}(z)\right)^{''}\right)}\right|}$$

$$\left| \frac{-\eta(2\xi-1) - \sum_{l=0}^{\infty} (l - \xi l - \xi + 1 - \xi \eta l^2 - \eta \xi + \eta) a_l \Gamma_l z^{l+1}}{2(2\xi-1) - \eta(2\xi-1) - \sum_{l=0}^{\infty} (l + 2\xi l^2 - \xi l + \xi - 1 - \xi \eta l^2 - \eta \xi + \eta) a_l \Gamma_l z^{l+1}} \right| \leq 1 \; .$$

Thus we have $\mathcal{G} \in \mathcal{S}(\xi, \eta)$.

Integral operators for a function in the class $S(\xi, \eta)$

The integral transformation of functions of the class $S(\xi, \eta)$ will be shown in this section.

Theorem 2 If the function $\mathcal{G}(z)$ is given by 1.1 be in $\mathcal{S}(\xi,\eta)$. Then the integral operator

$$\mathcal{F}(z) = d \int_0^1 \mathfrak{n}^d \mathcal{G}(\mathfrak{n} z) \, d\mathfrak{n} \quad (0 < \mathfrak{n} \le 1, 0 < d < \infty) \,,$$

is in $S(\xi, \eta)$ such that

$$\sigma \leq \psi(l)$$

where $\psi(l) = \frac{\{l\{1+\xi[(l-1)-\eta l]\}+\eta(1-\xi)\}-dl[1+\xi(l-1)](1-\eta)}{d(1-\eta)[(1-\xi)-\xi l^2]+(l+d+1)\Upsilon(l,\xi,\eta)}$.

The result is sharp for the function $\mathcal{G}(z) = z^{-1} - \frac{(2\xi - 1)(1 - \eta)}{Y(0, \xi, \eta)}$.

Proof. Let $\mathcal{G} \in \mathcal{S}(\xi, \eta)$. Then

$$\mathcal{F}(z) = d \int_0^1 n^d \mathcal{G}(nz) dn = z^{-1} - \sum_{l=0}^{\infty} \frac{d}{l+d+1} \mathcal{G}_l z^l$$
.

We will prove that

$$\sum_{l=0}^{\infty} \frac{dY(l,\xi,\sigma)\Gamma_l}{(l+d+1)(2\xi-1)(1-\sigma)} a_l \le 1 \quad . \tag{3.1}$$

From the fact that $G \in \mathcal{S}(\xi, \eta)$,we have

$$\sum_{l=0}^{\infty} \frac{Y(l,\xi,\eta)\Gamma_l}{(2\xi-1)(1-\eta)} a_l \le 1.$$

Note that 3.1, holds if

$$\frac{d\Upsilon(l,\xi,\sigma)\Gamma_l}{(l+d+1)(2\xi-1)(1-\sigma)} \leq \frac{\Upsilon(l,\xi,\eta)\Gamma_l}{(2\xi-1)(1-\eta)} \ ,$$

solving for σ ,we have

$$\sigma \leq \frac{\gamma(l,\xi,\eta) - dl[1+\xi(l-1)](1-\eta)}{d(1-\eta)[(1-\xi)-\xi l^2] + (l+d+1)\gamma(l,\xi,\eta)} = \psi(l) \ .$$

A simple arithmetic will show that $\psi(l)$ is increasing and $\psi(l) \ge \psi(0)$.

Theorem 3 Let $\mathcal{G}(z)$, given by 1.1,be in $\mathcal{S}(\xi,\eta)$,and

$$\mathcal{W}(z) = \frac{1}{d} \left[(d+1) \mathcal{G}(z) + z \mathcal{G}'(z) \right] = z^{-1} - \sum_{l=0}^{\infty} \frac{(l+d+1)}{d} \mathcal{G}_l z^l , d > 0 .$$

Then W(z) is in $S(\xi, \eta)$ for $|z| \le v(\xi, \eta, \delta)$ where

$$v(\xi,\eta,\delta) = \inf_{l} \left(\frac{d(1-\delta)Y(l,\xi,\eta)}{(1-\eta)(l+d+1)Y(l,\xi,\delta)} \right)^{\frac{1}{l+1}} \ (l=0,1,2,\dots) \ .$$

The result is sharp for the function $\mathcal{G}_l(z)=z^{-1}-\frac{(2\xi-1)(1-\eta)}{\Upsilon(l,\xi,\eta)\Gamma_l}z^l \ \ (l=0,1,2,\dots)$.

$$\textbf{Proof.Let} \ \ \mathcal{W} = \frac{\xi z^2 \left(\mathcal{K}_s^t \mathcal{G}(z)\right)^{''} + z \left(\mathcal{K}_s^t \mathcal{G}(z)\right)^{''}}{(\xi - 1)\mathcal{K}_s^t \mathcal{G}(z) + \xi \left(z^2 \left(\mathcal{K}_s^t \mathcal{G}(z)\right)^{''} + z \left(\mathcal{K}_s^t \mathcal{G}(z)\right)^{''}\right)}.$$

To show that

$$\left|\frac{w - (1+\delta)}{w + (1-\delta)}\right| < 1. \tag{3.2}$$

After simplifying the inequality, we note that this inequality convinced if

$$\sum_{l=0}^{\infty} \frac{Y(l,\xi,\delta)(l+d+1)\Gamma_l}{d(2\xi-1)(1-\delta)} a_l |z|^{l+1} \le 1,$$
3.3

since $G \in S(\xi, \eta)$, by theorem 1, we have

$$\sum_{l=0}^{\infty} \Upsilon(l,\xi,\eta) \Gamma_l a_l \leq (2\xi-1)(1-\eta) .$$

The inequality in 3.3 is convinced if

$$\frac{\gamma(l,\xi,\delta)(l+d+1)\Gamma_l}{d(2\xi-1)(1-\delta)}a_l|z|^{l+1} \leq \frac{\gamma(l,\xi,\eta)\Gamma_l}{(2\xi-1)(1-\eta)}a_l \;.$$

By solving this inequality for |z|, we have

$$|z| \le \left(\frac{d(1-\delta)\gamma(l,\xi,\eta)\Gamma_l}{\gamma(l,\xi,\delta)(l+d+1)(1-\eta)}\right)^{\frac{1}{l+1}}.$$

Thus we get the required result. ■

The Coefficient bounds for the class of meromorphic functions $S(\xi, \eta)$

Several researchers have presented studies on the inequality of Feket-Szegö for analytic functions, these inequalities were studied be researchers for classes of meromorphic functions, including [1], [2], [6].

Definition 3 Let $S(\xi, \eta)$ be the class of functions $G \in \Sigma$ for which

$$\frac{\xi z^{2} \left(\mathcal{K}_{s}^{t} \mathcal{G}(z)\right)^{"} + z \left(\mathcal{K}_{s}^{t} \mathcal{G}(z)\right)^{"}}{(\xi - 1)\mathcal{K}_{s}^{t} \mathcal{G}(z) + \xi \left(z^{2} \left(\mathcal{K}_{s}^{t} \mathcal{G}(z)\right)^{"} + z \left(\mathcal{K}_{s}^{t} \mathcal{G}(z)\right)^{"}\right)} < \mathcal{H}(z)(z \in \mathcal{U}^{*}, \xi \in \mathbb{C} - (0, 1], R(\xi) \ge 0) , \qquad 4.1$$

where < denotes subordination between analytic functions. In the following theorem we proved the bounds for the class $S(\xi, \eta)$. To prove our result, we need the following Lemma .

Lemma 1 [3] If $\mathcal{P}(z) = 1 + C_1 z + C_2 z^2 + \dots$ is a function with positive real part in \mathcal{U}^* , then for any complex number λ ,

$$\left| \mathcal{C}_2 - \lambda \mathcal{C}_1^2 \right| \le 2max\{1, |1 - 2\lambda|\} \quad . \tag{4.2}$$

Theorem 4 Let $\psi(z) = 1 + \mathcal{B}_1 z + \mathcal{B}_2 z^2 + \dots$ If $\mathcal{G}(z)$ is given by 1.1 belongs to $\mathcal{S}(\psi)$, then for any complex number λ

(1)
$$|a_{1} - \lambda a_{0}^{2}| \leq \frac{1}{2} \left| \frac{(2\xi - 1)}{(1 - \xi)} \right| \frac{|B_{1}|}{\Gamma_{1}} max \left\{ 1, \left| \frac{B_{2}}{B_{1}} - \left(1 - \frac{2(2\xi - 1)\Gamma_{1}}{(1 - \xi)} \lambda \right) B_{1} \right| \right\}, B_{1} \neq 0$$
 (2)
$$|a_{1} - \lambda a_{0}^{2}| \leq \left| \frac{(2\xi - 1)}{(1 - \xi)} \right| \frac{1}{\Gamma_{1}}, B_{1} = 0$$
 (4.4)

(2)
$$\left| a_1 - \lambda a_0^2 \right| \le \left| \frac{(2\xi - 1)}{(1 - \xi)} \right| \frac{1}{\Gamma_1}, \mathcal{B}_1 = 0.$$
 4.4

The bounds obtained are sharp.

Proof. If $G(z) \in S(\psi)$, then there is a Schwarz function such that W(0) = 0, |W(z)| < 1 and analytic in U^* such that

$$\frac{\xi z^{2} \left(\mathcal{K}_{s}^{t} \mathcal{G}(z)\right)^{"} + z \left(\mathcal{K}_{s}^{t} \mathcal{G}(z)\right)^{'}}{(\xi - 1)\mathcal{K}_{s}^{t} \mathcal{G}(z) + \xi \left(z^{2} \left(\mathcal{K}_{s}^{t} \mathcal{G}(z)\right)^{"} + z \left(\mathcal{K}_{s}^{t} \mathcal{G}(z)\right)^{"}\right)} = \psi \left(\mathcal{W}(z)\right).$$

$$4.5$$

Define the function $\mathcal{P}_1(z) = \frac{1+W(z)}{1-W(z)} = 1 + C_1 z + C_2 z^2 + \dots$

Since W(z) is Schwarz function, it is clear that $R(\mathcal{P}_1(z)) > 0$ and $\mathcal{P}_1(0) = 1$, define

$$\mathcal{P}(z) = \frac{\xi z^2 \left(\mathcal{K}_s^t g(z) \right)^{''} + z \left(\mathcal{K}_s^t g(z) \right)^{''}}{(\xi - 1) \mathcal{K}_s^t g(z) + \xi \left(z^2 \left(\mathcal{K}_s^t g(z) \right)^{''} + z \left(\mathcal{K}_s^t g(z) \right)^{''} \right)} = 1 + \mathfrak{b}_1 z + \mathfrak{b}_2 z^2 + \dots ,$$

since

$$\mathcal{W} = \frac{\mathcal{P}_1 - 1}{\mathcal{P}_1 + 1} \quad ,$$

therefore $\psi(\mathcal{W}(z)) = \psi\left(\frac{\mathcal{P}_1 - 1}{\mathcal{P}_2 + 1}\right)$,

 $\mathcal{P}(z) = \psi\left(\frac{\mathcal{P}_1 - 1}{\mathcal{P}_2 + 1}\right)$ that is

4.6

 $\psi(z) = 1 + \mathcal{B}_1 z + \mathcal{B}_2 z^2 + \dots$ since

therefore

$$\psi(\frac{\mathcal{P}_{1}-1}{\mathcal{P}_{1}+1}) = 1 + \frac{1}{2}\mathcal{B}_{1}\mathcal{C}_{1}z + \left[\frac{1}{2}\mathcal{B}_{1}(\mathcal{C}_{2} - \frac{1}{2}\mathcal{C}_{1}^{2}) + \frac{1}{4}\mathcal{B}_{2}\mathcal{C}_{1}^{2}\right]z^{2} + \dots$$
 4.7

Form 4.6 and 4.7, we obtain

$$1 + \mathfrak{b}_1 z + \mathfrak{b}_2 z^2 + \dots = 1 + \frac{1}{2} \mathcal{B}_1 \mathcal{C}_1 z + \left[\frac{1}{2} \mathcal{B}_1 (\mathcal{C}_2 - \frac{1}{2} \mathcal{C}_1^2) + \frac{1}{4} \mathcal{B}_2 \mathcal{C}_1^2 \right] z^2 + \dots,$$

thus, we conclude that

$$\mathfrak{b}_1 = \frac{1}{2} \mathcal{B}_1 \mathcal{C}_1$$
 and $\mathfrak{b}_2 = \frac{1}{2} \mathcal{B}_1 (\mathcal{C}_2 - \frac{1}{2} \mathcal{C}_1^2) + \frac{1}{4} \mathcal{B}_2 \mathcal{C}_1^2$.

From the other hand, since

$$\frac{\xi z^2 \left(\mathcal{K}_s^t \mathcal{G}(z)\right)^{''} + z \left(\mathcal{K}_s^t \mathcal{G}(z)\right)^{''}}{(\xi-1)\mathcal{K}_s^t \mathcal{G}(z) + \xi \left(z^2 \left(\mathcal{K}_s^t \mathcal{G}(z)\right)^{''} + z \left(\mathcal{K}_s^t \mathcal{G}(z)\right)^{''}\right)} = 1 + \frac{1-\xi}{2\xi-1} a_0 z + \left(\left(\frac{1-\xi}{2\xi-1}\right)^2 a_0^2 - \left(\frac{2(1-\xi)}{2\xi-1}\right) \Gamma_1 a_1\right) z^2 + \cdots,$$

and

$$\mathcal{P}(z) = \frac{\xi z^2 \left(\mathcal{K}_s^t \mathcal{G}(z)\right)^{"} + z \left(\mathcal{K}_s^t \mathcal{G}(z)\right)^{'}}{(\xi - 1)\mathcal{K}_s^t \mathcal{G}(z) + \xi \left(z^2 \left(\mathcal{K}_s^t \mathcal{G}(z)\right)^{"} + z \left(\mathcal{K}_s^t \mathcal{G}(z)\right)^{'}\right)} = \psi(\mathcal{W}).$$

So, we get

$$1 + \mathfrak{b}_1 z + \mathfrak{b}_2 z^2 + \dots = 1 + \frac{1 - \xi}{2\xi - 1} a_0 z + \left(\left(\frac{1 - \xi}{2\xi - 1} \right)^2 a_0^2 - \left(\frac{2(1 - \xi)}{2\xi - 1} \right) \Gamma_1 a_1 \right) z^2 + \dots \ ,$$

That is

$$\mathfrak{b}_1 = \frac{1-\xi}{2\xi-1}a_0$$
 and $\mathfrak{b}_2 = \left(\left(\frac{1-\xi}{2\xi-1}\right)^2 a_0^2 - \frac{2(1-\xi)}{2\xi-1}\Gamma_1 a_1\right)$ 4.8

First, substitute about a_0 in b_2 and then about b_1 , b_2 in 4.8,so we have

$$a_0 = \frac{2\xi - 1}{2(1 - \xi)} \mathcal{B}_1 \mathcal{C}_1$$
 and $a_1 = -\frac{1}{4\Gamma_1} \left(\frac{2\xi - 1}{1 - \xi}\right) \mathcal{B}_1 \mathcal{C}_2 + \frac{1}{8\Gamma_1} \left(\frac{2\xi - 1}{1 - \xi}\right) \mathcal{C}_1^2 \left(\mathcal{B}_1 + \mathcal{B}_1^2 - \mathcal{B}_2\right)$,

therefore

$$a_1 - \lambda a_0^2 = -\frac{1}{4\Gamma_1} \left(\frac{2\xi - 1}{1 - \xi}\right) \mathcal{B}_1 \left(\mathcal{C}_2 - \mathcal{C}_1^2 M\right)$$

where

$$M = \frac{1}{2} \left[1 + \left(1 - 2 \left(\frac{2\xi - 1}{1 - \xi} \right) \Gamma_1 \lambda \right) \mathcal{B}_1 - \frac{\mathcal{B}_2}{\mathcal{B}_1} \right],$$

Thus the result 4.3 follows by application of lemma 1, from the other hand if $\mathcal{B}_1=0$, then $a_0=0$ and

$$a_1 = \frac{-1}{8\Gamma_1} \left(\frac{2\xi - 1}{1 - \xi} \right) C_1^2 \mathcal{B}_2$$

Since $\mathcal{P}(z)$ has a real part $|\mathcal{C}_2| \leq 2$, from this ,we get

$$\left|a_1 - \lambda a_0^2\right| \le \left|\frac{(2\xi - 1)}{(1 - \xi)}\right| \frac{|\mathcal{B}_2|}{2\Gamma_1}.$$

Now $\psi(z)$ have positive real part, $|\mathcal{B}_2| \leq 2$, therefore, we have

$$|a_1 - \lambda a_0^2| \le \left| \frac{(2\xi - 1)}{(1 - \xi)} \right| \frac{1}{\Gamma_1}$$
.

The bounds are sharp for the functions $G_1(z)$ and $G_2(z)$ defined by

$$\frac{\xi z^2 \left(\mathcal{K}_s^t \mathcal{G}_1(z)\right)^{''} + z \left(\mathcal{K}_s^t \mathcal{G}_1(z)\right)^{''}}{(\xi - 1)\mathcal{K}_s^t \mathcal{G}_1(z) + \xi \left(z^2 \left(\mathcal{K}_s^t \mathcal{G}_1(z)\right)^{''} + z \left(\mathcal{K}_s^t \mathcal{G}_1(z)\right)^{''}\right)} = \psi \left(z^2\right) \text{ ,where } \mathcal{G}_1(z) = \frac{1 - 2z - z^2}{z(1 - z^2)} \text{ ,}$$

$$\frac{\xi z^2 \left(\mathcal{K}_s^t \mathcal{G}_2(z)\right)^n + z \left(\mathcal{K}_s^t \mathcal{G}_2(z)\right)^n}{(\xi - 1)\mathcal{K}_s^t \mathcal{G}_2(z) + \xi \left(z^2 \left(\mathcal{K}_s^t \mathcal{G}_2(z)\right)^n + z \left(\mathcal{K}_s^t \mathcal{G}_2(z)\right)\right)} = \psi(z) \text{ ,where } \mathcal{G}_2(z) = \frac{1 - 3z}{z(1 - z)} \ .$$

Clearly that $\mathcal{G}_1(z), \mathcal{G}_2(z)$ are in Σ .

References

- 1. Aouf MK, EL- Ashwah RM, and Zayed HM. Feket- Szegö inequalities for certain class of meromorphic functions, Journal of Egyptian Mathematical Society, 2013;21:197-200.
- 2. Dziok J , Darus M ,and Sokol J. Coefficients inequalities for class of meromorphic functions ,Turkish Journal of Mathematics,2018;40(42): 2506-2512 .
- 3. Keogh FR, Merkes EP. A coefficient inequality for certain classes of analytic functions, proceedings of American Mathematical Society, 1969;20(1):8-12.
- 4. Mahmoud MS, Juma ARS, and AL-Saphory RAM. On a subclass of meromorphic univalent functions involving hypergeometric function, Journal of AL-Qadisiyah for computer Science and Mathematics, 2019;11(3):12-20
- 5. Mayilvaganan S, Magesh N, and Gatti NB. On certain subclasses of meromorphic functions with positive coefficients associated with Liu-Srivastava linear operator, Int.J. of pure and Appli. Mathematics, 2017;113(13):132-141.
- 6. Silverman H, Suchithra K, Stephen BA, and Gangadharan A. Coefficient bounds for certain classes of meromorphic functions, Journal of inequality and Applications, 2008: 1-9.
- 7. Srivastava HM, Li SH, and Tang H. Certain classes of K-uniformly close-to-convex functions and other related functions defined by using the Dziok-Srivastava operator, Bull. Math. Anal. Appl.,2009;1(3):49-63.

