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Abstract:
This survey is the result of investigations suggested by recent publications on functional analysis and applied sciences.
It contains short accounts of the above theories not usually combined in a single document and completes the work
of D. Huet 2017. The main topics which are dealt with involve spectrum and pseudospectra of partial differential
equations, Steklov eigenproblems, harmonic Bergman spaces, rotation number and homeomorphisms of the circle,
spectral flow, homogenization. Applications to different types of natural sciences such as echosystems, biology, elasticity,
electromagnetisme, quantum mechanics, are also presented. It aims to be a useful tool for advanced students in
mathematics and applied sciences.

INTRODUCTION
The article is divided into several sections, presented in the alphabetical order, as follows
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1 Formation of patterns in reaction-diffusion systems

Set-up (This section is taken from A. Doelman [20]).

Definition 1. An N -component reaction-diffusion system for U = (U1, U2, ...UN ) ∈ RN is a system of the form

Ut = D∆U + F(U, µ), (1)

where U(x, t) depends on (x, t) ∈ Ω× R+, with Ω ⊂ Rn, D is a diffusion matrix i.e. a diagonal N ×N matrix with
strictly positives entries, ∆ is the Laplace/diffusion operator, µ ∈ Rm represents parameters and the vector field
F(U, µ) : RN → RN represents the nonlinear reaction terms.

Definition 2. In [58], A.M. Turing wrote “a system of chemical substances, called morphogens, reacting together
and difffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. Such a system,
although it may originally be quite homogeneous, may later develop a pattern or structure due to an instability of
the homogeneous equilibrium.

Definition 3. The trivial patterns of (1) are solutions Ū = (Ū1, ...ŪN ) of the algebraic equations:

F(Ū, µ) = 0 or F1(Ū, µ) = 0, ..., FN (Ū, µ) = 0 (2)

From now on, N=2, n=1, Ω = R(Cf. [20], Section 2). Following the notations of [20], set Ū1 = Ū , Ū2 = V̄ , F1 = G,F2 =

H.

1.1 Linear stability analysis: stability of the trivial patterns

Linearizing (1) around the trivial pattern (Ū + αeikx+λt, V̄ + βeikx+λt), we obtain the 2× 2 linear eigenvalue problem:

A(k, µ)

(
α

β

)
=

(
gu − k2 gv

hu hv − dk2

)(
α

β

)
= λ

(
α

β

)
(3)
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where
gu(µ) =

∂G

∂U
(Ū(µ), V̄ (µ);µ), gv(µ) =

∂G

∂V
(Ū(µ), V̄ (µ);µ), (4)

and where
hu(µ) =

∂H

∂U
(Ū(µ), V̄ (µ);µ), hv(µ) =

∂H

∂V
(Ū(µ), V̄ (µ);µ), (5)

The charasteristic polynomial associated to (3) is

λ2 − [(gu + hv)− (1 + d)k2]λ+ [(gu − k2)(hv − dk2)− gvhu] = 0 (6)

It defines 2 functions k ∈ R→ λ1,2(k;µ) ∈ C such that (for instance) Re(λ2(k)) ≤ Re(λ1(k)). The trivial state (Ū , V̄ )

is spectrally stable for the values of µ, for which

Re(λ2(k;µ)) ≤ Re(λ1(k;µ)) < 0, (7)

for all k ∈ R.

1.2 Destabilization by the Türing mechanism

As k → ∞, λ1 ∼ −dk2 and λ2 ∼ −k2 (or vice versa), and condition (7) is satisfied. Let µc be the critical value
beyond which there are values of k for which Re(λ1(k, µ)) > 0, and kc such that

Re(λ1(±kc;µc) = 0 and Re(λ2(k, µc)) > 0,∀k ∈ R (8)

The planar reaction ODE, associated to (1), with (U(x, t), V (x, t)) = (u(t), v(t)) is considered:

u̇ = G(u, v;µ), v̇ = H(u, v;µ). (9)

The following notations are introduced when µ is taken just beyond µc, and ε is smalll

µ = µc + ε2µ̃, k = kc + εk̃ (10)

and

λ1(k, µ) = ε2λ̃(k̃, µ̃), λcµ =
∂λ1

∂µ
(kc, µc) λck2 =

∂2λ1

∂k2
(kc, µc), a(c, µ̃,k) =

√
2λcµµ̃

|λck2 |
(11)

Under the conditions

gu < 0, hv > 0, gvhu < 0, 0 < d < 1 or gu > 0, hv < 0, gvhu > 0, d > 1, (12)

it is proved ([20], Lemma 2.1) that the trivial state (Ū , V̄ ) loses stability as µ̃ crosses through 0. For µ̃λcµ > 0, there
are two symmetric intervals k = ±kc + εk̃ with k̃ ∈ (−a(c, µ̃, k) +O(ε), a(c, µ̃, k) +O(ε)), such that there exist (real)
perturbations of (Ū , V̄ ) of the form

ei(kc+εk̃)x+ε2λ̃(k̃,µ̃)t

(
αc1 +O(ε)

βc1 +O(ε)

)
+ c.c. (13)

where (αc1, β
c
1) are the eigenvectors of A(kc, µc) corresponding to the eigenvalue λ1(kc, µc) = 0. With

ξ = εx, τ = ε2t, Ec(x) = eikcx, (14)

the above result can be written(
U(x, t)

V (x, t)

)
=

(
Ū

V̄

)
+ εA(ξ, τ)

(
αc1

βc1

)
Ec(x) + c.c.+O(ε2) (15)
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where A(ξ, τ) : R× R+ → C satisfies the Ginzburg-Landau equation

Aτ = −1

2
λck2Aξξ + µ̃λcµA+ LA|A|2; (16)

Here, L ∈ R is the Landau coefficient.

1.3 The onset of patterns formation: the Turing/Ginsburg-Landau bifurcation

It is assumed that L < 0. In fact, the author ([20]) shows that no (small amplitude) Turing patterns can exists beyond
the destabilization if L > 0. Introducing the new variables

τ̂ = µ̃λcµτ, ξ̂ = a(c, µ̃, k)ξ, Â =

√
|L|
µ̃λcµ

A (17)

and dropping the hats, equation (16) becomes

Aτ = Aξξ +A−A|A|2. (18)

This equation has a family of stationary spatially periodic solutions A(ξ, τ) = ReiKξ), R > 0 with

K2 +R2 = 1 and − 1 < K < 1. (19)

and by the Eckhaus/Benjamin-Feir-Newell criterion (cf. subsubsection 2.2.3), this periodic solution is spectrally stable
for − 1√

3
< K < 1√

3
and unstable for |K| ∈ ( 1√

3
, 1) ([20], Lemma 2.3).

The main result. Under the above conditions, when ε is sufficiently small, a Turing/Ginzburg-Landau bifur-
cation takes place as µ̃ crosses through 0 i.e. for µ̃λcµ > 0, there exists a continuous band of asymptotically stable
stationary spatially periodic patterns (Up(x; k), Vp(x; k)) of (1), with wave number

k(K) = kc + εa(c, µ̃, k)K (20)

and − 1√
3

+O(ε) < K < 1√
3

+O(ε). These spatially periodic patterns are O(ε) close to the trivial state (Ū , V̄ ) and are
approximated by (

Up(x; k, θ)

Vp(x; k, θ

)
=

(
Ū

V̄

)
+ ε(

√
1−K2 +O(ε))a(c, µ̃, k)

(
αc1 cos(k(K)x+ θ) +O(ε)

βc1 cos(k(K)x+ θ) +O(ε)

)
(21)

for any phase shift θ ∈ R, [20], Theorem 2.4.

Remark 1. In [20], Section 2.5, the author investigates the case of Hopf bifurcation in (9) i.e. the generation of
patterns as µ passes through the critical value µc.

1.4 The particular case of the 1D-Gray-Scott model and chemistry

(Cf. David S. Morgan et al. [42]). The Gray-Scott model, related to chemical rections between two species U and V,
consists of the reaction-diffusion system

Ut = DU∆U − UV 2 +A(1− U)

Vt = DV ∆V + UV 2 −BV
(22)
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Where U = U(x, t), x ∈ R, V = V (x, t), are the concentrations of U (inhibitor) and V (activtator) , A and B are rate
constants, DU and DV are diffusivities. Here, for convenience, DU = 1 and DV = δ2σ, 0 < δ 6 1, σ > 0.The stationary
states (trivial patterns) solutions of the system

− UV 2 +A(1− U) = 0 and UV 2 −BV = 0 (23)

are U ≡ 1, V ≡ 0 and, when 4B2 < A,

(U±, V±) = (
1

2
[1±

√
1− 4B2

A
],
A

2B
[1∓

√
1− 4B2

A
]) (24)

The state (U ≡ 1, V ≡ 0) is is linearly stable for all A,B > 0. On the other hand, it is proved ([42], p.117) that the
state (U+, V+) cannot be marginally stable (cf. Definition 6) Therefore the authors focus only on (U−, V−).
Linear stability of (U−, V−), Turing/Ginsburg-Landau bifurcation. Linearizing (22) around the stationary
state (U−, V−) leads to ( .

U
.

V

)
= M

(
U

V

)
(25)

where

M =

(
−k2 − V 2

− − δαa −2δβb

V 2
− −δ2σk2 + δβb

)
(26)

with A,B rescaled as A = δαa,B = δβb, α, β ≥ 0. The analysis of the eigenvalues of M shows that (U−, V−) is linearly
stable if and only if 2α ≤ 3β and determines the values ac and kc of the parameter a and the wavenumber k such that
(U−, V−) is marginally stable. In particular,

a2
c = (3− 2

√
2)b3. (27)

Remark 2. 1) With the above scaling for A and B, one has, to leading order

(U−, V−) = (δ2β−α b
2

a
, δα−β

a

b
) (28)

2) For the Gray-Scott model, the Ginsburg-Landau equation (cf.(16)) has the form

Aτ =
2√
b
A+ 2

√
2Aξξ −

2

9
(10
√

2− 7)|A|2A (29)

After setting A(ξ, τ) = Reiκξ, solutions R and κ satisfy the equation

κ2 +
1

18
(20− 7

√
2)R2 =

1√
2b

(30)

The main result. Finally, the following result is obtained ([42], Theorem 3.2): Let a = ac − γ2 and 3β = 2(σ + α).
For 0 < γ � 1 small enough, there exists a one parameter family of stationary spatially-periodic solutions of (22)(cf
definition 4) that are close to the stationary state (U−, V−):(

U(x, κ)

V (x, κ)

)
=

(
U−

V−

)
+ γRei(kc+γκ)δβ−αx

(
2δ2β−α

−(2−
√

2)δα−β

)
+ c.c.+ h.o.t., (31)

where R and κ are related by (30).
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2 Generalized Klausmeier-Gray-Scott model and echosystems

2.1 Initial Kausmeier model

In [37], C. A. Klausmeier considers the nondimensionalized system:

∂w
∂t = a− w − wn2 + ν ∂w∂x
∂n
∂t = wn2 −mn+ ( ∂2

∂x2 + ∂2

∂y2 )n
(32)

for water w and plant biomass n, defined on an infinite two-dimensional domain indexed by x and y. In (32), a
controls water input, m measures plant losses and ν contols the rate at which water flows downhill. The corresponding
nonspatial model is

a− w − wn2 = 0

wn2 −mn = 0
(33)

He shows that this model has a bare stable state ŵ = a, n̂ = 0 and an other one vegetated. These stable states
correspond to spatially homogeneous equilibria of (32). Then he uses linear stabiliy analysis, for system (32), in two
cases: hillsides i.e. ν � 0, and flat ground. On hillsides, for given m and ν, there is a critical value of water input
a, below which Êregular stripes form. Moreover, this pattern oscillates in time and the strip moves uphill because
the eigenvalue that determines the instability of this homogeneous equilibrium is complex with negative imaginary
part. On flat ground, regular pattern formation is impossible when the spatially homogeneous equilibrium is stable.
Numerical solutions of (32) show that, in this case, irregular patterns can arise but for parameters which are ecologically
unrealistic. His results are illustrated by figures obtained with ecologically realistic parameters.

2.2 Results by S. van der Stelt et al. [59]

2.2.1 The model

On one-dimensional domain, the model introduced by C. A. Klausmeier reads:

ut = koux + k1 − k2u− k3k5uv
2

vt = dvvxx − k4v + k5uv
2

(34)

where u(x, t), v(x, t) : R× R+ → R, and ki ≥ 0, i = 0, ..., 5, d ≥ 0.The flow of water is denoted by ut, the slope of the
aera by koux, the constant precipitation rate by k1, an evaporation rate by −k2u, and an infiltration rate by −k3k5uv

2.

The change of biomass is assumed to be controlled by a diffusion term dvvxx. The death rate is denoted by −k4v and
the infiltration feedback by k5uv

2. In [59], system (34) is completed by the nonlinear diffusion term du(uγ)xx:

ut = du(uγ)xx + koux + k1 − k2u− k3k5uv
2

vt = dvvxx − k4v + k5uv
2

(35)

where γ ≥ 1 and 0 < dv � du, and rescaled as

Ut = Uγxx + CUx +A(1− U)− UV 2

Vt = δ2σVxx −BV + UV 2
(36)

with 0 < δ � 1 and
δ2σ =

dv
du

(
k2

k1
)γ−1, σ > 0. (37)
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Remark 3. For ecosystems without a slope k0 = 0 and therefore

C = k0
k2

2k3

k2
1k5

[du
k3

k5
(
k1

k2
)γ−3]−

1
2 = 0 (38)

Definition 4. Spatially periodic solutions (patterns) or wave trains are solutions u(x, t) that can be written

u(x, t) = up(κx+ Ωt) (39)

that satisfy up(ξ) = up(ξ + 2π). Here κ is called the nonlinear wave number.

Definition 5. A Busse balloon for system (36) is a set B in the (A, κ)-space with the following property: a point
(A, κ) lies in B if system (36) with parameter A allow for at least one stable periodic solution (Up, Vp) with parameter
κ (cf.([59], p.66).

It is pointed out that the ecologically relevant parameter values of γ are γ = 1 or γ = 2. For γ = 1 and C = 0, system
(36) is the gray-Scott system (22). In [42] Section 6.2, the existence of a Busse balloon, for the Gray-Scott model, is
investigated.

2.2.2 The background states and the Turing-hopf instability

The model (36) has the same homogeneous background states as the Gray-Scott model for A > 4B2, namely (cf (23)
and (24)).

U0 = 1, V0 = 0, and (U±, V±) = (
1

2A
[A∓

√
A2 − 4AB2),

1

2B
(A±

√
A2 − 4AB2). (40)

The state (U0, V0) = (1, 0) represents the desert since, in this case, v = k1
k2k3

V0 = 0. The state (U−, V−) does not
represent a homogeneously vegetated state. By linearization of (36) about the state u+ = (U+, V+) we have :

ut = Duxx + Cux + ∂uF (u+;A,B)u =: L(∂x)u (41)

with u = (U, V ), F (U, V ;A,B) = (A(1 − U) − UV 2,−BV + UV 2), and suitable matrices C and D. Let M be the
matrix defined by

M(a, c, ik) =

(
−γ(U+)γ−1k2 + icδνk − V 2

+ − δαa −2bδβ

V 2
+ −δ2σk2 + δβb

)
= L(ik) (42)

where 0 < δ � 1 and
A = aδα, B = bδβ , C = cδν ; α, β > 0, ν ∈ R, (43)

with a, b, c,= O(1) with respect to δ. Here k is refered to as the linear wavenumber.

Remark 4. For ecosystems without a slope, C=0 (cf. remark 3 ) and therefore c = 0.

Remark 5. With the above scaling, (U+, V+) can be written out to leading order in δ

(U+, V+) = (
b2

a
δ2β−α,

a

b
δα−β) + h.o.t.. (44)

The L2-spectrum of (41) is the set of λ ∈ C such that

d(λ, ik) = det[M(a, c, ik])− λ] = 0 (45)
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Definition 6. L(∂x) is called marginally stable with critical Fourier mode u0e
ik∗xassociated to the critical

eigenmode iω∗, up to complex conjugaison, if

d(iω∗, ik∗) = 0, d(iω∗, ik) 6= 0 for all k 6= ±k∗ (46)

and d(λ, ik) 6= 0, for all k ∈ R , all λ ∈ C with λ 6= iω∗ and Reλ ≥ 0. In this case, we also say that the background
state (U+, V+) of (36) is marginally stable.

Definition 7. The instability is called a Turing-Hopf [resp. Turing] instability if k∗ 6= 0, ω∗ 6= 0 [resp.k∗ 6= 0, ω∗ =

0].

Main results:1) when C=0, (U+, V+) is marginally stable for σ, a = a∗, k = k∗ satisfying, to leading order in δ,

(2γ + 1)β − (γ + 1)α = 2σ, k2
∗ =

1

2
(1− g)bδ−2γβ+(γ+1)α, aγ+1

∗ = gγb2γ+1. (47)

where g = 3− 2
√

2, ([59], Proposition 1),
2) when C=cδ

1
2 (3−γ)α+(γ−2)β 6= 0, set Γ = Γ(γ, a) = γ( b

2

a )γ−1, k̃ = δ−
1
2 (γ+1)α+βγk, and drop the tilde on k̃. Then,

the stationary state (U+, V+) undergoes a Turing-Hopf instability at a uniquely defined critical parameter a = a∗

and a critical wavenumber k = k∗ that satisfy

aγ+1
∗ ≥ gγb2γ+1 and k2

∗ < b, (48)

moreover, if c = 2
3bΓ,

aγ+1
∗ =

1

3
γb2γ+1 and k2

∗ =
1

3
b (49)

and, if c� 1

aγ+3
∗ (c) =

g

γ
b2γ+3c2 +O(c) and k2

∗(c) =
1

2
(1− g)b+O(

1

c
). (50)

to leading order in c and δ ([59] Proposition 2).

2.2.3 Ginzburg-Landau equation

If
|a− a∗| = rε2 (51)

and ε is small enough, the Ginzburg-Landau equation (16) associated to (36) has the form

Aτ = (a1 + ia2)Aξ,ξ + (b1 + b2)A+ (L1 + iL2)|A|2A (52)

whose coefficients are functions of b, c, and γ ([59], Proposition 3) .The Turing-Hopf instability of (U+, V+) is super-
critical if L1 < 0 and subcritical if L1 > 0.

The Benjamin-Feir-Newell criterion. If the Turing-Hopf bifurcation is supercritical, there exists a band of stable
spatially periodic patterns if and only if

1 +
a2L2

a1l1
> 0. (53)

By means of the computing system Matematica, the authors evaluated the coefficients of (52), for γ = (1, 2). These
evaluations lead them to acute results:
1)For γ = {1, 2}, the coefficients L1 in (52), is negative for all values of b and c up to c ∼ 106 and b ∼ 102, and condition
(53) is satisfied. Therefore, the Turing Hopf bifurcation at a = a∗ of the stationary state (U+, V+) of (36), with C > 0
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and γ = {1, 2} is supercritical ([59] Claim 1, p. 59).
2) For (36) with C > 0 and γ = {1, 2}, there exists a stable band of periodic patterns that appears at the Turing-Hopf
instability ([59] Claim 2 p. 60).
3) For c = 0, all coefficients of (52) are real and L1 = L1(γ) becomes positive for large γ and equals 0 for γ ≈ 13.0446.
Therefore the Turing bifurcation for (35) with c = 0 is supercritical for γ < γss, and subcritical for γ > γss ([59]
proposition 4).

Remark 6. In Section 3 of [59], existence of stable patterns if a is not closed to a∗ is studied. Busse Ballons (cf.
Definition 5) are numerically constructed for different values of a and fixed values of b, c, γ

3 Gierer-Meinhardt system and biology

The Gierer-Meinhardt system (cf.[27]) is one of the most popular models in biological pattern formation. Let (S, g) be
a compact two-dimensional Riemannian manifold without boundary.(For definitions related to Riemannian manifolds,
see W. Kühnel [39]). In [57], W. Tse et al. consider the system{

At = ε2∆gA−A+ A2

H

τHt = 1
β2 ∆gH −H +A2

(54)

in S. Here, A(p, t), H(p, t) > 0 represent the activator and the inhibitor concentrations, repectively, at a point p ∈ S
and at time t; their corresponding diffusivities are denoted by ε2 and 1

β2 ; τ is the time-relaxation constant of the
inhibitor and ∆g is the Laplace-Beltrami operator with respect to the metric g. Their assumptions on the parameters ε
and β are: ε is small enough and lim β2

ε2 = κ > 0. Let G0be the Green function defined by

∆gG0(p, q)− 1

|S|
+ δp(q) = in S, and

∫
S

G0(p, q)dvg(q) = 0, (55)

K(p) denote the Gauss curvature on S, and w be the solution of the problem

∆w − w + w2 = 0, w > 0 in R2, w(0) = max
y∈R2

w(y), w(y)→ 0 as |y| → ∞, (56)

They introduce the function F (p) = c1K(p) + c2R(p) where R(p) denotes the diagonal of the regular part of the Green
function, and

c1 =
π

4

∫ ∞
0

(
∂w

∂r
)2r3dr c2 =

|S|π
2

β2

ε2

∫ ∞
0

w2rdr. (57)

3.1 Existence and stability of a single spike solution

3.1.1 Existence

If p0 ∈ S is a non-degenerate critical point of F (p), i.e.

∇F (po) = 0, det(∇2F (po)) 6= 0, (58)

it is proved that problem (54) has a positive spiky steady state (Aε, Hε) such that

Aε(x) = ξε(w(
x− pε
ε

) +O(ε2)), (59)
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uniformly for x ∈ S, where

ξε =
|S|

ε2
∫
R2 w2(y)dy

+O(log
1

ε
),with pε → p0 as ε→ 0, (60)

and
Hε(x) = ξε(1 +O(ε2)) uniformly in S (61)

([57], Theorem 1.1).

Remark 7. It is assumed that ξε,p is the height of the peak and that p ∈ Λδ is the location of the peak, where
Λδ = S ∩Bg(po, δ), with δ = εα, for some 0 < α < 1.(Bg(po, δ) is the ball with center po and radius δ, with respect to
the metric g).

3.1.2 Linear stability

Linearizing (54) around the equilibrium states (Aε + φεe
λεt, Hε + ψεe

λεt, ) the following eigenvalue problem Lε is
obtained {

ε2∆gφε − φε + 2AεHεφε −
A2
ε

H2
ε
ψε = λεφε

1
τ ( 1

β2 ∆gψε − ψε + 2Aεφε) = λεψε
(62)

where (Aε, Hε) is the above solution of system (54).

Definitions The solution (Aε, Hε) is called linearly stable if the spectrum σ(Lε) of Lε lies in the left half plane
{λ ∈ C : Re(λ) < 0}. It is called linearly unstable if there exists an eigenvalue λε of Lε, with Re(λε) > 0.

Main result (Cf. [57], Theorem 1.2). Let po be a non-degenerate local maximum point of F (p) i.e.

∇F (po) = 0 ∇2F (po) is negative definite, (63)

let (Aε, Hε) be the above single peaked solution, whose peak approches po, then, there exists a unique τ1 > 0 such that
(Aε, Hε) is linearly stable [resp. unstable], if τ < τ1 [resp. τ > τ1].

3.2 Stationary Gierer-Meinhardt system

(Cf. [57], Section 3). The proof of the existence theorem, subsection (3.1), is based on the stationary system associated
to (54) i.e. {

ε2∆gA−A+ A2

H = 0, in S
1
β2 ∆gH −H +A2 = 0, in S

(64)

With the rescaled amplitudes
a(p) =

1

ξε,p
A(p), h(p) =

1

ξε,p
H(p) (65)

an equilibrium solution (a,h) solves the rescaled Gierer-Meinhardt system{
ε2∆ga− a+ a2

h = 0, a > 0 in S
∆gh− β2h+ β2ξε,pa

2 = 0, h > 0 in S
(66)

with a = O(1) and h = O(1)

382



Journal of Advances in Mathematics Vol 20 (2021) ISSN: 2347-1921 https://rajpub.com/index.php/jam

3.3 Existence and stability of a cluster of two spikes for the stationnary Gierer-Meinhardt
system

In [3], W. Ao et al. consider the stationnary Gierer-Meinhardt system{
ε2∆gA−A+ A2

H = 0,

D∆gH −H +A2 = 0,
(67)

on a compact two-dimensional Riemannian manifold (M, g) without boundary. They assume

0 < ε << 1, 0 < D << 1. (68)

It is assumed that there is a non-degenerate local maximum point of the Gaussian curvature function K(p) ofM at
po = 0, i.e. ∇K(0) = 0 and

∇2K(0) =

(
K11 0

0 K22

)
(69)

Let po be a non-degenerate local maximum point of the gaussian curvature K(p) ofM. They show that, under stronger
conditions on ε and D, namely

0 < ε <<
√
D << 1, 0 <

√
Dlog

1

ε2D log
√
D
ε

<< 1, (70)

the system (67) has, at least, two different 2-spike cluster solutions (Ai, Hi) for i=1,2. Moreover, one of the solutions is
stable and the other one is unstable.

4 Harmonic Bergman spaces and reproducing kernels

4.1 Introduction

This section is related to Steklov eigenproblems. Cf. F. Gazzola, H-C. Grunau, G. Sweers [26]. Let Ω be a bounded
domain in Rn, n ≥ 2 with Lipschitz boundary ∂Ω, and a ∈ R. The classical Dirichlet biharmonic Steklov eigenproblem
is the boundary value eigenvalue problem

∆2u = 0 in Ω, u = ∆u− auν = 0 on ∂Ω (71)

Here, a solution to (71) is a function u ∈ H2(Ω) ∩H1
0 (Ω) such that∫

Ω

∆u∆vdx = a

∫
∂Ω

uνvνdω for all v ∈∈ H2(Ω) ∩H1
0 (Ω) (72)

where ν(x) is the unit outward normal at x ∈ ∂Ω. (Since ∂Ω is Lipschitzian, the tangent hyperplane and the unit
outward normal ν = ν(x) are well-defined for (a.e) x ∈ ∂Ω).

4.1.1 Orthogonal decomposition of H2 ∩H1
0 (Ω)

The bounded domain Ω is assumed to have a C2-boundary, and the Hilbert space H2 ∩H1
0 (Ω) is endowed with the

scalar product
(u, v)→

∫
Ω

∆u∆vdx (73)
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Let Z be the space
Z =

{
v ∈ C∞(Ω̄) : ∆2u = 0 in Ω, u = 0 on ∂Ω

}
, (74)

and V be the completion of Z with respect to the scalar product (73). The following orthogonal decomposition is
obtained

H2 ∩H1
0 (Ω) = V ⊕H2

0 (Ω) (75)

If v = v1 + v2 is the corresponding orthogonal decomposition of v ∈ H2 ∩H1(Ω), v1 ∈ V , and v2 ∈ H2
0 (Ω) are weak

solutions of
∆2v1 = 0 in Ω, v1 = 0 and (v1)ν = vν on ∂Ω (76)

and
∆2v2 = ∆2v in Ω, v2 = 0 and (v2)ν = 0 on ∂Ω (77)

([26] Theorem 3.19).

4.1.2 The least positive eigenvalue of (71)

Let Ω be a bounded domain with C2 boundary.The least positive eigenvalue of (71) is characterised by

δ1(Ω) = min
{ ‖∆u‖2L2(Ω)

‖uν‖2L2(∂Ω)

;u ∈ [H2(Ω) ∩H1
0 (Ω)]\H2

0 (Ω)
}

(78)

In [26] (Theorem 3.17), it is proved that the minimum in (78) is achieved, and, up to a multiplicative constant, the
minimiser ū is unique and solves (71) when a = δ1. Furthermore, ū ∈ C∞(Ω), and, up to the boundary, ū is as smooth
as the boundary permits.

Remark 8. It is pointed out that this result is valid when Ω is a bounded domain with Lipschitz boundary which
satisfied a uniform outer ball condition, where

Definition 8. A bounded domain Ω ⊂ Rn satisfies an outer ball condition if for each y ∈ ∂Ω there exists a ball
B ⊂ Rn\Ω such that y ∈ ∂B. If the radius of the ball B is independant of y, we say that it satisfies a uniform outer
ball condition.

An alternative characterisation of δ1(Ω)

Here Ω is a bounded domain with Lipschitz boundary. Let

C2
H(Ω̄) =

{
v ∈ C2(Ω̄); ∆v = 0 in Ω

}
(79)

equipped with the norm ‖v‖H = ‖v‖L2(∂Ω), and define

H = the completion of C2
H(Ω̄) with respect to the norm ‖.‖H . (80)

Let

σ1(Ω) = inf
{‖h‖2L2(∂Ω)

‖h‖2L2(Ω)

;h ∈ H\{0}
}

(81)

It is proved that σ1(Ω) admits a minimiser. If, moreover, Ω satisfies a uniform outer ball condition, then, the minimiser
is positive, unique up to a constant multiplier, and σ1(Ω) = δ1(Ω) ([26], Theorem 3.23).
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4.2 Subspaces of H1(Ω) related to the usual Laplacian ∆. Real harmonic Bergman
space

(Cf. G. Auchmuty [8]). Let Ω be a sufficiently smooth open subset of RN .
Assumption (B1) on Ω: Ω is a bounded connected open set whose boundary is the union of a finite number of
disjoint closed Lipschitz surfaces, each surface having finite surface area.
The Hausdorff (N-1)-dimensional measure and integration with respect to this measure are denoted, respectively, by
σ, dσ, and σ̃(E) =

(
σ(∂Ω)

)−1
σ(E). All functions, in this section, are real valued. The following equivalent inner

product on H1(Ω) is introduced

[u, v]δ =

∫
Ω

∇u .∇v dx+

∫
∂Ω

uv dσ̃. (82)

4.2.1 The spaces H(∆,Ω) and H0(∆,Ω)

Let H(div,Ω) denote the class of L2-vector fields F ∈ L2(Ω;RN ), whose divergence is in L2(Ω) i.e. there is a function
ϕ ∈ L2(Ω) such that ∫

Ω

u ϕ dx =

∫
Ω

∇u . F dx, for all u ∈ C∞c (Ω). (83)

Remark 9. For any integer p ∈ [0,∞], Cpc (Ω) denotes the spaces of p-continuously differentiable functions with
compact support in Ω. For p =∞, C∞c (Ω) is the L. Schwartz space D(Ω).

Definition 9.
H(∆,Ω) = {u ∈ H1(Ω)|∇u ∈ H(div,Ω)}. (84)

With the inner product
[u, v]δ,∆ = [u, v]δ +

∫
Ω

∆u ∆v dx, (85)

it is a real Hilbert space.

Remark 10. If u ∈ H(∆,Ω) then ∆u = div (∇u) ∈ L2(Ω).

Space H(Ω)

Definition 10. A function u ∈ H1(Ω) is said to be H1-harmonic in Ω provided∫
Ω

∇u. ∇v dx = 0 for all v ∈ H1
0 (Ω). (86)

The class of all H1-harmonic functions on Ω is denoted by H(Ω). The space H0(∆,Ω) is the orthogonal complement of
H(Ω), with respect to the inner product (85). It is equipped with the inner product

[u, v]∆ =

∫
Ω

∆u ∆v dx, (87)

which generates an equivalent norm to that of (85)( [8], Lemma 3.3).
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4.2.2 Orthogonal decomposition of H(∆,Ω)

The following results are stated ([8],Lemma 3.1)
1-There are closed subspaces H1

0 (Ω),H(Ω) of H1(Ω), and projections P0, PH onto these spaces such that, for all
u ∈ H1(Ω)

u = P0u+ PHu with [P0u, PHu]δ = 0 (88)

2-Moreover, if v = v0 + vH is the correponding decomposition of v ∈ H(∆,Ω) (in particular, ∆v ∈ L2(Ω)), we have

v0 ∈ H1
0 (Ω),∆v0 ∈ L2(Ω), v0 = 0 on ∂Ω, and (89)

vH ∈ H(Ω),∆vH = 0 in Ω, vH = v on ∂Ω. (90)

Space BH(Ω)

A function b ∈ H(∆,Ω) is said to be weakly biharmonic provided∫
Ω

∆u ∆v dx = 0 for all v ∈ D(Ω). (91)

The closed subspace of all biharmonic functions, in H0(∆,Ω), is denoted by BH(Ω).
From now on, assumption (B1) on Ω is replaced by :
(B2) : Ω satisfies (B1) and the normal derivative Dν is a compact mapping of H0(∆,Ω) into L2(∂Ω, dσ).
The Dirichlet Biharmonic Steklov (DBS) eigenproblem
Here, the DBS eigenproblem is to find solutions (q, b) ∈ R×H0(∆,Ω) of the system∫

Ω

∆b ∆v dx = q

∫
∂Ω

Dνb Dνv dσ, for all v ∈ H0(∆,Ω), (92)

where ν is an outward unit normal, defined at σ a.e. point of ∂Ω. Here q is the DBS eigenvalue which appears only in
the boundary condition.
By means of a suitable algorithm, the author shows the existence of a maximal countable sequence of ∆-orthonormal
((87)) DBS eigenfunctions B = {bk |k ≥ 1} which is a basis of the subsspace BH(Ω) of H0(∆,Ω) ([8], Theorem
5.3). Therefore, a biharmonic function b has the spectral representation

b(x) =

∞∑
j=1

〈b, bj〉∆bj(x) on Ω. (93)

Moreover, he obtains the ∆-orthogonal ((87)) decomposition

H0(∆,Ω) = H00(∆,Ω)⊕∆ BH(Ω), (94)

where
H00(Ω) = {u ∈ H0(∆,Ω)|Dνu = 0 on ∂Ω}. (95)

Let {qk, k ≥ 1} be the sequence of eigenvalues corresponding to B. The following sets are introduced:
1- Set hj = ∆bj and BH = {hj | j ≥ 1} ⊂ L2(Ω)(cf. Remark 10).
2- Set wj =

√
qj |∂Ω|Dνbj , j ≥ 1, and W = {wj , j ≥ 1}.

It is proved that W is an orthonormal basis for L2(∂Ω, dσ̃).
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4.2.3 An orthonormal basis for the real harmonic Bergman space L2
H(Ω).

Definition 11. The real harmonic Bergman space L2
H(Ω) is the space of functions u ∈ L2(Ω) that satisfy∫

Ω

u ∆v dx = 0 for all v ∈ C2
c (Ω). (96)

The hj = ∆bj for j ≥ 1 are harmonic and L2-orthonormal. It is proved that BH is an ortonormal basis of L2
H(Ω),

the orthogonal projection PH of L2(Ω) onto L2
H(Ω) has the representation

PHf(x) =

∞∑
j=1

〈f, hj〉hj(x) for all f ∈ L2(Ω), (97)

([8], Theorem 6.2). Moreover, L2
H(Ω) is a Reproducing Kernel Hilbert space with reproducing kernel

RΩ(x, y) =

∞∑
j=1

∆bj(x)∆bj(y), x, y ∈ Ω× Ω. (98)

4.3 Complex harmonic Bergman spaces

(Cf. [9] p.172). Let Ω denote an open subset of Rn, and p a number satisfying 1 ≤ p <∞. The harmonic Bergman
space bp(Ω) is the set of complex valued harmonic functions u, on Ω, such that

||u||bp =
( ∫

Ω

|u|pdV
) 1
p <∞. (99)

For fixed x ∈ Ω, the map u ∈ bp(Ω)→ u(x) ∈ C, called point evaluation at x, is continuous. The space bp(Ω) is a
closed subspace of Lp(Ω), and, therefore, it is a Banach space.

Remark 11. In [9], Lp(Ω) is denoted Lp(Ω, dV ).

4.3.1 Cas p=2, reproducing kernel of Ω

For p = 2, b2(Ω) is a Hilbert space with the L2(Ω) inner product

〈u, v〉 =

∫
Ω

u v̄ dV. (100)

As a closed subspace of L2(Ω, dV ), b2(Ω) is separable. For fixed x ∈ Ω, the map u ∈ b2(Ω)→ u(x) ∈ C is a bounded
linear functional on the Hilbert space b2(Ω). By the Riesz representation theorem, there exists a unique function
RΩ(x, .) ∈ b2(Ω) such that

u(x) = 〈u,RΩ〉 =

∫
Ω

u(y)RΩ(x, y)dV (y). (101)

Therefore, b2(Ω) is a reproducing kernel Hilbert space with reproducing kernel RΩ defined on Ω× Ω.

Remark 12. For the Riez representation theorem, see, for instance, [49] Theorem II.4, p.43.

Properties of the reproducing kernel ([9], Proposition 8.4). The reproducing kernel of Ω is real valued, if (um)

is an orthonormal basis of b2(Ω), then

RΩ(x, y) =

∞∑
m=1

um(x) um(y), (102)
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for all x, y ∈ Ω,
RΩ(x, y) = RΩ(y, x), for all x, y ∈ Ω, (103)

and
||RΩ(x, .)||b2 =

√
RΩ(x, x) for all x ∈ Ω. (104)

Complex and real Bergman spaces have the same reproducing kernel Indeed, let L2
H(Ω) be the real

harmonic Bergman space (cf. section 4.2) where Ω satisfies conditions (B2). Thanks to properties of harmonic functions,
if f1 and f2 are real-valued, and if f = f1 + if2, then f belongs to b2(Ω) if and only if f1, f2 ∈ L2

H(Ω). Moreover, with
the notations of N. Aronszajn [7], p. 343, b2(Ω) = (L2

H(Ω))c = {f = f1 + if2 : f1, f2 ∈ L2
H(Ω)}. Therefore, the two

spaces b2(Ω) and L2
H(Ω) have the same reproducing kernel given by (98).

5 Homeomorphisms of the circle. Rotation number

There are several definitions of rotation number in the literature.

5.1 Simple examples

Example 1. Rotation number related to the equation x′ = f(t, x), (t, x) ∈ R× R
From E.A. Coddington and N. Levinson [13]. Consider the differential equation

x′ = f(t, x), (t, x) ∈ R× R, (105)

where f is a real continuous function, f(t+ 1, x) = f(t, x+ 1) = f(t, x) and through every point of the (t, x) plane
there passes a unique solution of (105). In R3 , with rectilinear coordinates (u, v, w), let J be the torus given by

u = (a+ b cos 2πx) cos 2πt

v = (a+ b cos 2πx) sin 2πt

w = b sin 2πx,

(106)

where a and b are constants with 0 < b < a. The function f may be considered as a function on J , whose points can
be described by Cartesian coordinates (t, x), where two points (t1, x1) and (t2, x2) are regarded as identical if
(t1− t2) and (x1−x2) are integers. Through every point P of J , there exists a unique solution path (t, ϕ(t)) of (105).
Let ϕ = ϕ(t, η) be the solution of (105) such that ϕ(0, η) = η, and set ψ(η) = ϕ(1, η). Then ψ is a homeomorphism of
the real line onto itself. Let C be the circle on J , defined as the set of all (t, x) on J such that t = 0. (The equations
of C, in R3, are v = 0, u− a = b cos 2πx, v = b sin 2πx). Define the homeomorphism T : C → C by

P = (0, η)→ T (P ) = P1 = (1, ϕ(1, η)) = (0, ψ(η)) = (1, ψ(η) + n), (107)

for any integer n. Set
ψ0(η) = η, ηn = ψn(η) = ψ[ψn−1(η)], (108)

and
T 0P = P, Pn = TnP = T (Tn−1P ), (109)

for n = 0,±1,±2, .... (Since T is a homeomorphism, the inverse T−1exists).
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Definition 12. The rotation number ρ of T for the equation (105) is defined by

ρ = lim
|n|→∞

ηn
n
. (110)

It measures the average rotation of points under T . The number ρ is rational if and only if some power of T has a fixed
point (cf.Theorem 2.1 de [13]).

Example 2. Rotation number for the system dϕ
dt = Φ(ϕ, δ), dδ

dt = Θ(ϕ, δ), on the torus From V.V. Nemyyskii and
V.V. Stepanov [43]. The authors consider dynamical systems defined by a system of differential equations

dϕ

dt
= Φ(ϕ, δ),

dδ

dt
= Θ(ϕ, δ), (111)

on the torus:
u = (R+ r cos 2πδ) cos 2πϕ

v = (R+ r cos 2πδ) sin 2πϕ

w = r sin 2πδ,

(112)

where 0 ≤ ϕ < 1, 0 ≤ δ < 1, 0 < r < R. The functions Θ and Φ are assumed to be sufficiently smooth (for instance
Lipschitz functions). Moreover, Φ is assumed to be different from 0 everywhere. By setting

A(ϕ, δ) =
Θ(ϕ, δ)

Φ(ϕ, δ)
, (113)

the system (111) becomes
dδ

dϕ
= A(ϕ, δ). (114)

The trajectories, in the (ϕ, δ) plane, of equation (114), yield the trajectories on the torus, if points (ϕ1, δ1) and
(ϕ2, δ2) are identified when the differences ϕ1 − ϕ2 and δ1 − δ2 are integers. Let δ = u(ϕ, δ0) be the solution
of (114) such that u(0, δ) = δ0. If

A(ϕ, δ) = µ, (115)

where µ is a constant, the integral curves are straight lines u(ϕ, δ0) = δ0 + µϕ, whose slope is µ = lim
ϕ→∞

u(ϕ,δ0)
ϕ .

In the general case, the rotation number µ of system (111) (or (114)) is defined by

µ = lim
ϕ→∞

u(ϕ, δ0)

ϕ
. (116)

5.2 Rotation number of an orientation-preserving homeomorphism f : S1 → S1

(cf. L. Wen [62] p.24). Here S1 denotes the unit circle. Let f : S1 → S1 be an orientation-preserving homeomorphism,
and F : R→ R be a lifting of f . For any t ∈ R, the limit

lim
n→∞

Fn(t)− t
n

(117)

exists, is independent of t, and is denoted by ρ(F ). If F1 and F2 are two liftings of f , ρ(F1)− ρ(F2) is an integer. The
rotation number of f is defined by ρ(f) = ρ(F ) mod 1. In some sens, the rotation number of f measures the average
rotation of points under f.

Remark 13. A continuous map F : R → R is a lifting of f if π ◦ F = f ◦ π, where π : t ∈ R → e2πit ∈ S1 is the
projection of modulo integer parts.
The homeomorphism f is orientation preserving [resp. reversing] if any lifting of f to R is strictly increasing [resp.
decreasing].
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Example 3. If fα is a rotation by the angle α, then Fα(x) = x+α and Fnα = x+nα, which is periodic if α is rational.

5.3 Analytic reduction of analytic diffeomorphism of the circle to a rotation

5.3.1 Arnold’s Theorem

(V.I. Arnold [5], pp.112-115). Set
Πρ = {z ∈ C; Imz| ≤ ρ}, (118)

and, for an analytic and bounded function a in this strip,

||a||ρ = sup |a(y)|, y ∈ Πρ. (119)

An irrational number µ is of type (K,σ),K > 0, σ > 0, if

|µ− p

q
| ≥ K

|q|2+σ
, (120)

for any integers p and q 6= 0.

For a number µ of type (K,σ), we have the “small denominator estimate" (cf [4] )

|e2πikµ − 1| ≥ K

2|k|1+σ
. (121)

Then the author states the following theorem:
Theorem. There exists ε(K,µ, σ) > 0, such that, if a is a 2π-periodic analytic function, real on the real axis, with
||a||ρ < ε and such that the transformation

y → A(y) = y + 2πµ+ a(y) (122)

is the lifting to R of a diffeomorphism of the circle A, with rotation number µ of type (K,σ), then A is analytically
equivalent to the rotation R2πµ by the angle 2πµ (cf. Example 3) i.e. there exists an analytic diffeomorphism H : R→ R
such that

A ◦H = H ◦R2πµ. (123)

In this case, A is said to be analytically conjugate to the rotation of angle 2πµ, or analytically linearized, and H
is called the conjugacy or the linearization.

Remark 14. Thanks to [60], Remark 2.8, stated for fonctions of period 1, if A has the more general form

A(x) = x+ 2πα+ a(x), (124)

with the rotation number ρ of type (K, ν), (where α 6= ρ), then if ||η||σ = ||2π(α−ρ)+a||σ ≤ ε(K, ν, σ), A is analytically
conjugate to R2πρ.

The following is taken from J-C. Yoccoz [53] and [63]. A number µ, which satisfies condition (120), is also called
Diophantine. In [53] p.57, the set of such µ is denoted by CD(K,σ). The following notations are introduced

CD(σ) =
⋃
K>0

CD(K,σ) and CD =
⋃
σ>0

CD(σ). (125)
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5.3.2 The Brjuno condition and the set B

An irrational number α ∈ (0, 1) always admits an infinite unique continuous fraction expansion (cf. H.H. Hardy and
E.M. Wright [29], Theorem 170):

1

a1 +
1

a2 +
1

a3 + · · ·

, (126)

also denoted
α = [a1, a2, ...]. (127)

Then pn
qn

= [a1, ..., an] is a rationnal number.

Definition 13. α is said to verify the Brjuno condition if and only if
∞∑
n=1

log qn+1

qn
<∞. (128)

This is also a condition on the α ∈ R/Z. The set of such α is denoted by B.

5.3.3 The condition and the set H

Let A : (0, 1)→ (0, 1) be the map defined by

A(x) =
1

x
− b 1

x
c, (129)

where b 1
xc denotes the integer part of 1

x , and, for α ∈ R/Q, let (αn)n≥0 be defined by

α0 = α− bαc, αn = An(α0), for n > 0, (130)

and (an)n≥0 defined by
a0 = bαc α−1

n−1 = an + αn, for all n ≥ 1.

Then

α = a0 +
1

a1 +
1

. . . +
1

an + αn

, (131)

and
pn
qn

= a0 +
1

a1 +
1

. . . +
1

an

= [ao, a1, ...an] (132)

Let

β−1 = 1, βn =

n∏
j=0

αj ≡ (−1)n(qnα− pn) ∀n ≥ 0. (133)

For α ∈ R/Q, the Brjuno function B : R/Q→ R+ ∪ {∞} is defined by

B(α) =
∑
n≥0

βn−1 logα−1
n . (134)
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Condition H
For α ∈ (0, 1), x ∈ R, let rα the function defined by

rα(x) =

α−1(x− logα−1 + 1) if x ≥ logα−1

ex if x ≤ logα−1,
(135)

and set, for α ∈ R/Q, and k > 0, (cf.(130))

∆k(α) = rαk−1
◦ ... ◦ rα0

(0). (136)

Let α ∈ B and define, for n ≥ k ≥ 0,

Hk,n = {α ∈ B, B(αn) ≤ ∆k(αn−k)}. (137)

Definition of the set H

H = {∩m≥0 ∪k≥0 Hk,k+m} = {α ∈ B,∀m ≥ 0,∃k ≥ 0, B(αm+k) ≤ ∆k(αm)}. (138)

It is proved that
C ⊂ B ⊂ H, (139)

where the inclusions are proper. In [63], J-C Yoccoz proves the following result (Theorem 1.4, p.127): Let f be an
analytic diffeomorphism of the circle with rotation number α. If α ∈ H, then f is analytically conjugate to the rotation
Rα. Moreover, if f /∈ H, there exists an analytic diffeomorphism of the circle, f , with rotation number α, which is not
analytically linearizable.

Remark 15. For historical comments and the contributions of H. Poincaré (1881/6) [45], A. Denjoy (1932) [18] and
M.R. Hermann (1979) [30] and (1985) [31],to the theory, see the above references and W. de Melo and S. van Strien
[40].

6 Homogenization and linear elasticity

6.1 Introduction

This subsection is an introduction to the theory of homogenization. Complements will be found in the references.

6.1.1 H and G-convergences

(Cf. G. Allaire [2] ). Let Ω be a bounded open set in RN

Definition 14. LetMN be the space of square real matrices of order N and define

Mα,β =
{
M ∈MN |Mξ .ξ ≥ α|ξ|2,M−1ξ .ξ ≥ β|ξ|2,∀ξ ∈ RN} (140)

or
Mα,β =

{
M ∈MN | α|ξ|2 ≤Mξ .ξ ≤ β−1|ξ|2,∀ξ ∈ RN}, (141)

and also
Ms

α,β =
{
M ∈Ms

N |Mξ .ξ ≥ α|ξ|2,M−1ξ .ξ ≥ β|ξ|2,∀ξ ∈ RN} (142)

where α, β > 0 and αβ ≤ 1, andMs
N is the space of real symmetric matrices of order N.
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Definition 15. A sequence of matrices Aε(x) ∈ L∞(Ω;Mα,β) is said to converge in the sense of homogenisation, or
H-converge, to an homogenized limit or H-limit matrix A∗ ∈ L∞(Ω;Mα,β) if, for any f ∈ H−1(Ω), the sequence of
solutions uε of

−divAε(x)∇uε(x) = f(x) in Ω, and uε = 0 on ∂Ω, (143)

satisfies
uε ⇀ u weakly in H1

0 (Ω) and Aε∇uε ⇀ weakly in L2(Ω)N , (144)

where u is the solution of the homogenized equation

−divA∗(x)∇u(x) = f(x) in Ω, and u = 0 on ∂Ω, (145)

(cf.[2], Definition 1.2.15 and Remark 1.2.17). This definition is justified by the following result: for any sequence
Aε(x) of matrices in L∞(Ω;Mα,β) there exist a subsequence, still denoted by Aε, and an homogenized matrix
A∗(x) ∈ L∞(Ω;Mα,β) such that Aε H-converges to A∗, ([2],Theorem 1. 2. 16)

Definition 16. A sequence of matrices Aε(x) ∈ L∞(Ω;Ms
α,β) is said to G-converge, to an homogenized limit or

G-limit matrix A∗ ∈ L∞(Ω;Ms
α,β) if, for any f ∈ H−1(Ω), the sequence of solutions uε of

−divAε(x)∇uε(x) = f(x) in Ω, and uε = 0 on ∂Ω, (146)

satisfies
uε ⇀ u weakly in H1

0 (Ω) (147)

where u is the solution of the homogenized equation

−divA∗(x)∇u(x) = f(x) in Ω, and uε = 0 on ∂Ω, (148)

(cf.[2], Definition 1.3.8). This definition is justified by the following result: for any sequence Aε(x) of matrices in
L∞(Ω;Ms

α,β) there exist a subsequence, still denoted by Aε, and an homogenized matrix A∗(x) ∈ L∞(Ω;Ms
α,β) such

that Aε H-converges to A∗, ([2],Theorem 1.3.9)

Remark 16. For symmetric matrices, H and G convergences are equivalent ([2], Proposition 1.3.11).

6.1.2 Spectral problems

The case of abstract operators defined in different Hilbert spaces (Cf. [44], Section 1.2, p.266). Let Hε, H0

be separable Hilbert spaces, Aε : Hε → Hε, 0 ≤ ε ≤ 1, Ao : Ho → Ho, be continuous linear operators, and V be a
subspace of Ho with ImAo ⊂ V ⊂ Ho satisfying the following conditions:
1-There exist linear continuous operators Rε : Ho → Hε and a constant γ such that

(Rεf,Rεf)Hε → γ(f, f)Ho , as ε→ 0, for any f ∈ V. (149)

2-The operators Aε, Ao are positive, compact, self-adjoint and the norms ‖Aε‖B(Hε) are bounded by constant independent
of ε.
3-For any f ∈ V ,

‖AεRεf −RεAof‖Hε → 0 as ε→ 0. (150)
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4-For each sequence f ε ∈ Hε such that sup
ε
‖f ε‖Hε <∞, one can extract a subsequence, still denoted f ε, such that, for

some w ∈ V ,
‖Aεf ε −Rεw‖Hε → 0 as ε→ 0. (151)

The following spectral problem, for the operators Aε and Ao, is considered

Aεu
k
ε = µkεu

k
ε , k = 1, 2, ..., ukε ∈ Hε (152)

Aou
k
o = µkou

k
o , k = 1, 2, ..., uko ∈ Ho (153)

with, for ε > 0 or ε = o,

µ1
ε ≥ µ2

ε ≥ ... ≥ µkε ..., µkε > 0, (ulε, u
m
ε )Hε = δlm (154)

It is proved that there is a sequence {βkε } such that βkε → 0 as ε→ 0, 0 < βkε < µko , and

|µkε − µko | ≤
µkoγ

−1/2

µko − βkε
sup

u∈Nko ,‖u‖o=1

‖AεRεu−RεAou‖Hε , k = 1, 2, ... (155)

where Nk
o is the eigenspace of operator Ao corresponding to the eigenvalue µko ([44] ,Theorem 1.4, p.268)

Weak * convergence

Definition 17. A sequence (uε)ε>0 is said to converge weakly * in L∞(Ω) to a limit u if, for any φ ∈ L1(Ω), it satisfies

lim
ε→0

∫
Ω

uε(x)φ(x))dx =

∫
Ω

u(x)φ(x)dx. (156)

This definition is valid for vector valued functions.

Main result Let Aε ∈ L∞(Ω;Ms
α,β) be a sequence of symmetric matrices which H-converges to an homogenized

matrix A∗. Let ρε be a sequence of positive functions, such that

0 < ρ− ≤ ρε(x) ≤ ρ+ <∞ (157)

which converges weakly * in L∞(Ω) to a limit ρ(x). Let (λmε )m ≥ 1 be the eigenvalues, labeled by increasing order,
and (umε )m≥1 be associated normalized, in L2(Ω), eigenvectors of the spectral problem

− divAε(x)∇umε (x) = λmε ρε(x)umε (x) in Ω and umε = 0 on ∂Ω. (158)

Then, for any fixed m ≥ 1,

lim
ε→0

λmε = λm (159)

and, up to a subsequence, umε converges weakly in H1
0 (Ω), to a normalized eigenvector associated to λm, which are

solutions of the homogenized eigenvalue problem

− divA∗(x)∇um(x) = λmρ(x)um(x) in Ω, and um = 0 on ∂Ω, (160)

and (λm)m≥1 is the complete family of eigenvalues of (160), labeled in increasing order., ([2], Theorem 1.3.16).
A similar result is obtained in O. A. Oleinik et al. [44], Chapter III Theorem 2.1.

6.1.3 Periodic homogenization

Cf. [2], Section 1.3.4. Let Y = (0, 1)N be the unit periodic cell which is identified with the unit N -dimensional torus.
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Spaces Lp\ (Y ), 1 ≤ p ≤ ∞

Definition 18.
Lp\ (Y ) = {f ∈ Lploc(R

N ) such that f is Y-periodic} (161)

equipped with the norm ||f ||Lp(Y ).

Example Let A(Y ) be a matrix which belongs to L∞\ (Y ;Mα,β). Let Ω be a bounded open set in RN . For f ∈ H−1(Ω),
let uε ∈ H1

o (Ω) be the unique solution of

− div
(
A(
x

ε
)∇uε

)
= f in Ω, u = 0 on ∂Ω (162)

Remark 17. Here the conductivity A(xε ) of Ω shows that the domain Ω is highly heterogeneous with periodic
heterogeneities of lengthscale ε.

For each unit vector ei, in the canonical basis of RN , let wi be a solution of the following problem in Y :

− divA(y)(ei +∇wi(y)) = 0 in Y, y → wi(y) is Y -periodic (163)

Then, the sequence Aε(x) = A(xε ), H-converges to A∗ ∈Mα,β defined by its entries

A∗ij =

∫
Y

[(A(y)∇wj(y)).ei +Aij(y)]dy (164)

The starting point of the proof of this result is to write the solution uε of equation (162) on the form of a two-scale
asymptotic expansion :

uε(x) =

+∞∑
i=0

εiui(x,
x

ε
) (165)

where ui(x, y) is a function of x and y, periodic in y with period Y .

6.2 Homogenization and linear elasticity

6.2.1 The linear elasticity operator

In [44], the usual linear elasticity operator, in a domain Ω ⊂ Rn, is defined, with the usual convention of repeated
indices, as

L(u) ≡ ∂

∂xh
(Ahk(x)

∂u

∂xk
) (166)

where u = (u1, ..., un) is the displacement vector, and Akh(x) are (n× n)-matrices whose elements ahkij (x) are bounded
measure functions such that

ahkij (x) = akhji (x) = aikhj(x), x ∈ Ω, (167)

and
κ1ηihηih ≤ ahkij (x)ηihηjk ≤ κ2ηihηih, x ∈ Ω (168)

for any symmetric matrix with real elements {ηih}, with positive constants κ1, κ2.

Remark 18. Are also associated to the above operator (166) the matrix e(u) whose elements are eij(u) = 1
2 ( ∂ui∂xj

+
∂uj
∂xi

)

which is called the strain tensor, and the Neumann boundary operator

σ(u) = νhA
hk(x)

∂u

∂xk
(x), x ∈ ∂Ω (169)

where ν = (ν1, ..., νn) is the unit outward normal to ∂Ω.
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6.2.2 Homogenization in perforated domains

Notations and assumptions (Cf.[44], chapter 1). Let ω be a smooth unbounded domain of Rn invariant under the
shifts by any z = (z1, z2, ..., zn) ∈ Zn, Q = {x|0 < xj < 1, j = 1, 2, ..., n}, εG = {x|ε−1x ∈ G} satisfying the conditions:
ω ∩Q is a domain with Lipschitz boundary, the sets Q\ω̄ and Vδ ∩ ∂Q consist of a finite number of Lipshitz domains
separated from each other and from the edges of Q by a positive distance, where Vδ is a δ- neigborhhod (δ < 1

4 ) of ∂Q.

Definition 19. Let Ω be a bounded smooth domain in Rn. A domain Ωε is of type I if

Ωε = Ω ∩ εω (170)

The boundary of Ωε can be represented as

∂Ωε = Γε ∪ Sε where Γε = ∂Ω ∩ εω, Sε = (∂Ωε) ∩ Ω. (171)

Example (Cf. [44], p. 119-134). Let Ωε be a domain of type (170). Consider the following mixed problem:

Lε(uε) =
∂

∂xi
(Aij(

x

ε
)
∂uε
∂xj

) = fε in Ωε (172)

where the coefficients aijkl of matrices Aij are sufficiently smooth, satisfont (167)-(168) and are 1-periodic in ξ, with the
boundary conditions

uε = Φε on Γε, σε(uε) = νiA
ij ∂uε
∂xj

= 0 on Sε. (173)

Here, fε ∈ L2(Ωε) and Φε ∈ H1(Ωε). The homogenized operator corresponding to Lε has the form

L ≡ ∂

∂xi
(Aij ∂

∂xj
) (174)

where the coefficients matrices Aij(i, j = 1, ..., n) are given by the formula

Aij = (mes Q ∩ ω)−1

∫
Q∩ω

(Aij(ξ) +Aik(ξ)
∂N j(ξ)

∂ξk
)dξ (175)

and matrices N j(ξ) are 1-periodic in ξ with
∫
Q∩ω N

j(ξ)dξ = 0 and are solutions of the following boundary problem:

∂

∂ξk
(Akj(ξ)

∂Nq

∂ξj
) = − ∂

∂ξk
Akq(ξ) in ω (176)

with
σ(Nq) = −νkAkq(ξ) on ∂ω. (177)

Let uo(x) be a weak solution of the problem

L(uo) = fo in Ω, uo = Φo on ∂Ω (178)

where f0 ∈ H1(Ω), and Φo ∈ H3(Ω). If fε is the restriction to Ωε of fo, and Φε is the restriction to Γε of Φo, then
(178) is the homogenized system corresponding to system (172) and (173) and ||uε − uo||L2(Ωε) → 0 as ε tends to 0.

6.3 Homogenization and Steklov eigenproblems

In [12], Chechkina, D’Apice and De maio consider a smooth domain Ω in Rd, d ≥ 2, whose boundary is ∂Ω = γ1∪γε∪Γε.

Here, ε is a small, positive, parameter, Γε consists of Nε sets whose diameter is less than or equal to ε and the distance
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between then is greater than or equal to 2ε, and γε = ∂Ω\(γ1∪Γε). The boundary value problem for the elasticity
system (E):

Lk(uε) =
∂

∂xi
(aijkl

∂ulε
∂xj

) = 0 in Ω, k = 1, ..., d (179)

and
uε = 0 on γ1 ∪ γε, (180)

σ(uε) = Aij(x)
∂uε
∂xj

νi = g(x) on Γε (181)

is considered. Here, the elements aijkl of the d× d-matrices Aij are bounded measurable functions, with

aijkl(x) = ajilk(x) = akjil (x), κ1ξkiξki ≤ aijkl(x)ξkiξlj ≤ κ2ξkiξki, x ∈ Ω, (182)

where κ1, κ2 are constants > 0, ν = (ν1, ν2, ..; νd) is an outward normal vector to the boundary ∂Ω, g(x) ∈ (L2(∂Ω))d.
Let H1(Ω, γ1 ∪ γε) be the completion of the space of functions v ∈ C∞(Ω), v = 0 on γ1 ∪ γε, with respect to the norm

||v||H1(Ω) = (

∫
Ω

(v2 + |∇v|2)dx)
1
2 . (183)

The solution uε of system (E) is in the space (H1(Ω, γ1 ∪ γε))d. The following results are proved:
R1-the solutions uε of system (E) are uniformly bounded with respect to ε, in H1(Ω) ([12], Lemma 3) i.e. each uiε is
bounded in H1(Ω)

R2- ∫
Ω

|uε|2dx ≤ C|lnε|−δ, 0 < δ < 2− 2

d
. (184)

([12], Theorem 3). In particular uε → 0, in L2(Ω), as ε→ 0.
The Steklov-type problem

L(unε ) =
∂

∂xi
(aijkl

∂ulε
∂xj

) = 0 in Ω, k = 1, ..., d (185)

with the boundary conditions
unε = 0 on γ1 ∪ γε, (186)

and
σ(unε ) = Aij(x)

∂uε
∂xj

νi = λnε u
n
ε on Γε (187)

is considered. The set {λnε }, n = 1, 2, ... is the set of eigenvalues such that λ1
ε ≤ λ2

ε ≤ ... ≤ λnε ≤ ..., where the eigenvalues
repeat according to their multiplicities.
The following estimate is established, for ε sufficiently small, and Nε = O(|ln|(1−

δ
2)d−1 )

λnε ≥ C|lnε|δ, (188)

where C is a constant independent of ε, ( [12], Theorem 5).The proof is based on an adaptation of the general abstract
result (subsection 6.1.2), thanks to the above results R1 and R2.

7 Maxwell’s equations and electromagnetisme

7.1 Spaces H(div; Ω), H(curl; Ω)

Cf. H. M. Yin et al. [64] and D. R. Adhikari et al. [1]. Let Ω be a bounded Lipschitz domain in R3 and p ≥ 2
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Definition 20. We recall that , for a three dimensional vector distribution, v ∈
(
D′(Ω)

)3
,

curl(v) = ∇× v, and div(v) = ∇.v (189)

Definition 21.
Hp(div; Ω) = {u ∈

(
Lp(Ω)

)3|∇.u ∈ (Lp(Ω))3} (190)

equipped with the graph norm

||u||HP (div;Ω) =
(
||u||p(Lp(Ω))3 + ||∇.u||p(Lp(Ω))3

)1/p (191)

Definition 22.
Hp(curl; Ω) = {v ∈

(
Lp(Ω)

)3|∇ × v ∈ (Lp(Ω))3} (192)

equipped with the graph norm.This space is the space of finite energy solutions of Maxwell’s equations.

Remark 19. In P. Monk [41], the above spaces are defined for p = 2 and respectively denoted by H(div; Ω) and
H(curl; Ω). The space Ho(curl; Ω) is the closure of the L. Scwartz’s space (D(Ω))3 in H(curl(Ω)).

Definition 23. The space of surface tangential vector fields in L2(∂Ω) is defined by

L2
t (∂Ω) = {u ∈

(
L2(∂Ω)

)3| ν.u = 0 a.e. on ∂Ω} (193)

equipped with the norm of
(
L2(∂Ω)

)3
, where ν is the unit outward normal to Ω.

7.2 Maxwell’s equations

Cf. [41]. The electric and magnetic field vectors are respectively denoted by E and H. The. vector functions electric
displacement and magnetic induction are denoted, respectively, by D and B. They are functions of the position x ∈ R3

and time t, and are related by Maxwell’s equations:

∂B
∂t

+∇× E = 0 (194)

∇.D = ρ (195)

∂D
∂t

+∇×H = −J (196)

∇.B = 0, (197)

where ρ is a scalar charge density function and J is the current vector density function.

7.2.1 Time-harmonic Maxwell’s system

If the radiation has a frequency ω > 0, in time, the electromagnetic field is said to be time-harmonic, provided

E(x, t) = <
(
exp(−iωt)Ê(x)

)
(198)

D(x, t) = <
(
exp(−iωt)D̂(x)

)
(199)

H(x, t) = <
(
exp(−iωt)Ĥ(x)

)
. (200)
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And, also
B(x, t) = <

(
exp(−iωt)B̂(x)

)
, (201)

J (x, t) = <
(
exp(−iωt)Ĵ(x)

)
, (202)

ρ(x, t) = <
(
exp(−iωt)ρ̂(x)

)
. (203)

Substituting these relations into Maxwell’s equations (subsection 7.2), leads to the time harmonic Maxwell’s system:

− iωB̂ +∇× Ê = 0 (204)

∇.D̂ = ρ̂ (205)

− iωD̂ +∇× Ĥ = −Ĵ (206)

∇.B̂ = 0, (207)

7.3 The cavity problem.

Cf. [41]. In this section, the domain Ω ⊂ R3 is bounded and simply connected. Its boundary ∂Ω consists of at most
two connected components Σ and Γ. Define the space:

X = {u ∈ H(curl; Ω) ν × u = 0 on Γ and uT ∈
(
L2(Σ)

)3 on Σ} (208)

where ν is the unit outward normal to Ω and uT = (ν × u)× u on ∂Ω. We also need the following definitions:

Definition 24. The electric permittivity, the magnetic permeability and the conductivity are denoted by εo, µo, and
σ, respectively.Then the relative permittivity and relative permeability are denoted by εr and µr.

Set
E = ε1/2o Ê, H = µ1/2

o Ĥ, (209)

and let F be a given current density. The elimination of H in the system (204)-(207) leads to the problem: find the
time electric field E corresponding to F such that ([41], Section 1.4)

∇× (u−1
r ∇× E)− κ2εrE = F in Ω, (210)

with the boundary conditions

ν × E = 0 on Γ and µ−1
r (∇× E)× ν − iκλET = g on Σ, (211)

where g is a given tangential vector field on Σ, κ = ω
√
εoµo and the impedance λ is a positive function on the surface

of the material.

7.3.1 Variational formulation

Let (u, v) and 〈u, v〉 be the inner products in
(
L2(Ω)

)3 and
(
L2(Σ)

)3
, respectively and set

a(u, v) = (µ−1
r ∇× u,∇× v)− κ2(εru, v)− iκ〈uT , vT 〉 (212)

for all u, v ∈ X. Then the variational cavity problem is to find E ∈ X such that

a(E,Φ) = (F,Φ) + 〈g,ΦT 〉 (213)
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for all Φ ∈ X ([41] p. 82). Next, it is proved ([41],Theorem 4.17) that, under suitable additional conditions on the data,
problem (213) has a unique solution E ∈ X for any value of κ > 0. Moreover there is a constant C > 0, independent of
E,F and g but depending on κ, such that

||E||X ≤ C(||F ||(L2(Ω))3 + ||g||(L2(Σ))3) (214)

7.3.2 Eigenvalues problem

(Cf. [41], Section 4.7). In this subsubsection , Σ = ∅ (therefore g=0 and S = Γ) and εr is real. The cavity eigenvalue
problem is: find non-trivial pairs E ∈ Ho(curl; Ω) and κ ∈ R such that

(µ−1
r ∇× E,∇× Φ) = κ2(εrE,Φ) for all Φ ∈ Ho(curl; Ω). (215)

Main result: There exist an infinity of eigenfunctions E for the eigenvalue κ = 0. And there is an infinite discrete set of
eigenvalues κj > 0, j = 1, 2, ... and corresponding eigenfunctions Ej , with 0 < κ1 ≤ κ2 ≤ ..., limj→∞ κj =∞.

7.4 The Bean model in superconductivity

Cf. L. Prigozhin [46] and [47]. The superconductor occupies a three dimensional domain Ω ⊂ R3. Let ω denote the
exterior space. In Maxwell’s equations, the displacement current,very small, can be omitted.These equations read:

∂B

∂t
+ curl E = 0 (216)

J = curl H (217)

where J is the current density and B = µoH where µo is the permeability of the vacuum. The density of the external
current Je(x, t) which satisfies the condition divJe = 0 is known:

Je = curl H in ω. (218)

Only the case where the vectors of current density J and electric field E are collinear is considered. This is the case for
two dimensional problems and three dimensional problems with axial symmetry. Jointly with the above Maxwell’s
equations, the Bean model presented in [47] consists of the following equations (Ohm’s law)::

E = ρ J in Ω, ρ(x, t) ≥ 0 (219)

where ρ is an unknown function and J is the effective resistivity,

|curl H| ≤ Jc, (220)

where the critical value Jc is constant in the Bean model, moreover

|curl H| < Jc ⇒ ρ = 0, (221)

with the initial condition:
B(0, x) = Bo(x) with div Bo = 0 (222)

and the boundary conditions: the tangential component Hτ of H is assumed to be continuous i.e.

[Hτ ] = 0 on Γ, (223)
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where [.] denotes the jump across the boundary, and

|H| → 0 as |x| → ∞. (224)

Let
V = {ϕ(x, t) |curl ϕ = 0 in ω, [ϕτ ] = 0 on Γ}, (225)

The following variational relation is valid for all ϕ ∈ V :

µo

∫ T

0

∫
R3

∂H

∂t
.ϕ+

∫ T

0

∫
Ω

ρ curl H. curl ϕ = 0 (226)

To sum up, the above Bean model now consists of equations: (218), (219)-(224) and (226).
Let He be the quasistationary external magnetic field induced by the external current in the absence of the supercon-
ductor, i.e. the unique solution of the problem

curl He = Je, div He = 0, |He| → 0 as |x| → ∞, (227)

h = H −He and K(h) be the set of functions

K(h) : {ϕ ∈ V | |curl ϕ| ≤ Jc(h+He) in Ω} (228)

The above Bean model is equivalent to the problem: find h ∈ K(h) such that

(∂(h+He)/∂t, ϕ− h) ≥ 0, for any ϕ ∈ K(h) and h|t=0 = h0 =
Bo
µo
−He|t=0. (229)

Existence and uniqueness of solution to this problem is proved ([47], p.193).
The variational formulation of the Bean model (229) is used to solve the problem numerically ([47] Section 4), and
examples are presented.

7.5 Bean’s critical state type II superconductors

In this subsection, Ω is a bounded, simply connected domain in R3 with boundary ∂Ω ∈ C1,1 and QT = Ω×(0, T ], T > 0.
The degenerate evolution system studied by H-M Yin et al. [64] is:

Ht +∇× |∇ ×H|p−2∇×H] = F (x, t), ∇.H = 0, (x, t) ∈ QT (230)

with the conditions
ν ×H(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (231)

and
H(x, 0) = Ho(x), x ∈ Ω, (232)

where H is the magnetic field, p ≥ 2 is fixed and ν is the outward normal to ∂Ω. In type-II superconductors, the
electromagnetic field concerns an alloy-type conductive medium where the displacement current is small in comparaison
with eddy currents J = σE (Ohm’s law). Let E be the electric field and J be the current density. In Bean’s model,
there exists a critical current Jc such that |J | ≤ Jc and

|E| = 0 if |J | < Jc and |E| = [0,∞) if |J | = Jc. (233)

Under suitable conditions on the data F and Ho, the authors prove the existence of a weak solution to the system
(230)-(232), whose limit H(∞), as p→∞, satisfies

H
(∞)
t −∇× [a(x, t)∇×H(∞)] = F, (x, t) ∈ Qt, (234)
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in the sense of distributions, where a(x, t) is a nonnegative, bounded and measurable function. Moreover

supp a(x) ⊂ Nt for a.e. every t ∈ (0, T ] (235)

where Nt = {(x, t) ∈ QT }. Therefore, H(∞) is a solution to the Bean’s model.

8 Pseudospectra and non hermitian, one dimensional, quantum mechan-

ics

As usual, operator means, always, linear operator.
Pseudospectra are related to closed operators.
Notation In a Banach space X, the norm is denoted by ||.||, or, if a confusion is possible, by ||.||X .

8.1 Introduction: closed operators

(Cf. L.N. Trefethen, M. Embree, [56]). Let (X, ‖.‖) be a Banach space, B(X) be the set of bounded operators on
X and C(X) be the set of closed operators on X. (An operator A is closed provided that, if {uk} is a sequence in
the domainD(A) of A, converging to a limit u ∈ X, and if {Auk} converges to a limit v ∈ X, then u ∈ D(A) and Au = v.)

Remark 20. For a closed unbounded operator A in X, its domain D(A) is different from X, but the domain D(A) of
a bounded operator is the whole of X.

8.1.1 Invertibility and perturbation of closed operators

If A ∈ C(X) has a bounded inverse A−1, then, for any E ∈ B(X), with ||E|| < 1/||A−1||, A+E has a bounded inverse
(A+ E)−1 satisfying

||(A+ E)−1|| ≤ ||A−1||
1− ||E||||A−1||

. (236)

Conversely, for any µ > 1/||A−1|| there exists E ∈ B(X), ||E|| < µ, such that (A+ E)u = 0 for some nonzero u ∈ X.
Cf. [56], Theorem 4.1 and [36] Theorem 1.16, p. 196.
Given A ∈ C(X), the resolvent set ρ(A) is the set of z ∈ C for which the inverse (z − A)−1 exists and is in B(X).

The spectrum σ(A) of A ∈ C(X) is the complement of ρ(A) in C, i.e. σ(A) = C/ρ(A), with the convention that, for
z ∈ σ(A), ||(z −A)−1|| = +∞.

8.1.2 Metrics for closed operators in a Hibert space

Product metric (Cf. L. Schwartz [51] Chapitre VII). Let (E1, d1) and (E2, d2) two metric spaces. It is possible to
introduce, on the product E1 × E2, the following equivalent metrics δ = Max (d1, d2) and d1 + d2, respectively defined
by

δ((x1, x2), (y1, y2)) = Max(d1(x1, y1), d2(x2, y2)) (237)

and
(d1 + d2)((x1, x2), (y1, y2)) = d1(x1, y1) + d2(x2, y2). (238)
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Remark 21. Let H,K be two Hilbert spaces. The product H ×K with the scalar product

((h1, k1), (h2, k2))H×K = (h1, h2)H + (k1, k2)K (239)

is a Hilbert space. On the other hand, the topological direct sum H ⊕K is the Hilbert space {h⊕ k = (h, k) ∈ H ×K}
with the scalar product

〈h1 ⊕ k1, h2 ⊕ k2〉 = (h1, h2)H + (k1, k2)K . (240)

and the map (h, k) ∈ H ×K → h⊕ k ∈ H ⊕K is an isomorphism (cf. [19], p.112)

Metrics for closed linear subspaces of a Hilbert space (Cf. Gohberg-Krein [28] and Cordes-Labrousse [14]).
Let H be a Hilbert space and S,T two closed subspaces of H.

d(T,S) = sup
x∈S,||x||=1

d(x,T) + sup
x∈T,||x||=1

d(x,S) (241)

defines a metric on the totality of closed linear subsets of H. Equivalent metrics are defined by

g(T,S) = ||PT − PS||, (242)

where PS, PT are the orthogonal projections on S and T, respectively, and by

θ(T,S) = Max{ sup
x∈S,||x||=1

d(x,T), sup
x∈T,||x||=1

d(x,S)}. (243)

Metrics for closed operators Let A be a closed linear operator (or, simply, closed operator) in the Hilbert space
H, with domain D(A), and S(A) be the graph of A i. e. the set of pairs (u ∈ D(A), Au) in H ×H. With the product
metric, H ×H is a Hilbert space (cf. subsection 8.1.2), and it is well known that A is closed in H, if and only if its
graph S(A) is a closed linear manifold in H ×H (cf. Kato [36] p. 164) or, in terms of topological direct sum, if S(A)

is a closed linear subspace of the direct sum h = H ⊕H.

Definition 25. ([14], Definition 3.1). If A and B are closed operators acting in H, then the metrics d(A,B) and
g(A,B) are defined by

d(A,B) = d(S(A),S(B)), g(A,B) = g(S(A),S(B)), (244)

and
θ(A,B) = θ(S(A),S(B)) (245)

8.2 Pseudospectra

8.2.1 Definition of the ε-pseudospectrum σε(A)

Let A ∈ C(X) and ε > 0 be arbitrary.
In [56], p. 31, the authors give the following equivalent definitions.

Definition 26. The ε-pseudospectrum of A is the set of z ∈ C satisfying any of the conditions

||(z −A)−1|| > ε−1, (246)

z ∈ σ(A+ E) for some E ∈ B(X) with ||E|| < ε, (247)
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z ∈ σ(A), or ||(z −A)u|| < ε for some u ∈ D(A) with ||u|| = 1. (248)

If z and u satisfy the last equation they are called ε-pseudoeigenvalue and ε-pseudoeigenvector, respectively, for
the operator A. The pseudospectra of A is the family

{σε(A)}ε>0 = ∪
||E||<ε

(σ(A+ E) (249)

Importance of the pseudospectra. In accordance with formula (249), the notion of pseudospectra provides
information about the instability mentionned in remark 26. The size of the pseudospectral regions provides a clear
indication of the instability of typical Hamiltonians in quantum mechanic.

Trivial pseudospectra
A closed operator T is said to have a trivial pseudospectra if, for some positive constant κ,

||(T − z)−1|| ≤ κ

dist(z, σ(T ))
for all z ∈ C/σ(T ) (250)

(cf [32], section 2.3).

8.2.2 Examples

Example 4. The virtual eigenvalues of J. Arazy and L. Zelenko [6] are in the pseudospectra of (−∆)`, in
X = L2(Rd), ` ∈ N, 2` ≥ d. Indeed, they consider the operator (see also [33], p.132):

Hγ = (−∆)` + γV (x), D(Hγ) = {u ∈ L2(Rd)|u ∈W 2l
2,loc(Rd), Hγu ∈ L2(Rd)}, (251)

γ ∈ R, x ∈ Rd → V (x) ∈ R, (252)

where V (x) ≥ 0 is assumed to be continuous and to satisfy lim
|x|→∞

V (x) = 0. Here A = (−∆)` is self-adjoint and,

therefore, closed, the multiplication operator V. = V (x) is bounded and belongs to B(X). Their virtual eigenvalues are
the eigenvalues of Hγ , where

||γV ||B(X) = |γ|‖V ‖B(X) ≤ ε, (253)

as soon as
|γ| ≤ ε

||V ||B(X)
. (254)

Therefore, for ε > 0, σ(Hγ) is the ε-pseudospectra of (−∆)l when the inequality (254) is satisfied.

Example 5. (Cf [56] p.35–37). Let A be the operator acting in X = L2(0, d), d > 0, whose domain is

D(A) = {u ∈ L2(0, d), u(d) = 0, u is absolutely continuous (ac) }, (255)

such that
Au =

du

dx
and u(d) = 0, for u ∈ D(A). (256)

We recall that a function F (x) is absolutely continuous in an interval (a, b) if it is the indefinite integral of a function
f ∈ L1

loc (cf. [54] Section 11.7). The spectrum σ(A) is empty, since, for z ∈ C, u(d) = ezd 6= 0. Nevertheless, the
pseudospectra of A are "enormous". The resolvent (z −A)−1 exists as a bounded operator, and, for any z ∈ C,

u(x) = (z −A)−1v(x) =

∫ d

x

ez(x−s)v(s)ds, x ∈ (0, d). (257)
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The equation (257) means that (z −A)−1v(x) is the restriction to (0, d) of the convolution product v ∗ g where v and g
are regarded as functions in L2(−∞,+∞) with

g(x) = ezx for x ∈ [−d, 0], 0 otherwise . (258)

By means of the Fourier transform in L2(R), (257) leads to

||u|| ≤ ||v ∗ g|| = ||v̂ ∗ g|| = ||v̂|| ||ĝ|| ≤ ||v|| sup
ω∈R
|ĝ(ω)| = ||v||e

−dRe − 1

|Rez|
, (259)

where ||.|| denotes the norm in L2(−∞,+∞). Then

||(z −A)−1|| ≤ 1

Rez
, (260)

for Rez > 0, and

||(z −A)−1|| = ed|Rez|

2|Rez|
+O(

1

|Rez|
), (261)

for Rez < 0. These results imply ([56], Theorem 5.1) that the pseudospctra of A are half-planes of the form

σε(A) = {z ∈ C : Rez < cε}, (262)

with

cε ∼

(log ε/d) if ε→ 0

ε if ε→∞.
(263)

Example 6. The ghost solution of D. Domokos and P. Holmes (Cf. [21]). In [56], p. 98–99, this ghost
solution is presented in the following way. The author considers the linear differential equation

Au = u
′
+ xu = 0, (264)

acting on sufficiently smooth functions in L2(−L,+L) and associated to the boundary conditions

u(−L) = u(L) = 0. (265)

The function
u(x) = e−

x2

2 − e−L
2

2 (266)

satisfies the boundary conditions (265) and the equation

Au = u
′
(x) + xu(x) = xe−

L2

2 (267)

i.e. (264) for all x, up to an error no greater than Le−
L2

2 . Therefore

|Au| ≤ Le−L
2

2 , (268)

and 0 belongs to the ε-pseudospectrum of A for a value of ε that decreases exponentially as L→∞.

Example 7. The non-self-adjoint (NSA) harmonic oscillator
The harmonic oscillator
The harmonic oscillator is the closure, in L2(R), of the operator Ha defined by

(Haf)(x) = −f ′′(x) + ax2f(x), (269)
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for f in the L. Schwartz’s space S(R), with a > 0. The operator Ha is essentialy self-adjoint on S (i.e. its
closure is self-adjoint in L2(R)), and the resolvent operators are compact. Moreover, the spectrum of Ha is

{(2n+ 1)a1/2 : n = 0, 1, ...}, (270)

each eigenvalue λ is of multiplicity 1, and the corresponding eigenfunctions are

φn(x) = Hn(a1/4x)e−a
1/2x2/2, (271)

where Hn is the hermite polynomial of degree n. After normalization, the eigenfunctions provide a complete orthonormal
set in L2(R).

The non-self-adjoint (NSA) harmonic oscillator
Reminder: Definitions
Cf. [17]. Let X be a Hilbert space with inner product (f, g)→ 〈f, g〉. A sequence {xj}, in X, is a normalized basis
if it is a basis with ||xj || = 1 for each j.
An unconditional basis is a basis with the property that every permutation of the sequence is also a basis.
A sequence {fn}∞n=1, in X, is said to be an Abel-Lidskii basis in X, if it is a part of a biorthogonal pair {fn}, {φn}
such that, for all f ∈ X, one has

f = lim
ε→0

∞∑
n=1

e−εn〈f, φn〉fn (272)

Remark 22. If X is a Hilbert space, a sequence {xj} is an unconditional basis if and only if there exists a bounded
invertible operator S on X such that {ej = S−1xj} is a complete orthonormal set in X. It is also called Riesz basis.

The NSA is the operator Ha defined by (269) where a is allowed to be complex. In this case, the eigenvalues are complexe,
but they are given by the same formula (270). It is proved, in E.B. Davies [17], Corollary 14.5.2, that the sequence of
eigenfunctions φn cannot be an Abel-Lidskii basis and Theorem 14.5.4, that, if 0 < θ < arg(a), the resolvent
Rr,θ = (reiθI − Ha)

−1 is such that ||Rr,θ|| diverges at a super-polynomial rate, as r → ∞ and if arg(a) < θ < 2π,
then ||Rr,θ|| → 0 as r → ∞. Therefore, given ε > 0, there exists ro(ε) such that, for r > ro, ||Rr,θ|| > ε−1 i.e. the
ε-pseudospectra of Ha is {z = reiθ, 0 < θ < arg(a), r > ro}.

Remark 23. In [15], E.B. Davies considers the harmonic oscillator (269), when a is complexe, with Re a > 0 and
Im a > 0. He introduces two real positive parameters η and α and constructs a family of pseudoeigenfunctions fη
concentrated around the point x0 = αη, associated to the pseudoeigenvalues zη = η2 + aα2η2 − iaα such that

lim
η→+∞

||(Ha − zη)−1|| = +∞. (273)

He also proves that the eigenfunctions of Ha do not form an unconditional basis in L2(R).

Example 8. In [32], R. Henry and D.Krejčiřík consider, in L2(R), the operator

H = − d2

dx2
+ i sign (x), (274)

with domain
D(H) = W 2,2(R). (275)

It is closed and densely defined, but, neither self-adjoint nor normal. However it satisfies

H∗ = T HT , H∗ = PHP, and [H,PT ] = 0 (PT -symmetry), (276)
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where H∗ denotes the adjoint of H and T and P are, respectively, defined by T ψ = ψ̄, (Pψ)(x) = ψ(−x). Its numerical
range Num(H) (i.e. the set of all complex numbers (ψ,Hψ) with ψ ∈ D(H) and ||ψ|| = 1), is

Num(H) = S̄, where S = [0,+∞) + i(−1, 1). (277)

Moreover,
σ(H) = σess(H) = [0,+∞) + i{−1,+1}. (278)

They show that H cannot have trivial pseudospectra. For that, they set z = τ + iδ and they construct a
function f0 such that

||(H − z)−1|| ≥ ||(H − z)
−1f0||

||f0||
≥ φ(τ, δ) ∼ τ√

1− δ2
, (279)

as τ →∞, where φ(τ, δ) is a suitable function. For z real, positive (δ = 0)

||(H − z)−1|| ≥ ||(H − z)
−1f0||

||f0||
≥ φ(τ, 0) ∼ τ, (280)

and dist(z, σ(H)) = 1. The equation (280) shows that, for any positive constant C, there exists a z0 ∈ C/(σ(H), real,
positive, such that

||(H − z0)−1|| > C

dist(z0, σ(H))
(281)

ever, H has a non-trivial pseudospectra. Indeed, thanks to (280), given ε > 0, there exist z ∈ C/σ(H) such that
||(H − z)−1|| > ε−1.

Remark 24. In the references of this section, the authors present nice figures of the pseudospectra.

8.3 Non-hermitian one dimensional quantum mechanics

8.3.1 Introduction to quantum mechanics

In one dimensional motion of a single particule restricted to motion along a line, M. Schechter [50] postulates: there is
a function ψ(x, t) of position x ∈ R at the time t such that the probability that the particule is in an interval I, at the
time t, is given by ∫

I

|ψ(x, t)|2dx; (282)

ψ(x, t) is called the state function, and satisfies
∫∞
∞ |ψ(x, t)|2dx = 1, forall t. Set (with the notations of [50]) p = mdx

dt

where m is the mass of the particule, and define the operator L by

Lψ = −i~∂ψ
∂x

(283)

where ~ is the Planck’s constant. (No confusion is possible between the square L2 of the operator L ans the space
L2(R)). The total energy of the particule is the sum of the kinetic energy T = 1

2mv
2 = p2

2m and the potential energy
V : x ∈ R→ R. The corresponding energy-operator or hamiltonian is the operator

H =
1

2m
L2 + V (284)

Remark 25. If H is the generator of a Co semi-group e−tH on L2(R), ψ(x, t) = e−tHψ(x, 0). Therefore, it will be
convenient to estimate ||e−tH ||.
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Definition 27. Let w be a measurable quantity which can take on the values w1, ..., wN and suppose the probability
that w takes the value wk is Pk, k = 1, ..., N . The quantity

w̄ = w1P1 + ...+ wNPN (285)

is called the average value or he mathematical expectation of w.

In [50], this definition is justified by a Feller’s theorem namely: If a sequence of identical experiments is performed and
the values S1, ..., Sn, ... are observed (The numbers Snare among the values w1, ..., wN ), then the average value

S1 + ...+ Sn
n

(286)

converges to w̄, in the sense of probability, as n→∞ ([22]).
The kinetic energy of the particule is E = p2

2m . The average value of E is

Ē = (H(ψ), ψ). (287)

Any quantity, that can be measured, is called an observable. In formula (287), Ē is an observable.

Remark 26. Importance of the spectrum :An observable can assume values only in the spectrum of its
corresponding operator. Moreover, even in the cases in which the eigenfunctions can be determined explicitely, they
often do not form a basis. This is closely related to a high degree of instability of the eigenfunctions under small
perturbations of the operator (cf [16], Abstract).

8.3.2 Examples

This paragraph is devoted to examples of pseudospectra related to models of non-hermitian quantum mechanics (cf.
Krejčiřík et al.) [38]

Example 9. The rotated harmonic oscillator that is the quantum hamiltonian of the harmonic oscillator

Hf = −f” + x2 (288)

See operator (269), with a = 1.

Remark 27. It is proved, in [38], that the shifted harmonic oscillator

− d2

dx2
+ (x+ i)2, on L2(R) (289)

has the same spectrum as the above H, but large pseudospectra in parabolic regions of the complex plane ([38],
Theorem 7).

Example 10. The imaginary Airy operator. It is the non-self-adjoint operator

H = − d2

dx2
+ ix, on L2(R), (290)

with domain D(H) = {ψ ∈W 2,2(R);xψ ∈ L2(R)}. The spectrum of H is empty. But, its pseudospectra σε(H) is not
trivial. There exist constants C1, C2 such that, for all ε > 0,

σε(H) ⊇ {z|<z ≥ C1 and <z ≥ C2(log
1

ε
)2/3 (291)
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Example 11. The imaginary cubic oscillator:

H = − d2

dx2
+ ix3, on L2(R), (292)

with domain D(H) = {ψ ∈ W 2,2(R);x3ψ ∈ L2(R)}. Its spectum is composed of an infinite sequence of discrete real
eigenvalues and the eigenfunctions form a complete set in L2(R) (cf. [52]). Its pseudospectra σε(H)l is described as
follows: for any δ > 0, there exist constants C1, C2 > 0 such that, for all ε > 0,

σε(H) ⊇ {z ∈ C
∣∣|z| ≥ C1 and | arg z| < (

π

2
− δ) and |z| ≥ C2(log

1

ε
)6/5} (293)

Example 12. An advection-diffusion operator:

H = − d2

dx2
+

d

dx
on L2(R), (294)

with domain D(H) = W 2,2(R). The diffusion term −d2/dx2 is the free Hamiltonian in quantum mechanics, self-adjoint
on W 2,2(R). The spectrum σ(H) of H is the parabola ∂Σ:

σ(H) = {z ∈ C
∣∣<z ≥ 0 and |=z|2 = <z}. (295)

Since H is a normal operator, its pseudo-spectra are trivial. Neverthless, the spectrum of the self-adjoint free
Hamiltonian Hsa = − d2

dx2 + 1
4 = ΩHΩ−1 with (cf. (312)) Ω = e−x/2, with domain W 2,2(R), σ(Hsa) = (1/4,∞), differs

from the complex parabolic spectrum of H.

Remark 28. In [38], the authors point out the differences between the above operator (294) and the convection-
diffusion operator:

H(L) = − d2

dx2
+

d

dx
on L2[0, L], (296)

with the Dirichlet boundary conditions u(0) = u(L) = 0. In this case,

σ(H(L)) = σ(H(L)
sa ) =

{
(
πk

L
)2 +

1

4

∣∣k = 1, 2, ...
}

(297)

Example 13. (Cf. [48]). Consider the operator

H =: H([0,d]) =
d2

dx2
+

d

dx
on L2[0, d], (298)

with the Dirichlet boundary conditions u(0) = u(d) = 0. The following related operators will be considered: H([0,∞)),
acting in L2[0,∞) with the boundary condition u(0) = 0, and H(−∞,+∞)) acting in L2(−∞,+∞) with no boundary
condition.
Notations

S = {α ∈ C : −1 ≤ <α < 0}; ∆ε = {λ ∈ C : |λ| ≤ ε} (299)

and
P = {λ ∈ C : λ = α2 + α, <α = 0}, Π = {λ ∈ C : λ = α2 + α,−1 ≤ <α < 0} (300)

Spectra of the above operators

σ(H) = −1

4
− π2n2

d2
, n = 1, 2, ... σ(H−∞,+∞) = P σ(H([0,∞))) = Π (301)

Pseudospectra For each ε > 0, the ε-pseudospectra of H, H(−∞,+∞), and H [0,∞) satisfy

σε(H) ⊆ Π + ∆ε (302)

and
σε(H

(−∞,+∞)) = P + ∆ε, σε(H
([0,+∞))) = Π + ∆ε (303)
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8.3.3 Time evolution

(cf. Remark 25). In this subsection, H is a closed linear operator in a Hilbert space, which generates a Co semi-group
(cf. [55]).

Definitions

Definition 28. The spectral abcissa of H, αH , is the sup
λ∈σ(H)

of the real part or of the absolute value of the

spectrum of H.

Definition 29. The ε pseudospectral abcissa of H, αε(H) is the sup
λ∈σε(H)

of the real part or of the absolute value

of the ε-pseudo spectrum of H.

Definition 30. The numerical abcissa of H, w(H), is

w(H) = sup<z
z∈W (H)

(304)

where W (H) = {(Hu, u);u ∈ D(H), ||u|| = 1}, is the numerical range of H.

Definition 31. The the growth abcissa of H is

γ(H) = lim
t→∞

t−1 log ||etH || (305)

Main results 1) For any H satisfying the above assumption, we have:

γ(H) = lim
ε→0

αε(H) (306)

2) If H is normal we have
||exp(tH)|| = etα(H),∀t > 0 (307)

If H is not normal
etα(H) ≤ ||exp(tH)|| ≤ +∞ (308)

But, when H has a basis of eigenvectors, the last inequality, in (308), may be affined in terms of the condition number
of this basis.

8.3.4 Symmetrizability

Definition 32. An operator L is symmetrizable if it is similar, by a diagonal similarity transformation, to a self-adjoint
operator with the same real eigenvalues.

For example, in (cf [48]), the authors consider the convection-diffusion operator

Lu = u” + u
′
, u(0) = u(d) = 0 (309)

acting in L2[0, d], with domain

D(L) = {u ∈ C[0, d]
∣∣u(0 = u(d) = 0, u has a second derivative u” ∈ L2(0, d)}. (310)
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The spectrum σ(L) and the spectral abcissa α(L) are,

λn = −1

4
− π2n2

d2
, n = 1, 2, 3, ..., α(L) = −1

4
− −π

2

d2
(311)

and the corresponding eigenfunctions
un(x) = e−x/2 sin(πnx/d) (312)

form a basis. Set u(x) = e−
x
2 v(x).Then Lu = u” + u

′
= e−

x
2 (v” − 1

4v). Finally,

Lu =MKv =MKM−1u (313)

where K : v → v” − 1
4v is self adjoint,M : v →Mv = e−

x
2 v, is a diagonal operator with ||M|| = 1 and ||M−1|| = e

d
2 ,

and therefore κ(M) = ||M|| ||M−1|| = ed/2.

Remark 29. The number κ(M) is the condition number of the symmetrizing transformation, but, it is also equal to
the condition number of the basis (312) of eigenfunctions of L. In this case, the inequality (308) can be written

etα(L) ≤ ||etL|| ≤ κ(M)etα(L) (314)

i.e.
e−t/4−tπ

2/d2 ≤ ||etL|| ≤ ed/2−t/4−tπ
2/d2 (315)

([48], p.1646).

9 Spectral flow

There are several definitions of spectral flow in the literature.

9.1 A roughly speaking description

In [23], P.M. Fitzpatrick et al. present the following description of the spectral flow. Let H be a real separable Hilbert
space, Φ0(H) be the space of all (linear) Fredholm operators of index 0 acting on H, (i.e. its kernel N(T ) has finite
dimension nul(T ), its range R(T ) is closed and has a finite codimension def(T ); the index of T is i(T ) = nul(T )-def (T )

) and ΦS(H) the subset of Φ0(H) of self-adjoint and, therefore closed, operators. Thanks to subsection 8.1.2, ΦS(H) is
a topological space. Let I = [a, b] be a real interval. For a path i.e. a continuous map L : λ ∈ I → Lλ ∈ ΦS(H), the
spectral flow sf(L, I) is the number of negative eigenvalues of La that become positive as the parameter λ travels from
a to b minus the number of positive eigenvalues of La that become negative.
A similar description was presented and justified by K. Furutani and N. Otsuki in [25] , when H is a separable complex
Hilbert space and ΦS(H) is the space of bounded Fredholm, self-adjoint operators with index 0.

9.2 Spectral flow via the Cayley transform

(Cf. B. Booss-Bavnbek et al. [10]). Let H be a separable complex Hilbert space with the scalar product ( , ). The
authors denote by Csa the space of closed, densely defined operators T acting in H, that are self-adjoint, and by CFsa

the subspace of Csa that are Fredholm .

Several topologies have been introduced on Csa.
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9.2.1 The gap topology

Let T ∈ Csa, and P denotes the orthogonal projection onto the graph of T in H ×H. The gap metric is δ(T1, T2) =

||P1 − P2|| (where ||.|| denotes the norm in the space B of bounded operators acting in H)

9.2.2 The “Cayley transform" metric

For a densely defined operator T in H, the Cayley transform κ is defined by

T → κ(T ) = (T − i)(T + i)−1 (316)

Let U be the subspace of B of unitary operators H → H. It is proved that

κ(CFsa) = {u ∈ U|(U + I)is Fredholm and (U − I)is injective} =:F Uinj , (317)

moreover the metric δ̃, on CFsa, defined by

δ̃(T1, T2) = ||κ(T1)− κ(T2)|| (318)

is equivalent to the metric δ.

9.2.3 The metric γ

On Csa, the metric γ, defined by
γ(T1 − T2) = ||(T1 + i)−1 − (T2 + i)−1|| (319)

is uniformly equivalent to the gap metric, and δ̃(T1, T2) = 1
2γ(T1, T2) ([10], Theorem 1.1).

9.2.4 The map wind

Let FU = {U ∈ U| − 1 6∈ specessU( i.e. (U + 1)is Fredholm)} The following “description” (definition) of wind is given
([10], Proposition 2.1):
Let L : I = [0, 1]→F U be a continuous path. There is a partition 0 = t0, < t1 < ... < tn = 1 of [0, 1], and positive real
numbers 0 < εj < π, j = 1, ..., n, such that ker(f(t)− ei(π±εj)) = {0}. Then wind(f) is defined by

wind(f) =

n∑
j=1

k(tj , εj)− k(tj−1, εj) (320)

where
k(t, εj) =

∑
0≤θ<εj

dim ker(f(t)− ei(π+θ)) (321)

This definition is independent of the choice of the partition of the interval and of the barriers εj .
Definition of the spectral flow of L, sf(L) :

sf(L) = sf(L, I) = wind(κ ◦ L) (322)
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9.2.5 Homotopy

(Cf. J. Dieudonné [19]). Let L1 and L2 two paths defined in the same intervalle I = [a, b], and A an open set in C, such
that L1(I) ⊂ A and L2(I) ⊂ A. An homotopy of L1 to L2, in A, is a continuous map ϕ : (t, ξ) ∈ I × [α, β](α < β ∈
R)→ A such that ϕ(t, α) = L1(t) and ϕ(t, β) = L2(t) in I. Then the two paths L1 and L2 are said to be homotopes in
A

The spectral flow defined by (322) is invariant under homotopies leaving the end points fixed ([10] Proposition 2.3).

9.3 Spectral flow and bifurcation

9.3.1 Differentiable functions in Banach spaces

Let E and F be two Banach spaces and U a neighborhood of 0 in E. We say that the maps f1 : U → F and f2 : U → F

are tangent at a ∈ U if
m(r) = sup

||x−a||≤r
||f1(x)− f2(x)|| (323)

satisfies the condition
lim

r→0,r>0

m(r)

r
= 0 or m(r)=o(r) (324)

Definition 33. A map f : U → F is differentiable at the point a ∈ U if there exists a g ∈ L(E,F ) such that

||f(x)− f(a)− g(x− a)||F = o(||x− a||E) as x→ a (325)

where L(E,F ) is the space of linear continuous maps from E to F with its usual norm. The map g is called the
(Fréchet) derivative of f at the point a and is denoted by f

′
(a) or Df(a). (Cf. H. Cartan [11] )

Derivative of second order (Cf. [19]. Let f be a continuously differentiable function in an open set A of a Banach
space E to a Banach space F. Then Df is a continuous map from A to L(E,F ). If Df is differentiable at the point
a ∈ A, f is said to be twice continuously diffferentiable at a ∈ A and the derivative of Df at the point a is called the
second derivative of f at a, and is denoted by f

′′
(a) or D2f(a).

Partial derivatives Let E1, E2, F be Banach spaces, E = E1 × E2, A be an open set of E, and f a differentialbe
map from A to F and a = (a1, a2) ∈ A

Definition 34. The map f is said differentiable, at the point (a1, a2), with respect to the first [resp. second variable]
if the partial map x1 → f(x1, a2) [resp. x2 → f(a1, x2)] is differentiable in a1 [resp. a2]. These derivatives are called
partial derivative with respect to the first variable [resp. the second variable] at the point (a1, a2) and are denoted by
Dx1f(a1, a2)(∈ L(E1, F )) [resp. Dx2f(a1, a2)(∈ L(E2, F ))]. Moreover the gradient of f at the point (a1, a2) is defined
by

∇f(a1, a2) = Dx1
f(a1, a2)×Dx2

f(a1, a2) ∈ L(E1, F )× L(E2, F ) (326)

Remark 30. The above definition can be extented, in the same way, when E is a product of more than two spaces.
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9.3.2 Bifurcation

(Cf. [23]) Let f(I × U)→ X be a continuously differentiable mapping defined on the product of the interval I = [a, b]

with a neighborhood U of the origin in a real Banach space X, such that f(λ, 0) = 0 for all λ ∈ I. Solutions of the
equation f(λ, x) = 0 of the form (λ, 0), are called trivial. A bifurcation point for solutions of the equation f(λ, x) = 0

is a point λ∗ ∈ I such that every neighborhood of (λ∗, 0) contains nontrivial solutions of this equation. Let, for λ ∈ I,
Lλ = Dx(f(λ, x))(λ, 0) ∈ L(X,X) be the derivative of f(λ, x) with respect to x, at the trivial solution. By the implicit
function theorem, bifurcation can occur only at points where Lλ is singular i.e. is noninvertible.
The following result is presented in P. M. Fitzpatrick et al. [24] Theorem A. Let I = [a, b] be an interval of real
numbers, X be a real separable Hilbert space and U be a neighborhood of I × {0} in R×X on which the C2 function
ψ : (λ, x) ∈ U → ψ(λ, x) ∈ R has the property that, for each λ ∈ I, 0 is a critical point of ψλ ≡ ψ(λ, .). It is assumed that
the Hessian Lλ of ψλ, at 0, is Fredholm, and that La and Lb are nonsingular. Then, if the spectral flow of {Lλ} on the
interval I is nonzero, every neigborhood of I×{0} contains points of the form (λ, x) where x 6= 0 is a critical point of ψλ.

9.3.3 Examples

Example 14. ([24])
Let I = [a, b] and H = (λ, t, u) ∈ I × R × R2n → H(λ, t, u) ∈ R be a twice continuously differentiable function,
2π-periodic in t with H(λ, t, 0) ≡ 0. The following Hamiltonian system for the differentiable function u : R→ R2n, is
considered:

Ju′(t) +∇uH(λ, t, u(t)) = 0, u(0) = u(2π) (327)

where

J =

(
0 −Idn
Idn 0

)
(328)

is the symplectic 2n× 2n matrix. The authors make assumptions under which they can apply their previous results
[23] and show that bifurcation of 2π-periodic orbits from the branch of equilibrium arises. Here

X = H
1
2 ≡ H 1

2 (S1,R2n), (329)

the function ψ : I ×H 1
2 → R, is defined by

ψ(λ, u) =
1

2
Γ(u, u) +

∫ 2π

0

H(λ, t, u(t))dt (330)

where Γ(u, v) =
∫ 2π

0
〈Ju′(t), v(t)〉dt,∀v ∈ H 1

2 . The Hessian Lλ of ψ(λ, .) defined by Lλ = DuF (λ, 0), where

F (λ, u) = ∇uψ(λ, u), (λ, u) ∈ I ×H 1
2 , (331)

is Fredholm. The spectral flow sf(L, I) of the path L = {Lλ}λ∈I is nonzero.

Example 15. (Cf. N. Waterstraat [61]).
Let Ω be a bounded domain in RN , N ∈ N, with a smooth boundary ∂Ω, I = [0, 1]. Let a, b, c : I × Ω̄ → R and
G : I × Ω̄× R2 → R be C2-functions. Systems of elliptic partial differential equations of the form

−∆u = bλ(x)u+ cλ(x)v +G
′

v(λ, x, u, v) in Ω

−∆v = aλ(x)u+ bλ(x)v +G
′

u(λ, x, u, v) in Ω

u = v = 0 on ∂Ω

(332)
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are considered. Here G
′

u(λ, x, 0, 0) and G
′

v(λ, x, 0, 0) are assumed to be 0 for all (λ, x) ∈ I ×Ω. Aditionnal assumptions
are made on G and its derivatives such that the following results are justified. Let D2G(λ, x, u, v) denote the Hessian
matrix of G(λ, x, ., .) : R2 → R, at the point (u, v) ∈ R2 with D2G(λ, x, 0, 0) = 0. Let E be the Hilbert space
H1

0 (Ω,R)×H1
0 (Ω,R) with the corresponding scalar product 〈., .〉E , and for z = (u, v) ∈ E, define the map

fλ(z) =

∫
Ω

〈
∇u,∇v〉dx− 1

2

∫
Ω

(aλ(x)u2 + 2bλ(x)uv + cλ(x)v2
)
dx−

∫
Ω

G(λ, x, u, v)dx (333)

which is C2. Moreover, fλ(0) = 0 for all λ ∈ I. For z = (u, v) ∈ E, the map z̃ = (ũ, ṽ) ∈ E to

D2
0fλ(z, z̃) =

∫
Ω

〈∇u,∇ṽ〉dx+

∫
Ω

〈∇ũ,∇v〉dx−
∫

Ω

(
aλ(x)uũ+ bλ(x)(ũv + uṽ) + cλ(x)vṽ

)
dx (334)

is a continuous linear form on E. From the Riesz representation theorem, there exists Lλ(z) ∈ E such that

〈Lλz, z̃〉E = D2
0(fλ(z, z̃)) z, z̃ ∈ E, (335)

and Lλ ∈ ΦS(E). Therefore, the path L = {Lλ|λ ∈ I} is a path of bounded linear self-adjoint, Fredholm operators and
the spectral flow sf(L, I) is well defined. It is proved that if the linearized systems

−∆u = bλ(x)u+ cλ(x)v in Ω

−∆v = aλ(x)u+ bλ(x)v in Ω

u = v = 0 on ∂Ω

(336)

have no nontrivial solution for λ = 0 and λ = 1, then the spectral flow sf(L, I), estimated in terms of the coefficients
of (336), is nonero. This implies the existence of a bifurcation point λ∗ ∈ (0, 1) for the family of equations (332) ( [61],
Theorems 2.1 and 4.2 ).
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