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Abstract  

This paper introduces the close correspondence between Pascal’s Triangle and the recently published mathematical 

formulae those provide the precise relations between different Metallic Ratios. The precise correlations between 

various Metallic Means can be substantiated with Pascal’s Triangle, as described herein. 
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Introduction     

The renowned Pascal’s Triangle, having the binomial coefficients in its rows and the Fibonacci Numbers in its shallow 

diagonals, is much celebrated in algebra, probability theory, and combinatorics.  

However, more importantly, now it has been observed that this intriguing Triangular array of numbers also highlights 

the precise mathematical relations between different Metallic Ratios.  

The Mathematical Formulae those provide the precise relations between different Metallic Means have been recently 

published in the works mentioned in References [1] and [2]. 

It is also observed that the precise correlations between various Metallic Means given by those formulae, can also be 

substantiated with Pascal’s Triangle. 

The prime objective of this work is to bring together this Pascal’s Triangle and a recently published formula that 

provides the accurate mathematical relations between different Metallic Means. 
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As a brief introduction, each Metallic Mean 𝛅n is the root of the simple Quadratic Equation X2 - nX - 1 = 0, where n is 

any positive natural number.  

Thus, the fractional expression of the nth Metallic Ratio is 𝛅n = 
  𝐧 + √𝐧² + 𝟒

𝟐
        

Moreover, each Metallic Ratio can be expressed as the continued fraction:   

𝛅n =  n + 
 𝟏

 𝐧 +  
 𝟏

  𝐧  +    
 𝟏

 𝐧  +  …      

  ;  And hence, 𝛅n =  n + 
 𝟏

𝛅𝐧
                     …..References: [3], [4], [5]     

 

MATHEMATICAL CORRELATIONS AMONG DIFFERENT METALLIC RATIOS :  

If K, m and n are three positive integers such that n is the smallest of the three integers and  
 𝐦𝐧 + 𝟒

𝐦 − 𝐧
 = k 

then, it is observed that  

 𝛅ₘ × 𝛅ₙ + 𝟏

 𝛅ₘ −  𝛅ₙ
  = 𝛅k  where  𝛅k,  𝛅m  and 𝛅n are the kth, mth and nth Metallic Means respectively.  

This explicit formula, among several other formulae those give the precise mathematical relations between different 

Metallic Means, has been recently published in the works mentioned in References [1] and [2].  

The “TRIADS” Of Metallic Means :  

The abovementioned explicit formula gives the “Triads” of Metallic Means  as  [𝛅n, 𝛅m, 𝛅k ]  

Where    
 𝐦𝐧 + 𝟒

𝐦 − 𝐧
 = k    and    

 𝐤𝐧 + 𝟒

𝐤 − 𝐧
 = m 

hence,   
 𝛅ₘ × 𝛅ₙ + 𝟏

 𝛅ₘ −  𝛅ₙ
  = 𝛅k     and also   

 𝛅ₖ × 𝛅ₙ + 𝟏

 𝛅ₖ −  𝛅ₙ
  = 𝛅m    

Moreover, 

               
 𝐤𝐦  − 𝟒

𝐤 + 𝐦
 = n       and      

 𝛅ₖ × 𝛅ₘ − 𝟏

 𝛅ₖ + 𝛅ₘ
  = 𝛅n      

For example, if n=6, the three integers 6, 11 and 14 satisfy the prerequisite  
 𝐦𝐧 + 𝟒

𝐦 − 𝐧
 = k ; Hence, the three Metallic 

means 𝛅6, 𝛅11  and 𝛅14 form a Triad [ 𝛅6, 𝛅11, 𝛅14 ]  such that : 

                    
 𝛅₁₁ × 𝛅₆ + 𝟏

 𝛅₁₁ −  𝛅₆
  = 𝛅₁₄      and    

 𝛅₁₄ × 𝛅₆ + 𝟏

 𝛅₁₄ −  𝛅₆
  = 𝛅11      and also   

 𝛅₁₄ × 𝛅₁₁ − 𝟏

 𝛅₁₄ +  𝛅₁₁
 = 𝛅6  
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Noticeably, n=6 forms such multiple triads: 

 

 : Shaded Triads have been exemplified above. 

 

And, just like n=6 exemplified above, every integer forms such multiple triads: 

For example, n=10 

n 10 10 10 10 10 10 10 10 

m 11 12 14 18 23 36 62 114 

k 114 62 36 23 18 14 12 11 

 

Noticeably, Odd n forms Fewer Triads 

n 5 5 5 5 5 5 5 5 

m 6 34       

k 34 6       

 

It may be noticed from above Table that every nth Metallic Mean can give precise values of various Metallic Means by 

the formula 
 𝛅ₘ × 𝛅ₙ + 𝟏

 𝛅ₘ −  𝛅ₙ
  = 𝛅k , maximum upto (n2 + n + 4)th Metallic Mean:  

mmax = kmax = (n2 + n + 4) 

Also noticeably, the Even Integers ( Even ns ) form comparatively more Triads than the Odd ns . Several such patterns 

about these Triads of Metallic Means have been discussed in detail in the works mentioned in References [2] and [1]. 
Here, let us consider the close correspondence of the abovementioned Formula and TRIADS with the Pascal’s Triangle. 

Metallic Ratios and the Pascal’s Triangle : 

The abovementioned Formula and the TRIADS can be substantiated with the Pascal’s Triangle, as follows.  

Consider the integers n and m on the “Natural Numbers Diagonal” of the Pascal’s Triangle, the precise value of k 

can be derived from the “Triangular Numbers Diagonal” of the Pascal’s Triangle.  

n 6 6 6 6 6 6 6 6 

m 7 8 10 11 14 16 26 46 

 k 46 26 16 14 11 10 8 7 
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                          Figure 1: TRIADS of Metallic Means and the Diagonals of Pascal’s Triangle 
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If m and n are two consecutive integers from the Natural Numbers Diagonal :  m-n=1,  

then the integer, say x,  on the Triangular Numbers Diagonal, adjacent to n and m, gives value of k by an imperical 

formula :   

If n is (𝑛
1

) i.e. the First element in nth 
Row. As n is on Natural Number Diagonal, it’s on nth Row. 

And m is (𝑛+1
1

);  

and x is (𝑛+1
2

) i.e. the nth Triangular Number 

then, k = 2x + 4 ; as shown below in Figure 2.  

Figure 2: TRIADS of Metallic Means with m-n=1,  and calculating the value of k from Pascal’s Triangle 
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Similarly, the TRIADS of Metallic Means with non-consecutive integers n and m can also be derived from the Pascal’s 

Triangle, as described below. 

For instance, if  m-n=2, 

then the couple of integers, say x and y, on the Triangular Numbers Diagonal, adjacent to n and m respectively, gives 

value of k :   

If n is (𝑛
1

) and m is (𝑛+2
1

);  

then x is (𝑛+1
2

)  and  y is (𝑛+2
2

) 

And here  k  =  
 (𝐱+𝐲)+𝟑 

𝟐
 ; as illustrated below in Figure 3. 

 

Figure 3: TRIADS of Metallic Means with m-n=2,  and calculating the value of k from Pascal’s Triangle  
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Similarly, the TRIADS of Metallic Means with higher values of  (m-n) can also be derived from the Pascal’s Triangle, in 

similar manner. 

Consider m-n=4  

 i.e.   n is (𝑛
1

) and m is (𝑛+4
1

); 

In this case, the integers w, x, y and z on the Triangular Numbers Diagonal, lying between n and m, with Row 

numbers from (n+1) to (m)  i.e. Triangular Numbers from (𝑛+1
2

) to (𝑛+4
2

) give the value of k as :    

      k  =  
 (𝐰+𝐱+𝐲+𝐳)−𝟐 

𝟖
 ; as shown below in Figure 4.   

 

Figure 4: TRIADS of Metallic Means with m-n=4,  and calculating the value of k from Pascal’s Triangle  
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Thus, the Integers on the Triangular Numbers Diagonal of Pascal’s Triangle, with Row numbers from (n+1) to (m) 

give the value of K.   

Also, for m-n=4, the TRIAD can be derived from the Pascal’s Triangle by another method.    

The Integer, say  P,  on Triangular Numbers Diagonal, in Row (n-1) can give the precise value of k by another 

imperical formula : 

If n is (𝑛
1

) and m is (𝑛+4
1

);   then p is (𝑛−1
2

) 

and,  k  = P +  
(𝟏𝟎 − 𝐧 )  ×  𝐧  

𝟒
   

For illustration, consider following Figure 5. 

Figure 5: TRIADS of Metallic Means with m-n=4,  and calculating the value of k from Pascal’s Triangle  
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Thus, the Integers on the Triangular Numbers Diagonal of Pascal’s Triangle give the value of K that forms a TRIAD of 

Metallic Means with n and m from the Natural Numbers Diagonal : [𝛅n, 𝛅m, 𝛅k ]; the Three Metallic Ratios precisely 

befitting the Formulae :  

𝛅ₘ × 𝛅ₙ + 𝟏

 𝛅ₘ −  𝛅ₙ
  = 𝛅k      and     

 𝛅ₖ × 𝛅ₙ + 𝟏

 𝛅ₖ −  𝛅ₙ
  = 𝛅m        and also       

 𝛅ₖ × 𝛅ₘ − 𝟏

 𝛅ₖ + 𝛅ₘ
  = 𝛅n       

Hence, the Pascal’s Triangle and its idiosyncratic array of numbers, can provide the abovementioned TRIADS of 

Metallic Means, by various computational methods, using the integers on its various Diagonals. 

On the last note, it is worth mentioning here that several such new intriguing properties of Metallic Ratios and these 

TRIADS of Metallic Means are described in details in the works mentioned in the References. For instance, these 

TRIADS are found to be closely associated with Pythagorean Triples and Pythagorean Primes [2][11]; the geometric 

substantiation of Metallic Ratios and their TRIADS [2] [6] [7] [8] [9] [10]; and special positions of Integers 3, 6 and 9 

in the realm of Metallic Means [2][12]. Further, all mathematical formulae those provide the precise relations between 

different Metallic Means are described in the work mentioned in Reference [1]. 

 

Conclusion:  

This paper introduced the close correspondence between Pascal’s Triangle and Metallic Means. The TRIADS of Metallic 

Means are produced by an imperical formula that provides the precise relations between different Metallic Ratios. And, 

such TRIADS of Metallic Means can also be substantiated with Pascal’s Triangle, as described in this paper. 
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