Journal of Advances in Mathematics Vol 20 (2021) ISSN: 2347-1921 https://rajpub.com/index.php/jam

DOI https://doi.org/10.24297/jam.v20i.9082
Results on a faster iterative scheme for a generalized monotone asymptotically a-non-expansive
mapping
Athraa Najeb Abed I", Salwa Salman Abed 11
12Department of Mathematics, college of Education for pure science lbn Al Haitham,
University of Baghdad, Iraq.
"najebathraa@gmail.com 2salwaalbundi@yahoo.com

Abstract

This article devoted to present results on convergence of Fibonacci-Halpern scheme (shortly, FH) for monotone
asymptotically &, -nonexpansive mapping (shortly, ma ¢, -n mapping) in partial ordered Banach space (shortly,

POB space). Which are auxiliary theorem for demi-close's proof of this type of mappings, weakly convergence

+00
of increasing FH-scheme to a fixed point with aid monotony of a norm and Z/ln =40, 4, =min{h,,(1-h,)}
n=1

where{hn} < (0,1) is associated with FH-scheme for an integer n > 0 more than that, convergence amounts

to be strong by using Kadec-Klee property and finally, prove that this scheme is weak- W’ stable up on suitable
status.

Keywords: Banach space, fixed point, monotone mapping, a-nonexpansive mapping, iterative scheme.
Introduction

Let A be a normed space and G:D < A— D, a mapping G is called nonexpansive if
|Gr-Ge||<|r—¢|| Yr,eeD (1)

Aoyama et al. [8] presented a class of A -hybrid mappings in a Hilbert space, meaning, a mapping G is called
A -hybrid if

||Gr—Ge||2 £||r—e||2+2(1—/1)(r—Gr,e—Ge) @)

and showed a fixed point theorem. Obviously, a nonexpansive mapping is A -hybrid mapping (if 1 = 7).

Aoyama and Kohsaka[7] also presented the class of & -nonexpansive mappings, meaning, a mapping G is « -

nonexpansive if for all r,e e D(G)
n 2 n 2 2

G'r—e| <q,|G"e-1| +@1-22,)|r ¢ 3)

2
|c'r-G"| <a,

where a<1 and gave fixed point results. A nonexpansive mapping and is a-nonexpansive (¢ = 0) and a A -

-nonexpansine if 4 <2 in Hilbert space.

hybrid mapping is >

The concept of a monotone nonexpansive mapping is introduced by Bachar and Khamisi [10] in a POB space
with the order "<" and then common approximate fixed points are realized of monotone nonexpansive
semigroups. Recalling, a mapping G : D < A — D s said to be monotone nonexpansive if G is monotone
(Gr S Geifr S e)and

|Gr —Ge|| < |r —e|with r<e @)
Note that, the continuity of monotone nonexpansive mapping may be not achieved, see [33] or [4]. At the

beginning of studying the existence of fixed point for the nonexpansive mapping G, Mann formed the
following iterative scheme which was later known by his name, Mann' iteration:
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forany &, €D,a ,=4a,+(1-4,)Ga, vn>1 (5)

n+1
where S, €(0,1) is a sequence with certain conditions.

Later, many researchers introduced results on convergence of the Mann scheme and its modified versions for
differe classes of mappings such as nonexpansine, pseudo-contractions, total asymptotically nonexpansive
mappings ... etc. For example, see [1-3], [5-6],[12],[14],[18] and see [22-23],[24],[26], [31], [34], [35]. Recently,
there are some convergence theorems of such a scheme in an POB (A, ). Dehaish and Khamsi [13] obtained
the weak convergence of the Mann scheme for a monotone nonexpansive mapping provided an

1
ela,b] =(0,1), but their result do not entail S = —1 . Motivated by the above findings, Song et al. [28]
n+

considered the weak convergence of the Mann iteration scheme for a monotone nonexpansive mapping G,
{r.} defined by

Ny =85, +@=4,)Gr,  forinteger N=1 where {8} (0,) (6)

: " S _ 1 .
with condition Zﬂn (1-4,) =, which include B, = 1 as a special case. Here, we present ma o, -n
n=1 n+

mapping there is the existence theorem of fixed points for a ma ¢, -n mapping G and showed the

weak\strong convergence of the FH-scheme to a fixed point with Z/In =+00, 4, =min{h_,(1—h, )}where
n=1

{h}<=(0) for n>1.

Theorem (1.1): Let D be a nonempty and closed convex subset of a uniformly convex Banach space and
G : D — D be a monotone nonexpansive mapping. Assume that A satisfies Opial condition and the sequence

{r }is define by (6) with r; 3 Gr; (or Gr; S 7). If F(G) #Jand s X7, (orry S s )for someS € F(G) . Then
{I’n}weakly converges to a fixed point r” of G.

During 2010-2020, Abed and Malih[19-21] established weak and strong convergence results of random
Fibonacci-Mann and random Fibonacci-Ishikawa scheme to random fixed points of monotone random
asymptotically nonexpansive mappings.

In this paper, indicate to a Banach space by A with the norm |||| ,its dual A" and the partial order “<". Let

F(G) ={r € A,Gr =r}is the set of all fixed point of mapping G. Let D be closed convex subset of A and
[r,e] ={t € D:r 3t X e}is an order interval for allr,e € D which is closed and convex. The convexity of

[r,e] implies that r S tr + (1 — t)e S e for all r,e € D with r < e. The fixed point set with depending on
partial orders denoted by

F/(G)={seF(G):s<r}forsome reDand F/(G)={se F(G):s>r}, forsome reD

Sometime, we assume a norm |||| is monotone which define by [27], i.e. ||I’|| < ||e|| forall r,ee Aand 0<r<e
In the following the definition of a monotone asymptotically &, -nonexpansive mapping:

Definition (1.2): Let G: A— A be a mapping G is called ma &, -n mapping if for r,e € Awithr S e,
|c"r—Gre G”e—r”z+(1—2an)||r—e||2.

2 n 2
<a,|G r—eH <a,

And then prove some convergence and stability results about FH-scheme

ryeDandh, < (0,0), r,, =hr, +{@-h)G'"r, ™)
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where { f;}is sequence of Fibonacci numbers and f(i)= f(i—1)+ f(i—2),i>1.
Definition (1.3): [30] A Banach space (A, ||||) is said to be uniformly convex (shortly, UCBS) if V & >0, 36>0
and forr, e € A if||r|| <1, ||e|| <1 and ||r —e|| > gthen ||r +e|| <2(1-9)

Definition (1.4): [21] Let A be a Banach space. Then a function 9a :[0,2] —[0,1]is said to be the modulus of
convexity of A if

r+e

o,(e)=Inf {

I <tlel<tr-efzc).

Definition (1.5): [17] Let A be a Banach space satisfying Kadec-Klee property if for every sequence {rn} in A
converging weakly to (r) together with ||rn || converging strongly to ||r|| imply that {rn} converges strongly to
apoint I € A™

Any uniformly convex Banach space is reflexive and has the Kadec-Klee property [9].

Definition (1.6): [11] A mapping G : B — A is said to be demi closed with respect to S € A if for any
sequence { } eB { }converges weakly to I' and G(I,) converges strongly to S.Then I € B and

G(r)=s.

Lemma (1.7): [30] Let A be a reflexive Banach space, @ #DCA and A be a closed , assume that
f : D — (—o0,0) is coercive and proper convex lower semi-continuous function. Then there exists I € D

such that f(r)=inf,_; f(e)

Proposition (1.8): [25] Let A be a uniformly convex Banach space with the modulus of convexity 5A () .Then

vt>0and r,ee Awith|r|<t,|e[<t,

|8r + @ pe| st{l—Zmin {ﬁ,l—ﬂ}&A(”rt;e”)},v,B (0,2

el

Proposition (1.9): [29] Let A be POB space and {I’n} ,{en} are two sequence in A such thatr, < e, for an

r+e
If, ﬂz% then H

integern > 0.

If { } and{ }Weakly converges to r and e respectively, thenr < e.
Fixed point result

Starting with following proposition

Proposition (2.1): Let D be a nonempty closed convex subset of POB space (4,3) and G:D — D be ma «,

-n mapping, then

seF(G)

(2) Forevery r,ee D withr S e (or,e 2 7)

@ ® 358



Journal of Advances in Mathematics Vol 20 (2021) ISSN: 2347-1921 https://rajpub.com/index.php/jam

“<fr e+

n n

Proof (1): Let s € F(G), by the definition of ma ¢, -n mapping

2
<a,

<a, - 2+(1—an)||r—e||2

sl <@-a,)|r—¢ff

Proof (2): If «, >0

<a, G"r—rH2+2an r—elf +e,
+2a,
“<lr-eff + 2
n n
If @, <0
S e R S [ T S
—2a,
e <(L-a,)|r—eff +2a, |G —r| 24, [G"r - ( _ )
off <r e+ —rff + 22
-,
Then, forall r,ee Dwithr S e
<|r-eff —G”r—r” |a
(o
ifar, =0
2
<a,
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? < ||r —e||2 .Then

Theorem (2.2): Let A be UCBS and D+Dc A, D is closed convex. LetG: D —> Dbea ma o, -n

is monotone, If { rn} in D is weakly converges to r with , S G™r,, Sr (or r 3

mapping,
=0, then Gr =r.

G"'r, 3

n—oo

Proof: Suppose thatr, < G"r, S r, foraninteger n > 0. Let K = {e eD;r < E} Then K = ﬂw: K, where
K, = {e eD;r, < e} since I € K, then K_ is nonempty. Let €,€, € K, thatmean I, <€, I, <€,,
and Ar, < Ae;, (- A)r, < (1—A)e,, by combining two inequalities, getting I, < A€, + (1— A)e, then
Ae,+(1—-A)e, e K, so K, is convex.

Now, let e be a limit point of K,, then 36, < K 3 €, —> €, since YM, r,, < €, and €, is increasing

sequence €, <€VM, then I, <€,s0eec K that implies K is closed. Since { } is weakly converges

then {rn} is bounded. From li =0 the sequences{rn}and {G"rn}are equivalent, then {G I’n}

n—o0

is bounded.
Now, put a function as follows (D(e) = |imSUp||rn —6” YeeK. Clearly, Q is proper, coercive, convex and
nN—ow
continuous function. By Lemma (3.1.1) 3Z € K such that ¢(z) = Iim sup||rn - Z|| =inf_, p(e) =t.By

definition of K and Proposition (3.1.3), we getr, S z, 7, Sr S z, and hence 0<r- rn<z-—r, VN, that

mean ”r - rn” < ”Z - rn” and so, @(r) < ¢(z). Then, o(r)=p(z) = !]!I\OHF“ — I’H = Iel;lg =t

Since G is monotone and 1, < G™r;, S G™r, hence G'r eK. Convexity of K gives that r+Gr e K, and
t=p() < (Y and t = (1) < 9(G") 7)
By Proposition (3.1.5) getting
lG™, - 2 2l
1 n
(lim supHG”rn - IimsupHG”rn - =o(r).
n—0 N—0
G"r|implies
p(G'r) =
<limsup|G"r, - = o(r) =t ®
nN—o0
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So, the inequality ||, — r+Gr < %”rn - r||+% G”r” implies
r+G"r 1.
(p(T)SElmSUp||r"_r||+
r,—r|=p(r) =t ©
r+G"r

Then by (7),(8) and (9),gives that @(r) =@(G"r) = ¢(

)=t>0

To prove I =G"r, assume thatt = r —I‘”—O that mean r =G"r

n—o0

Ift=

Proposition (3.1.2) yields

r+G r

n

H (r-r+-= (r -G"r)

‘ N (10)
St+e)|1-0,| —
t+¢

without loss of generality restrict t € >1 without loss of generality. So (10) can be rewritten as follow

- r+Gr <(t+e)|1-6, ‘__
t+1
subsequently,
" " r—G'r
t= (")~ limsuplr, - < t+6) 16, lr-c
inas t+1
[r-G"r [r-G'r
=>1t0,| — | (t+¢&)o, <t+e-r=¢
t+1 +1
Since ¢ is arbitrary, &, Tl =0, which imply F =G"r . Then GI =T,Vn
_I_

Ifr 3 G"r, S 7, Vn > 0, we need the set K = {e eD;r, 2 e} The rest of the proof is the same.

Convergence results

Theorem (3.1): Let A be UCBS. Let & # D < A, Dis closed convex. Let G: D — Dbe ma «, -n mapping.
Suppose that the norm |||| is monotone and the sequence {I,} define by (7) with r; < Gr; and FZr G)+9.
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If the iteration condition { N, } = (0,1) satisfy Z/ln =+, A, =min{h,,(1—h, )}for an integer n >0, then
n=1

{r.} weakly converges to a some fixed point r € F*(G)andn, < rvn.
Proof : Firstly ,we prove thatr, S 1,,,; S s ,where S € F*(G)

We used the mathematical induction in proved .Since S e F;l (G) that mean r; < s. Hence G is monotone
thenr, < 6/™r; 3 6Y™s < s ,and by definition (7)

nL=hr+Q@Q- hl)Gf(l)rl' Gf(l)rl =Gr,
r; 3153 Gry S s. Assume that 7, S s thenG/™r, < 6/™s = s,and from definition (7) getting
Ty S Thy1 S G ™y, s,

Then the sequence {rn}is increasing and bounded, since s is upper bound.

Secondly, to prove that Iim||rn —S|| exists, from Proposition (2.1),and by define of G, getting
nN—oo

I

n+l

-9|<

h,(r, =5)+(1=h,)(G'™r, —s3)

<h,[r, =+ @-h,)

e
<h,|r, =s|+@=h,)|r, = 5|
S”rn —S||. . S|||’1—S||
So Vse R} (G) , {]|I’n —S“}is bounded and non-increasing, which mean r|]im ||I’n —S|| exists by [27, Theorem
—>00
2]. Hence, the sequences {rn} and {G””)rn} are bounded w.r.t norm,

Since A is UCBS then it is reflexive, and {rn} is bounded, so by [30,Theorem 9], then {rn} is weakly sequentially
compact. Implying 3 {rnl } C {I’n} such that {I’nI } is weakly converge to r. For any fixed n, there exists large
enough N, such thatr, < n, By Proposition (1.9) 7, S 7.

To show that {I',} converges to r weakly. If not, then there is a subsequence {rnj}of {I’n}where{rnj}weakly
converge to w, such that W#I. For any fixed n, 3N; such thatr,, 3 T And r,,; = w (by Proposition (1.9)).
Since {I’nI }weakly converges to r, thus r < w.Using the same method of proof to havew < r .Then W=,

which is a contradiction. Then I, —2 5r.

Thirdly, to prove liminf Hrn —Gf(”)rnH =0, assume that lim|r, —s| =c,if ¢ = 0the conclusion is trivial. If c
n—oo

n—o0

> 0, then there exists U,V ,and some M g such that

O<ucx< ||rn —S|| <V,Vn > M . Otherwise, by Proposition (1.8), let t = ||I’n —S|| and f=h,vn>M

I

n+1

EE

h,(r, =5)+(1=h,)(G'™r, )
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r-G
<|r, —s|| 1-2min{h,,1- h}5[ T H

r -G n
<l || 1- zm{fﬁ,

that mean
-G

r-Gr,
u 8, | E— | <2, =5 2,6, E——1 |< ], =5[]
Then, getting

Zi:u/’té[

n=M+1

G

—J 3" (=5l It~ 5D =15 -5l I5 -,

n=M+1

and therefore

f(n)

e -G
Z ui s, L%

n=M+1

i—>+o0

Hr -G'™r
=0 hold, if not then liminf §,| =— |>0
\Y

nN—oo

]< lim |ry,,, = || —[|r, — || < +o0.

Hence, liminf o [H

n—oo

Jr.-G"r]
3q > 0and p>0, then &, [ J>q>0‘v’n>p

r — -G

n Gf(n)r“” n
Y > UqA,, .by condition Zu/i = +00 :>Z}L§ f =400,

n=1

:>uﬁn5{

.. n -G n
which contradiction. So, liminf §,| —  |=0
\Y

n—oo

The properties of modulus of convexity implies

liminf Hr f(”)rnH:O

N—o0

It is easy to see {I }is weakly converges, Since H{Fnj}c{l‘n}, where IimHI’nj -G
n—o0

=0 and {rnj}weakly
converges to I'.so {I' } weakly converges to r. Then, by Theorem (2.2), Gr =rie,r € F*(G).

A same proved method using in the following
Theorem(3.2) : Let A be UCBS. Let @ # D < A, Diis closed convex and G : D — D be ma &, -n mapping.
Suppose that the norm |||| is monotone and the sequence {I’n} define by (7) with Gr; £ r; and F; ()EI%R
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If the iteration condition { N, } = (0,1) satisfy Z/ln =+o0, A, =min{h,, (1-h,)}for every positive integer n,
n=1

then {I. } weakly converges to a some fixed point I € F*(G) and r < 7,.

Recall normal cone to state the next corollary, a cone P is called normal [27], if 3K > 0, such that
O<r<es|r|<K|e| foran €A

Corollary (3.3): Let A be UCBS (4, ) w.r.t. the normal cone P, and D be a nonempty closed convex subset of
A.let G:D —> Dbeama o, -n mapping. Suppose that the sequence {rn} define by (4) with Gr; S r; and
F/(G)#D orr = G6ryand F'(G) %@ . If the iteration condition{h,} < (0,1) satisfy

+o0
Z/‘Ln =+, 4, = min{h,, (1N, )}or an integer n>0, then {r,} weakly converges to a some fixed point

n=1

rerF(G) .

Theorem (3.4): Let A be UCBS,J# D — A, Diis closed convex and G : D — D be ma &, -n mapping

.Suppose that the norm |||| is monotone and the sequence {I‘n} define by (7) with 0 < Gr; S 7; and

F/(G) # D . If the iteration condition { h, } = (0,1) satisfy Zin =+o0, 4, =min{h ,(L—h_ )}or an integer

n=1

n >0, then {I,} strongly converges to a some fixed point e F*(G)andr < r,.

Proof: Depending on the Theorem (3.1) that {I' } weakly converges to I, since r € F.*(G)
thenr; Srandr; £ '™y, < 6/™r = r from definition (4)

r,= hll’1 +(1— hl)Gf(”)rl =Gr1 sor; 31, 3Gy

Letr, S 7, then /™y, S /Wy =1

and by definition (4) we have r, S 17,47 S /™1, S r.Then

0= r; 31, Sy S foranintegern > 0.

Since the |||| is monotone, then 0 < ||I’1|| < ||I’n || < ||rn+1|| < ||r||,Vn

Note that, the sequence {||rn|[}of real number is bounded and monotone increasing. Then lim ||I’n || exists and
nN—o0

lim]lr, | <]lr|

n—oo

Hence, ||I‘|| <liminf ||rn || = Iim||rn|| < ||I’|| which imply rl1im||rn || = ||I’|| , by the weakness of lower semi-
o

n—o0 n—o0

continuity of the norm. Since A is UCBS, then it has Kadec-Klee property ,i.e.,

r,——r and |r,| = || implies limr, =r.

nN—oo
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Theorem (3.5): Let A be UCBS, & # D < A, Diis closed convex andG: D — D be

ma &, -n mapping. Suppose that the norm |||| is monotone and the sequence {I,} define by (7) with Gr; <y

and F (G) # . If the iteration condition { I, } = (0,1) satisfy Z/In =400, A, =min{h,,(1—h,)}for every

n=1

positive integer n, then {I, } strongly converges to a some fixed pointr € F*(G) and r < r,vn.

Proof: Depending on the Theorem( 3.1) that {I', } weakly converges to I since r € F.*(G)

thenr S r;and r = G ™r 5 /™1, < 1y, from definition (4)

r,=hr+1- hl)G””’rl =GI.So,r 3 Gry S13 31y Let, v S 1, then 67 = r 5 651, and by definition
(7) we have r 3 6™, 31, S 1,,. Then

03 r S 147 S 1, S 1ryforaninteger n > 0.

Then, 02 —r; 2 -1, S -1y S -1,V

Since the norm |||| is monotone, then 0 < ||rl|| < ||rn|| < ||rn+1|| < ||r||,Vn

The rest of the proof is the same as Theorem (3.4).

Corollary (3.6): Let A be UCBS w.r.t. the normal cone Pand @ # D < A, D is closed convex. Let G: P —»> P
be a ma &, -n mapping. Suppose that {I‘n} asin (7)with ;=0 and F(G) = . If the iteration condition {

o0
h,}< (0,1) satisfy Z/In =+o0, 4, =min{h_, (1—h,)}for every positive integer n, then {r, } strongly
n=1

converges to r € F(G).
Proof: It's clear that F(G) = F*(G) = F}(G) . Since I, =0 and G(P) P, thenr; = 0 3 GO = Gr;.
Consequently, the conclusion comes directly from Theorem (3.4).

Stability of FH-iterative Scheme

Recall the following definitions:

Definition (4.1): [25] A sequence {en} is an approximate of the sequence{rn} Sthere exists a decreasing

sequence of positive number {nn} converging to 77 > Osuch that ||I’n —en|| <n,Vn>k forany k €

Definition (4.2): [25] Let (A, || ||) be a normed space, G : A — Abe a mapping and {I’n} defined by I, € A
and I, = f(G,r),n>0. Suppose that {r, } converges to fixed point s of G. If for any approximate
sequence {e,} < Aof {r.},lim|e,,,— f(G,e,)|=0 implies lime, =5, then {r} is said to be weakly

n—ow n—oo
stable w.rt. G.

Definition (4.3): [16] The sequences {r } and {en} are called equivalent if Iim||rn —€, || =0
n—o0

n

Definition (4.4): [32] Let{rn} be iterative scheme converges strongly to S € F(G) . If for any equivalent

sequence {en} c A of {rn} ,Lim||en+1 - f(G,en)|| =0 implies Lim €, =S, then the iteration sequence{rn}
o0 —0©

is said to be weak-w? stable w.rt G.
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0,re|o, ]
Example (4.5): LetG :[0,1] —[0,1], define by Gr =
5 re (5; 7]
where [0,1] is endowed with the usual metric. G is continuous at every point of [0,1] except at % and 0 is the

only fixed point of G. We will show that the Mann iteration is weak —stable. Let I, €[0,1] and

r =hGr +@-h)r,, h e(01)mith h =—— vn=0,12..
n+2

r,=0,Gr,=0,h, :% :>r1=(1—%)-0+%-0=0

then I =0.

Suppose that { }approxmate sequence of { } .Then, there exists a decreasing sequence of nonnegative

numbers {nn} converging to some 77 > 0for n — oo
such that |I’n —en| <n, n>k.Then —n, <r, +€, <1, which mean -1, +1, <TI, +€,+1],

0<r +e +n,, 0<e <r +nVn=K Since r, =0 =0<¢, <7,Vn >k, =max{2,k} .Choose {77,}such
1

-

that 77, sz,nzkl:ogen SE.SO Ge, =0.Then ¢, =le,, - f(G,e,)|
N¥3 (1 h)e, +Gen,| = |- "2 |and lim|-2n =2 |-
2n+n n°+4n - 4n° 4+ 4n

Now, lime, =0 which implies |Im e, =0, so the Mann iteration is weakly stable w.r.t G.

n—oo

Theorem (4.6): Let A be UCBS and D#Dc A D is closed convex and G : D — D be ma «,, -n with
fixed point s. Suppose that { } define by (4) withrpy < Gry, h,, € (0,7) and s S 1p. If {en} be any equivalent

. . 2
sequence of {r,} withr, < e, (ore, S 7, )then {r, }is weak- W™ stable w.rt G.

Proof: Consider {e }to be an equivalent sequence of {I’ } Letr, < e, by monotonicity of G /™,

G/ Me,.
Set ¢, =|e,..— f(G.e,)||. Let &, = Oas n —o0.Then
. =l <lln.s = TG +[ T (Gre) =]+ =]

<eg, +|(he, +(1—hn)Gf(”)en)—(hn r +(1-h)G

n+1 ”

<g +h e, -, ||+HG””)en -G

-9

n+l

<g, +h e, —|rn||+(1—hn)[HGf<“>en G's|+|G"Ms-G

M)+ sl

<g +h e, —r|+@-h,) [af o |G e, 5|+ @i ey =3[+ @22, )6, - s||]

[“f(n) G'™r, - SH“L“fm)”r =+ (@—2a; ), s||]+||n+1 s

Let limn — oo on both side. Then Iim||e || 0.So { }ls weak - W’ stable w r. t G.
n—o0

n+l
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In the following example, we present a compression between the behaviors of FH-scheme and two different
iterative schemes.
s+3

Example (2.10): Let G:R - R,G(s) = -

be a function with fixed point s=3.Consider the following three
X1 € [0,90), X041 = hy X + (1= h)G 6 ()
Y1 €10,00), yni7 =hyy, + (1= hy)G" ()

21 €[0,0),2p47 = hy 2, + (1= hy)G(z,)

(see, [22])

(see, [22])

Fix xy =y, = z;=20andh, = ﬁ By using Math lap, we show in tables (1-2)
and figures (1-2) that {x_} is faster than {y,} and {z,} where

Incase 1 x; =y; =2z; =0.1.

case2 x;=y;=2z;=-15.

case 3 x; =y; =z; = 20.

Table (1) Table (2)

0.10000000 | 0.10000000 0.10000000 -1.50000000 | -1.50000000 -1.50000000
0.10000000 | 0.10000000 0.10000000 -1.50000000 -1.50000000 -1.50000000
0.52469517 | 0.52469517 0.52469517 -0.84099026 -0.84099026 -0.84099026
1.04778863 1.30933536 1.04778863 -0.02929351 0.37655487 -0.02929351
1.77986789 | 1.94333460 1.53584147 Sl B, Y
237003128 | 2.38141730 1.94052494 2.02240283 204015029 A:99398027
273116681 | 2.65595283 225399803 e el L ]
299999998 | 2.99998406 | 2.99759740 e ascet S e B R e
3.00000000 | 2.99999334 2.99853008 - :

B . 5 5 -
3.00000000 2.99999999 2.999957173 3.00000000 3.00000000 2.99997688
3.00000000 | 3.00000000 2.99997487

3.00000000 3.00000000 | 2.99999999
3.00000000 | 3.00000000 2.99999999 3.00000000 300000000 2.99999999
3.00000000 | 3.00000000 2.99999999 3.00000000 | 3.00000000 | 3.00000000
3.00000000 | 3.00000000 3.00000000
3.00000000 3.00000000 | 3.00000000
3.00000000 | 3.00000000 3.00000000 3.00000000 3.00000000 3.00000000
3.00000000 | 3.00000000 3.00000000 3.00000000 3.00000000 | 3.00000000
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Table (3) Figure(3)

n Xy Yu Zy

a 20.00000000 20.00000000 20.00000000
1 2000000000 20.00000000 20.00000000
2 17.51040764 17.51040764 17.51040764
3 14.44399770 1291079273 14.44399770
20 3.00000003 3.00003902 300861677
21 | 3.00000001 3.00001614 3.00524855
22 3.00000000 3.00000043 3.00069495
30 3.00000000 1.00000000 3.00005164

42 | 3.00000000 3.00000000 3.00000008

43 | 3.00000000 3.00000000 3.00000005

44 3.00000000 3.00000000 3.00000003

45 3.00000000 3.00000000 3.00000001

46 3.00000000 3.00000000 3. 00000000 10 20 30 40

47 300000000 300000000 3.00000000
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