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Abstract  

This work illustrates the intriguing relation between Metallic Means and the Numbers 3, 6 and 9. These numbers 

occupy special positions in the realm of Metallic Ratios, as elaborated herein.  
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Introduction       

The proponents of Vortex Based Mathematics will continue to make irrational claims, and their opponents will 

continue to debunk them on grounds of the Base-10 Number System. Let the both camps do their jobs with 

missionary zeal. Author’s objective is just to appreciate the beauty of numbers and the special attributes of the 

numbers 3, 6 and 9, especially their unique patterns in the realm of Metallic Means.  

Such intriguing pattern of the integers 3, 6 and 9 was introduced in the work mentioned in Reference [1]. 

The prime objective of this paper is to supplement that work and further illustrate the unique pattern of numbers 3, 6 

and 9 in the domain of Metallic Numbers. 

As a brief introduction, each Metallic Mean 𝛅n is the root of the simple Quadratic Equation X2 - nX - 1 = 0, where n is 

any positive natural number.   

Thus, the fractional expression of the nth Metallic Ratio is   𝛅n = 
  𝐧 + √𝐧² + 𝟒

𝟐
        

Moreover, each Metallic Ratio can be expressed as the continued fraction:   
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𝛅n =  n + 
 𝟏

 𝐧 +  
 𝟏

  𝐧  +    
 𝟏

 𝐧  +  …      

  ;  And hence, 𝛅n =  n + 
 𝟏

𝛅𝐧
                     …..References: [3] [4] [5]     

 

Metallic Ratios and Numbers 3, 6 , 9      

Consider the Integer Sequences and the corresponding Lucas Sequences associated with various Metallic Means [13] 

[14]. Remarkably, the Digital Roots of every Fourth Terms of Fibonacci, Lucas, Pell and Pell-Lucas sequences are 3, 6 

or 9.  F4, F8, F12…….., L2, L6, L10…….., P4, P8, P12……… and PL2, PL6, PL10…… all have their Digital Roots 3, 6 or 9, and it holds 

true for the Integer Sequences as well as corresponding Lucas Sequences associated with any nth Metallic Mean 𝛅n ; 

provided n is not multiple of 3.  

If n is multiple of 3, like Bronze Ratio 𝛅3 or the Aluminium Ratio 𝛅6 or the Ninth Mean 𝛅9 and so on : here, the 

digital roots of Alternate terms of associated Integer Sequences and corresponding Lucas Sequences are 3, 6, or 9. 

 

Mathematical Relations between different Metallic Means: The TRIADS of Metallic Ratios, 

and the Numbers 3, 6 , 9 

If K, m and n are three positive integers such that n is the smallest of the three integers and  
 𝐦𝐧 + 𝟒

𝐦 − 𝐧
 = k 

then, it is observed that  

 𝛅ₘ × 𝛅ₙ + 𝟏

 𝛅ₘ −  𝛅ₙ
  = 𝛅k where  𝛅k,  𝛅m  and 𝛅n are the kth, mth and nth Metallic Means respectively.  

This explicit formula, among several other formulae those give the precise mathematical relations between different 

Metallic Means, has been recently published in the works mentioned in References [2] and [1].  

The abovementioned explicit formula gives the “Triads” of Metallic Means, as  [𝛅n, 𝛅m, 𝛅k ]  

Where   
 𝐦𝐧 + 𝟒

𝐦 − 𝐧
 = k    and    

 𝐤𝐧 + 𝟒

𝐤 − 𝐧
 = m      

hence, 
 𝛅ₘ × 𝛅ₙ + 𝟏

 𝛅ₘ −  𝛅ₙ
  = 𝛅k     and also   

 𝛅ₖ × 𝛅ₙ + 𝟏

 𝛅ₖ −  𝛅ₙ
  = 𝛅m    

Moreover,  

               
 𝐤𝐦  − 𝟒

𝐤 + 𝐦
 = n       and      

 𝛅ₖ × 𝛅ₘ − 𝟏

 𝛅ₖ + 𝛅ₘ
  = 𝛅n      
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For example, if n=6, the three integers 6, 11 and 14 satisfy the prerequisite  
 𝐦𝐧 + 𝟒

𝐦 − 𝐧
 = k ; Hence, the three Metallic 

means 𝛅6, 𝛅11  and 𝛅14 form a Triad [ 𝛅6, 𝛅11, 𝛅14 ]  such that : 

     
 𝛅₁₁ × 𝛅₆ + 𝟏

 𝛅₁₁ −  𝛅₆
  = 𝛅₁₄     and also   

 𝛅₁₄ × 𝛅₆ + 𝟏

 𝛅₁₄ −  𝛅₆
  = 𝛅11        Also, 

 𝛅₁₄ × 𝛅₁₁ − 𝟏

 𝛅₁₄ +  𝛅₁₁
 = 𝛅6  

 

Noticeably, n=6 forms such multiple triads: 

 

   : Shaded Triads have been exemplified above. 

 

And, just like n=6 exemplified above, every integer forms such multiple triads. Noticeably, every nth Metallic Mean can 

give precise values of various Metallic Means by the formula:  
 𝛅ₘ × 𝛅ₙ + 𝟏

 𝛅ₘ −  𝛅ₙ
  = 𝛅k , maximum upto (n2 + n + 4)th 

Metallic Mean:   mmax = kmax = (n2 + n + 4) 

 

Special Pattern regarding Numbers 3, 6 and 9 : 

Consider the TRIADS of Metallic Ratios with various integer values of n, as shown below in Table 1.  

Noticeably, in the following Table 1 :  

If n is NOT multiple of 3, the alternate values of m and k have their digital roots 3, 6, or 9.  

And, if n is multiple of 3 : None of the associated ms and ks have their digital roots 3, 6, or 9.  

 

Table 1: “Triads” of Metallic Means formed by the First Ten Metallic Means: 

                         

 

n 6 6 6 6 6 6 6 6 

m 7 8 10 11 14 16 26 46 

 k 46 26 16 14 11 10 8 7 

n 1 1 1 1 1 1 1 1 

m 2 6       

k 6 2       
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: Alternate ms and ks have their digital roots 3, 6, or 9. 

 

 

 For n= 3, 6, 9 : 

 None of the associated ms and ks have their digital roots 3, 6, or 9.  

 

n 4 4 4 4 4 4 4 4 

m 5 6 8 9 14 24   

k 24 14 9 8 6 5   

 

n 5 5 5 5 5 5 5 5 

m 6 34       

k 34 6       

 

 

: None of the associated ms and ks have their digital roots 3, 6, or 9. 

 

 

n 7 7 7 7 7 7 7 7 

m 8 60       

k 60 8       

 

n 2 2 2 2 2 2 2 2 

m 3 4 6 10     

k 10 6 4 3     

n 3 3 3 3 3 3 3 3 

m 4 16       

 k 16 4       

n 6 6 6 6 6 6 6 6 

m 7 8 10 11 14 16 26 46 

 k 46 26 16 14 11 10 8 7 
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n 8 8 8 8 8 8 8 8 

m 9 10 12 25 42 76   

k 76 42 25 12 10 9   

 

 

 

: None of the associated ms and ks have their digital roots 3, 6, or 9. 

 

n 10 10 10 10 10 10 10 10 

m 11 12 14 18 23 36 62 114 

k 114 62 36 23 18 14 12 11 

 

More remarkably, the number of Triads formed ( or the numbers of ms and ks ) increase noticeably for n = 6 and 9 

For Even ns : the number of Triads exhibit noticeable rise at n = 6, 16, 26…….and so on. 

For Odd ns : the number of Triads exhibit noticeable rise at n = 9, 19, 29…….and so on. 

 

Moreover, it can be noticed from above Table : if n is multiple of 3, the Digital Root of  |𝐤 − 𝐦| is 3, 6 or 9. 

And, if n is NOT multiple of 3, the Digital Root of NONE of the |k − m| value is 3, 6 or 9. 

 

 

 

 

 

 

n 9 9 9 9 9 9 9 9 

m 10 14 26 94     

k 94 26 14 10     

n 3 3 3 3 3 3 3 3 

m 4 16       

 k 16 4       

|𝐤 − 𝐦| 12 12       
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Further, many more such intriguing patterns are embedded in the domain of Metallic Means.   

For illustration, consider following couple of examples, based upon the formula  
 𝛅ₘ × 𝛅ₙ + 𝟏

 𝛅ₘ −  𝛅ₙ
  = 𝛅k  

Consider the Triads of Metallic Means formed with n = 6, and the values of (m-n), as shown below. 

 

 

 

Note the bottom row in above table which contains the values of (m-n).   

The numbers in this (m-n) row exhibit typical 1 : 2 : 4 : 5 : 8 : 10 ×( 1 : 2 : 4 ) pattern, and remarkably the numbers 

3, 6 and 9 are conspicuous by their absence from this row !  

For Even ns : the (m-n) values exhibit typical 1 : 2 : 4 : 5 : 8 : 10 ×( 1 : 2 : 4 )  pattern.  

For Odd ns : the pattern based upon product of the Prime Factors of ( n2 + 4 ) is observed.   

In either case, the integers 3, 6 and 9 are conspicuous by their absence from these (m-n) or (k-n) values. 

But, what’s about integer 7 ? Consider another example with n = 34, as shown below.  

n 6 6 6 6 6 6 6 6 

m 7 8 10 11 14 16 26 46 

 k 46 26 16 14 11 10 8 7 

|𝐤 − 𝐦| 39 18 6 3 3 6 18 39 

n 9 9 9 9 9 9 9 9 

m 10 14 26 94     

k 94 26 14 10     

|𝐤 − 𝐦| 84 12 12 84     

n 6 6 6 6 6 6 6 6 

m 7 8 10 11 14 16 26 46 

m-n 1 2 4 5 8 10 20 40 
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As any nth Metallic Mean 𝛅n can give the precise values of other Metallic Means 𝛅m and 𝛅k by the formula: 

 
 𝛅ₘ × 𝛅ₙ + 𝟏

 𝛅ₘ −  𝛅ₙ
  = 𝛅k ;  with  kmax = mmax = n2 + n + 4 ;  

Hence,  (m-n)max = ( n2 + 4 ) which is the all important Radical in the fractional expression of nth Metallic Mean 𝛅n 

In above table with n = 34,  (m-n)max = 1160 

Consider the Prime Factorization of this (m-n)max : 1160 = 1 × 2 × 2 × 2 × 5 ×  29  

Note the bottom row (m-n) in above table with n = 34, the numbers in the (m-n) row exhibit the characteristic 

pattern based upon these factors 1, 2, 5 and 29. Numbers in this (m-n) row are the 1 : 2 : 4 : 5 : 8 : 10 ×( 1 : 2 : 4 )  

multiples of the prime factors 1, 2, 5 and 29.  

Noticeably, the integer 7 is present not directly as (m-n), but it’s present only as the Digital Roots of certain    

(m-n) values; for instance the red shaded number 232 in above example. Such presence of 7 as Digital Root of 

(m-n) values is observed with n = 8, 10, 11, 14, 16, 22, 26, 29, 34, 36, 39, and so on. Remarkably, with n = 26, 

36, 39, etc. multiple (m-n) values are found to have their digital root Seven. 

However, the integers 3, 6 and 9 are invariably missing from this pattern, they are neither present directly as   

(m-n), nor as the digital root of any (m-n) or (k-n) values.  

The more remarkable aspect of Integer 7 in the realm of Metallic Ratios can be observed in the Triads of Metallic 

Means with n = 7 and Multiples of 7. 

If n = 7, 14, etc. : the values of   
 𝐤

 𝐧
    and  

 𝐤 + 𝐦

𝐧
  exhibit a very characteristic pattern. 

For instance, consider the Triad  [ 𝛅7, 𝛅8, 𝛅60 ]   

 𝐤

 𝐧
  = 

 𝟔𝟎

 𝟕
    =  8.571428571428571428571428571428…….. 

 𝐤 + 𝐦

 𝐧
   =  

𝟔𝟎 + 𝟖

𝟕
    =  9.71428571428571428571428571428…… 

Note the Digits in Decimal Places : Numbers 3, 6 and 9 are conspicuous by their absence from the Repeating Pattern 

of 571428.  

n 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 

m 35 36 38 39 42 44 54 63 74 92 150 179 266 324 614 1194 

m-n 1 2 4 5 8 10 20 29 40 58 116 145 232 290 580 1160 
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Exactly similar pattern  is observed  in all Triads with n = 14 :  

like  [ 𝛅14, 𝛅15, 𝛅214 ] ; [ 𝛅14, 𝛅16, 𝛅114 ] ;  [ 𝛅14, 𝛅18, 𝛅64 ] ; [ 𝛅14, 𝛅19, 𝛅54 ] ; [ 𝛅14, 𝛅24, 𝛅34 ] ; etc. 

Consider the Triad  [ 𝛅14, 𝛅16, 𝛅114 ]   

 
 𝟏𝟏𝟒

 𝟏𝟒
    =  8.1428571428571428571428571428571428…….. 

𝟏𝟏𝟒 + 𝟏𝟔 

𝟏𝟒 
   = 9.28571428571428571428571428571428…… 

 

And, exactly same are patterns in the Triads with n = 28, 35, 56, etc. among other multiples of Seven; but NOT with          

n = 21, 42, etc. where Digital Root of n is multiple of Three. 

 

Moreover, consider the Triads of Metallic Ratios with n = 3 or 6 : 

For instance the Triad  [ 𝛅3, 𝛅4, 𝛅16 ] with  n = 3 

 𝐤

 𝐧
  = 

 𝟏𝟔

 𝟑
    =  5.3333333333333333333333333333333……… 

 𝐤 + 𝐦

 𝐧
   =  

𝟏𝟔 + 𝟒

𝟑
   =  6.666666666666666666666666666666……. 

Note the 3s and 6s in the Decimal places. 

Similarly, the Triads  with  n = 6, like  [ 𝛅6, 𝛅11, 𝛅14 ] ; [ 𝛅6, 𝛅10, 𝛅16 ] ;  [ 𝛅6, 𝛅8, 𝛅26 ] ; [ 𝛅6, 𝛅7, 𝛅46 ] ; etc. 

 𝐤

 𝐧
  = 

 𝟏𝟒

 𝟔
    =  2.3333333333333333333333333333333…… 

 𝐤 + 𝐦

 𝐧
   =  

𝟏𝟒 + 𝟏𝟏

𝟔
    =  4.166666666666666666666666666666…… 

 

Further, the Triads of Metallic Ratios with n = 9 and the multiples of nine 9 exhibit their own characteristic patterns. 

The point is that the Numbers 3, 6 and 9 exhibit their very peculiar and distinctive attributes, in the dominion of 

Metallic Numbers. 
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Moreover, the idiosyncracy of 3, 6 and 9 is exhibited in several other such patterns of Metallic Means and their Triads. 

For instance, if n is multiple of 3 :  the digital roots of  [(m-n) + (k-n)] are invariably  4, 5, 4, 5…….  

And, if n is NOT multiple of 3 :  the digital roots of  [(m-n) + (k-n)] are invariably  3, 6 , or  9 , as shown below. 

 

For example,  

consider n = 30 ( digital root of n is 3 ) 

 

n 30 30 30 30 30 30 30 30 

m 31 32 34 38 143 256 482 934 

k 934 482 256 143 38 34 32 31 

m-n 1 2 4 8 113 226 452 904 

k-n 904 452 226 113 8 4 2 1 

Digital Root of (m-n) + (k-n) 5 4 5 4 4 5 4 5 

 

Likewise, consider n = 29 ( digital root of n is other than 3, 6 or 9 ) 

n 29 29 29 29 29 29 

m 30 34 42 94 198 874 

k 874 198 94 42 34 30 

m-n 1 5 13 65 169 845 

k-n 845 169 65 13 5 1 

Digital Root of (m-n) + (k-n) 9 3 6 6 3 9 
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On the last note, it is worth mentioning here that several other intriguing properties of Metallic Ratios and these 

TRIADS of Metallic Means are described in details in the works mentioned in the References. For instance, these 

TRIADS are found to be closely associated with Pythagorean Triples and Pythagorean Primes [1][11]; the geometric 

substantiation of Metallic Ratios and their TRIADS [1] [6] [7] [8] [9] [10]; and close association of Metallic Means with 

the Pascal’s Triangle [12]. Further, all imperical formulae those provide the precise relations between different Metallic 

Means are described in the work mentioned in Reference [2]. 

 

Conclusion:  

This paper illustrated certain intriguing patterns in the realm of Metallic Means, and the special attributes of Numbers 

3, 6 and 9 therein. These integers 3, 6 and 9 are conspicuous by their peculiar numerical properties, particularly 

exhibited in the domain of Metallic Ratios. 
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