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Abstract 

The rules for calculating partial derivatives and differentials are the same as for calculating the derivative of a 

function of one variable, except that when finding partial derivatives per one variable, the other variables are 

considered as constants. 
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1. Introduction  

If all unknown functions that enter the differential equation depend on only one independent variable, and 

therefore the equation does not contain partial derivatives, this equation is called an ordinary differential 

equation [1]. If unknown functions that depend on several independently variables enter the equation, and 

partial derivatives of unknown functions appear in the equation, that equation is called a partial differential 

equation [2]. We will consider here only ordinary differential equations, i.e. equations in which unknown 

functions appear that depend on only one independently variable [3]. If only one unknown function appears in 

an ordinary differential equation, with its derivatives, then such an equation has a general form. 
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2.1. Third-order partial derivatives 
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In the case of functions of one independent variable, we have proved that the continuity of a given function at 

that point follows from the assumption of the existence of the first derivative at some point [5],[6]. However, for 

functions of two or more variables from the existence of both (or all) partial variable derivatives at some point, 

the continuity of the function at that point cannot follow. 

Example: Function 
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at all points ( ) 2, yx  has both partial derivatives. In dots ( ) ( )0,0, yx  the denominator of a given 

function as well as the denominator of the first practical derivatives is different from, while in the coordinate 

origin we have that  
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However, the given function has an interruption at point (0,0) because it is along the lines 0, = kkxy  
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The existence of partial derivatives affects the behavior of the function only in the directions of the coordinate 

axes but not in all other directions [7],[8]. 

Theorem: If a function ( )yxfz ,=  in closed area D it has limited partial derivatives, which means that there 

is a large enough real  number  0M   which does not depend on x and y,  such  

that  
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Myxfx ),(
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then it is a function ( )yxfz ,=  continuous in areas D. 

Proof: Suppose the points ( ) ( )yyxxyx ++ ,,,  are the points of rectilinear orthogonal segments, 

which connect these points with the point ( )yxx ,+  too D , which is certainly fulfilled if it is ( )yx,  

inner point of the area D, a x i y  small enough.  
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D

 

Figure 1. Graph of a given function 

In that case, the total increment of a given function can be written in the form  
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If we apply Lagrange's mean value theorem to each of the expressions in parentheses, treating the expression 

in the first bracket as the increment of a given function by a variable, and the expression in the second bracket 

as the increment of a function by a variable 
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where 
,

yf  takes at some point a vertical segment connecting the points ( )yxxf ,+  i 

( )yyxxf ++ ,  a 
,

xf  at some point of the horizontal segment between the points ( )yx,  i  

( )yxx ,+ . If we use the restrictions now (*) in the equation ( )  we get that  
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which means that the total increment functions ( )yxf ,
 we can make it arbitrarily small if the increments are 

independently variable 
x i  y

 small enough, follows to function 
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 whose partial derivatives are 
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xf i  
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Theorem: If the partial derivatives are mixed 
,,

xyf , 
,,

yxf  parametric functions ( )yxf ,
 continuous functions by 

x and y at each point of some domain D, then at every interior point of that domain holds
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Proof: If the point ( )yxP ,  the inner point of area D will then be for sufficiently small increments x  i  

( )0,  yxy  and points ( )yxxP ,1 + , ( )yyxP +,2 , ( )yyxxP ++ ,3 , as well as a 

rectangle 321 PPPP  lie within area D. 
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Figure 2. View of a rectangle lying inside area D. 

Let's form an expression 

( ) ( ) ( ) ( ) ( )++−+−++= .,,,, yxfyyxfyxxfyyxxfA  

Let's introduce an auxiliary function ( ) ( ) ( )yxfyyxfx ,, −+=  variables x (y will be considered a 

parameter). In that case we can write that it is 

( ) ( )xxxA  −+=  

that is, after applying Lagrange's mean value theorem 

( ) .10,
,, +=  xxxA  

However, ( ) ( ) ( )yxfyyxfx xx ,, ,,, −+=  and since in the formulation of the theorem it is assumed 

that there is a mixed partial derivative 
,,

xyf  by re-applying Lagrange's theorem they obtained  
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ie. 

( ) 10,10,,,, ++=•  yxyyxxfA xy  

Similarly, starting from ( )  we can introduce an auxiliary function by meaningful 

( ) ( ) ( )yxfyxxfx ,, −+=  where the parameter is, then it is  

( ) ( )yyyA  −+=  

and by applying Lagrange's theorem we have twice that it is 
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( ) 10,10,, 1111
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By comparing equations • and ••  it turned out to be  
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whence assuming yes 0,0 →→ yx , and given the assumption of continuity of mixed partial 

derivatives 
,,

xyf  and 
,,

yxf  it immediately follows that it is 

( ) ( ) ( ) .int,,,, ,,,, Dyxyxfyxf xyxy =  

Lagrange's theorem, one of the most important results of infinite group theory, states that the order of a 

subgroup must divide the order of the group[10],[11]. This theorem provides a powerful tool for finite group 

analysis; gives us an idea of exactly which subgroups we can expect an infinite group to possess. 

3. CONCLUSION  

This paper first analyzes the goals, tasks, methods, and then focuses on teaching strategies and processes, finally 

comes to reflection, therefore formation of a complete, detailed and complete text design on the proof of 

Lagrange's mean value theorem and its application. 

It is the basis of the whole differential science to form a set of mean value theorems with Roll's theorem, 

Lagrange's mean value theorem and Cauchy's mean value theorem, especially Lagrange's mean value theorem. 

It established a quantitative relationship between function value and the derivative value, thus can be used by 

the derivative of the mean value theorem to study the function and mean value theorem is mainly used for the 

theoretical analysis and proof, for example as the derivative judge function monotonicity, take extreme, concave 

and convex, inflection point, and other important functional state to provide important theoretical basis, to 

grasp the function of all kinds of geometric features of images. In short, the mean value theorem in differential 

calculus is a bridge between the value of derivative and the value of function, and a tool for inferring the integrity 

of functions by using the local properties of derivatives. Lagrange's mean value theorem as a connecting 

theorem in differential mean value theorem, we need to be able to skillfully apply it, which is of great significance 

to the study of higher mathematics. 
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