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Abstract

We study the existence of positive solutions for an elliptic equation in RY for N = 2,3 which is related with the
existence of standing (localized) waves and the existence of the ground state solutions for some physical model or
systems in fluid mechanics to describe the evolution of weakly nonlinear water waves. We use a variational approach
and the well-known principle of concentration-compactness due to P. Lions to obtain the existence of this type
of solutions, even in the case that the nonlinear term g is a non-homogeneous function or an operator defined in
H'(RY) with values in R.
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1 Introduction

The first step in the study of some interesting physical problems in acoustics, in the context of gravity waves, in
fluid mechanics, or optics is to establish the existence of special positive solutions as travelling and standing waves,
as happens in the case of the generalized Schrédinger equation, the generalized Davey-Stewartson type systems, the
Zakharov-Rubenchik (also known Benney-Roskes) system and the generalization the Zakharov-Rubenchik system. The
main issue in previous models is that the existence of such special solutions is reduced to studying the existence of

solutions for a single Schrodinger type nonlinear equation of the form

0 + a1 ALY + €021 = ol [P — Bl — vEo ([v*)v, (1)

where o1,¢,0,3,7 € R, Ey is a nonlocal linear operator defined via a Fourier multiplier, x € RY for N = 2,3, and
A=A, +0? with A} = 02 in the case N = 2. In this general case, if we look for standing wave solutions for of

the form 1 (x,t) = e'“*u(x), then u satisfies the equation
—cu+ o1 AL u+ €d?u = olulPu — Blul®u — yEo(|u)?)u,

something that also happens in the case of generalization of the KAV equation or the Gardner equation in RV for

v = 0. We note that this equation is elliptic in the case eo; > 0.

Regarding the existence or non existence of positive solutions for nonlinear models, there are plenty of result for
different kind of problems in the elliptic and non elliptic case. For instance, J. Gidaglia and J.C Saut in [7] showed a

non existence result of non trivial solutions for the nonlinear equation

N
—wv + Zeja;’u + f(Jv))v =0,

j=1
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in the case ¢, = *1 with ¢, # ¢ for some (k,l), under the assumption that the nonsingular diagonal matrix
diag(ey,- - -, en) is not positive-definite (resp. negative definite) and that f is a continuous real-valued function such
that

[f(s)l <C+]sl”), p<

< = 2.
N3’ N#2 1<p<oo, N=2

Moreover, the existence of a positive (radial) solution g € C°°(R?) N H!(R?) of the elliptic equation
—g+Ag+g*=0
implies the existence of a nontrivial solutions of the nonelliptic equation
—w—l—wm—wyy—l—w3 =0.
Moreover, if we set u(z,y,t) = e'‘w(x,y), then u satisfies the equation
WUt + Upg — Uyy + |u|?u = 0.

On the other hand, for p € (1, %) with N > 2 and b € C(RY) such that b(z) — by as |z| — oo, J. Lions [9]

established the solvability of the elliptic equation
—Au+u = b(z)u? =0,

This result was extended by Bahri and Lions [2] to the case when b(z) > by, — Ce01%l. In the case that b(x) < b, and
bY

is a convex combination of functions b(- — y) with y = (21, -+, 2x) and z; € Z, then K. Tintarev in [I5] showed the
existence of a nontrivial solution of the elliptic equation

—Au+u = b¥ (z)uP = 0.
In this paper we are interested in establishing a general existence result of positive solutions of the special elliptic
equation in RY (N = 2,3)
cu—Au+g(u) =0, ¢>0 (2)

where g is either a function defined in R or an operator defined in H'!(R") having some variational properties. In
particular, we are very interested in this elliptic equation due to its relation with the existence of special solutions for
some well known systems. For instance, we consider the existence of standing (localized) waves v(x,t) = e*“‘u(x) for

the second order differential equation in RY
iug + Au — g(u) =0, (3)

where g is a function or an operator defined such that g(u) = g(|u|)u. In this case, we find that u satisfies the elliptic

equation . We note that equation is related with the generalized Schrodinger equation in the case
9(u) = alul’u,
with the Davey-Stewartson type systems in the case
g(u) = alulPu + bE (|ul*)u,
with the Benney-Roskes/Zakharov-Rubenchik system in the case

g(u) = alulu + bEy(|ul*)u,
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and with the generalization of the Zakharov-Rubenchik system in the case
g(u) = aluPu + blul*u + cEs(|ul*)u,
where E; (j = 1,2,3) is a linear operator defined on H!(RY) via a Fourier multiplier of the form
Ej(u)(€) = T;(©)a().
We refer to the following works to get more details for these models: [4], [5], [6], [11], [12], [I3].

Oun the other hand, if we consider the existence of ground state solutions (a-travelling) v(x,t) = u(x —ct, 2) (x = (z, 2))

for the second order differential equation in R
up + Augy — (g(u))x =0, (4)

we see that u satisfies the elliptic equation . In this case, the nonlinear model with nonlinearity g(s) = asP + bs?
could be though as a generalization of the KAV equation in RV (a = 0,q = 2), a generalization of the modified KdV
equation in RY (b= 0,p = 3), a generalization of the quadratic-cubic KdV equation in R¥ (a # 0,b # 0, p = 3,q = 2),
and a generalization of the Gardner equation in R (a # 0, b # 0, p = 2q).

The existence of solutions for the nonlinear elliptic model is a consequence of the variational characterization of
solutions and the well-known concentration-compactness principle by P. Lions, although the non-linear term ¢ is not
necessarily an homogeneous function or operator. The result is inspired in Cipolatti’s approach in [4] related with the

existence of standing waves for a Davey-Stewartson system.

Remark 1.1 The positiveness of solutions for the elliptic equation @) in Theorem and Theorem bellow
follows from the work by T. Cazenave establish in [3], page 168.

Lemma 1.1 Let a: RY — R be a continuous function and let us assume that a(z) — 0, as |z| — oo . Let us assume

further that there exists v € H*(RY) such that
J(v) = /RN (|VU|2 — a(x)vQ) dx < 0,
Then, there exists A > 0 and a positive solution u € H'(RN) of the equation
—Au + Au = a(x)u.
In addition, if w € H*(RYN)is nonnegative, w # 0, is such that
—Aw + vw = a(x)w,

for some v € R, then w = pu for some p > 0. In particular, v = A.

This paper is organized as follows. In section 2, we include some preliminary results, state the main hypotheses
on the operator g and provide a variational characterization of the ground state solutions for the general equation
and . In section 3, we prove the main results by using the variational characterization of ground state
solutions and the Concentration-Compactness principle by P. Lions ([9, [10]). In section 4, we provide some non
trivial examples, which include generalizations of KdV type model in RYV, Davey-Stewartson type systems (see [4]),
Benney-Roskes/Zakharov-Rubenchik system in spatial dimensions N = 2,3 (see [1], [5], [11],[14]), the generalized
Benney-Roskes/Zakharov-Rubenchik system in spatial dimensions N = 2,3 (|I2], [13]). As far as our knowledge goes,

the last result is new to the literature.
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2 Preliminaries

We assume that the nonlinear term ¢ is such that the model has a Hamiltonian structure. In other words, we assume
that there is an operator = defined in H'(RY) such that Z/(¢) = g(¢) for ¢ € H'(R"Y). From previous assumption, we
see directly that standing waves of the form v(x,t) = e‘“‘u(x) for (3)) for g(u) = g(|u|)u and travelling wave solutions in

the z-direction of the form v(x,t) = u(z — ct, 2) (x =z, 2)) for (4]) are characterized as critical points of the functional
F(u) = H(u) + cQ(u),

where the Hamiltonian H and the charge @ are defined respectively by

H(u) = %/RN [Vul? dx +Z2(u), Qu) = %/RN W2 dx.

Moreover, we have that F’(u)(v) = 0 for any v € H}(R") is equivalent to have solutions for the equation
cu—Au+g(u) =0, inRY.
If we set the functionals 7' and V on H!(R") as
T(w) = [Vuld. Vi) =5 [ v?ax+Zw.

we see that
c
H(u) = F(u) — §|IUII§-

Before we go further, we note that any nontrivial solution u of the equation satisfies the identities

W), Py = L),

which imply that V(u) =0 for N = 2 and V' (u) < 0 for N = 3. These facts will be clever in the minimization argument
for N =2 and N = 3, as in the work by R. Cipolatti in [4].

Now, for each p € R we define the level set for V
Sp={Y e H'RY)\{0}: V(¥) = p},

and the infimum j(u) by
it =t {370) v e s, ). 5)

As we mention above, we need to impose some natural conditions on the functional =. Hereafter, we assume that

E(u) = G(u) dx.
RN

Conditions on GG

G1) For N = 2,3, there are 0 < r; < - with 1 < j < k and M > 0 such that for ¢ € H'(RV
JS N=2

k
[ jc@lax < arylloll 3

j=1

(G2) There is o € HY(RY) such that V(o) < 0.
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(G3) There is m > 2 such that for A > 0 and ¢ € H}(R"), we have that G(\)) = A™F (), ), where F is a continuous
operator such that for v € H*(RY)\ {0}

lim
A—0

< 00.

/RN F(\ u)dx

(G4) For ¢ € H'(R?)\ {0} such that V(¢) = 0, we have that hy,(X\) <0, for A > 1, but close to 1.

From condition (G3), for a given ¢ € H'(RY) we have that

ho(N) = V() = X (gnwn% w2 [P dx) . ©)

Remark 2.1 On the condition (G4). We want to point out that the condition (3.9) in R. Cipolatti’s work [])]
1s trivially achieved in the case o < 2, but it unclear in the case v > 2. It seems that the condition must be that
%Vﬂ)\’l/))‘)\zl >0 for ¢ € ¥y, where

b

Vi) =~ — 5 lelaTs + 7 Buvl?).

with By being defined as
Bi(¥) = | Ei(¢)¢dx.

RN
In order to assure that the condition (8.9) in Cipolatti’s work holds, we introduce the condition (G4), which generates

some sitmple restrictions on the set R, in Cipolatti’s work.
Under those conditions on G we are able to establish the following result.

Lemma 2.1 (i) ¥, # 0 for any p € R.
(i) Let N =2 and assume conditions (G1)-(G4), then there is I > 0 such that j(u) = I for p € R.
(iii) Let N = 3 and assume conditions (G1)-(G3), then there is I > 0 such that j(u) = —p31 for < 0.

Proof. (i) Let v € H'(RY) with V(1)) # 0. Then for any A > 0, we define 1 (z) = ¥(y), where z = ¥ \y. We see
directly from the definition of V' that

V(ha) = AV ().
On the other hand, from @

o) =22 (Il + 372 [ FOvu@s)ax) =20,

From this fact, we have that hy,(e) > 0, and that hy(e) = V(eh) > 0, for € > 0 small enough. We choose A > 0
appropriate such that AV (ey)) = p > 0, which means that X, # 0 for any x> 0, since V((ey))») = AV (er)) = p. On
the other hand, using condition (G2), there is o € H*(RY) such that V() < 0. So, from condition (G3) there
0 < 7o < 1 such that Ay, (y0) = 0, since Ay, (0) > 0 and hy, (1) < 0. In other words, we have that ¥y # 0. Now, for
p < 0, we choose A > 0 large enough such that V((¢g)x) = AV (po) = p < 0, which means that ¥, # 0 for any p < 0.

Now we are going to prove (ii). Let N = 2 and set

I =3(0) :inf{;T(w) pe 20}.
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We claim that I > 0. To see this we need to recall the Gagliardo-Nirenberg-Sobolev inequality in R™ for m > 2 and
0<r< ﬁ

1711755 < Clmm)IVAILT 111572, (7)
From the Gagliardo-Nirenberg-Sobolev inequality for N = m = 2, the condition (G1) with 0 < r; < co for 1 < j <k,
and that V(¢) = 0, we conclude that

SVl =| [ 160G dx

k k
’I"j+2 Tj
<MY 1ol < My [ Y IVl | 1]72e),
Jj=1 j=1

which implies that I > 0. On the other hand, for A > 0 we have that
YeX, & €.

If we set for A > 0, px(y) = ¢(z) with 2 = v/ Ay, we have that T(¢y) = T(¢). From this we have necessarily that the
function j(p) is constant on (—oo,0) and (0,00). We will see that j(u) = I for any u € R. From the definition of I,
given € > 0 there is ¢ € ¥y such that

1< %T((p) <I+e

Now, take a sequence (fn,)n such that p,, — 07. From the fact that h,(0) = hy(1) = 0, and the condition (G4), we
see that there is o, > 1 such that hy (o) = py, and «,, — 17, which implies that

1 a% .

3T (anp) = 5T (0) 2 j(kn)-

Then, we also have that )
2

Jin) =1 < 502 = VT(g) 4.

which implies that
limsup j (i) < 1.

n— oo

Now, from the definition of j(u,,), given € > 0, there is ¢, € £,,, such that

Hta) < 5T(0n) < a) + e

From the fact that A, (0) > 0 and A, (1) = g, < 0, there is 0 < a, < 1 such that hy, (o) = a2h,, (an) = 0. So, we

conclude that

1 1 1 .
I< iT(O‘n@n) = iaiT(Qpn) < iT(QOn) < j(pn) + ¢,

which implies that
liminf j(u,) > 1.

n— oo

So, we have established that j(u) = I for 4 < 0. An analogous argument shows that j(u) = I for p > 0, as desired.

Now we proceed to establish (iii) for N = 3. We set
1

As in previous case, from the Gagliardo-Nirenberg-Sobolev inequality, the condition (G1) with 0 < r; <4for1 < j <k,
and that V(¢) = —1, we conclude that I > 0. In fact, assume that I = 0. So, choose a sequence (1, ), C H*(R3) such
that V(¢,) = —1 and |V, |2 — 0, as n — oo. If for some subsequence (¢, )r C (¢¥n), we have that |1, |2 — 0, as
k — oo, then we have from the Gagliardo-Nirenberg-Sobolev inequality that |4y, [|»,42 = 0, as k — oo, since

3r;

i+2 =z 21
i |17 52 < CENNVER127 (Wil ™ -
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So, we reach the contradiction
1= lim V(¢y,) =

k—o0
In other words, ||1,||2 > L for some L > 0 and n € N. From this and the Gagliardo-Nirenberg-Sobolev inequality, we

conclude for some 0 < r; < 2 that

k

3 nd n
i (L Q)0 Ivel )

[[4n]| ) :
— —
n o0 nll2 n oo ]:1 ||1p’n||2

. 1 C . f 3 '(/)n dX) C
— lim = —+ lim ( R =,
n—yoo (ll%lz) 2 nooo [thnll2 2

which again is a contradiction. So, we have that I > 0. On the other hand, for A > 0 we have that

implying that

YeX, & e

If we set for A > 0, pa(y) = @(z) with z = A3y, we have that T(px) = A3T(p). From this, we conclude that
j(p) = —p3 I for pu < 0. O

We see now that the minimization problem associated with j has an equivalent formulation.

Theorem 2.2 For N = 2, the minimization problem

{ ¢ E€Xo, #0 ()
T(p) =inf{T(¥): V() =0},
s equivalent to the minimization problem
{ ¢ €H'(R?), ¢#0 (©)
T(p) —inf {T(w): V($) <0},

Proof. Let
Io =inf {T(¢)) : V(¥) <0}, Ip=inf{T(¥): V() =0}.

Clearly, we have that Iy < I. Let 1) € H' be such that ¢ # 0 and V(1)) < 0. We set the function hy(A) = V/(\p). We
know that h,(1) < 0 and that hy(0) = 0, so there is 0 < A < 1 such that hy(A) = V(Ay) = 0. Then, we conclude that

Iy < T(\) = N*T'(y) < T(4),
meaning that Iy < fo. O

Following the same arguments, we also have that

Theorem 2.3 For N =3 and p < 0, the minimization problem

{  €Xy, ¢#0 (10)
T(p) =inf{T(}): V()= pu},
18 equivalent to the minimization problem
{ Vie) =p ¢#0, (11)
T(p) =inf{T(): V() <pu}.
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3 Main Results

We split the proof in the cases N = 2 and N = 3. In the case N = 2 | we use conditions (G1)-(G4), that the
embedding H'(U) C L4(U) is compact, for 1 < ¢ < oo and U C R? bounded, the concentration-compactness and the

variational characterization j.

Theorem 3.1 (i) X = {¢) € H'(R?) : ¢ # 0, ¢ solves } has a function.

(i) ¢ € X if and only if ¢ solves the minimization problem

{ $ S0 (12)
T(p) =inf{T(¥):V(y)=0}.

Proof. Let j(u) be defined in . We want to show that the problem has a solution. In fact, let (¢,), C X such
that
I = inf {T() : V() = 0} = Tim T().

n—oo
Set a,, = —||¢n||3 and define the function ¢, (x) = ¢, (y) with y = /—a,x. Then we have that T(¢,) = T(p,) and
—a,V(én) = V(pn) = 0, meaning that (¢,), C Xo is a minimizing sequence with

énll3 = 1.

Moreover, due to the fact that (¢,), C 3o is a minimizing sequence for Iy, we have that ||V¢,||2 is also a bounded
sequence in L?(R?). So, there is ¢ € H'(R?) such that ¢, — ¢o (weakly) in H!(R?).

Now, we set the measure v, with density p(¢,) with respect to the Lebesgue measure given by
() = |Vo[* + |¢]*.

So, we have that
/ dyn:/p(¢n)dx::an—>aozfo+1, n — 00.
R2 R2

We now apply the Lions’ Concentration-Compactness Principle (see [9]-[10]). First, we see that vanishing is not possible.

In fact, from the Sobolev inequality we have for any open box J in R? and for any r; > 0 that

[1oalr+ax<c ( [ 5o+ <z>n|2>dx)
J J

Now, covering R? with a sequence of open boxes Jj, in such a way that J, N J,, = 0, then we see that

T +2

rj+2

I0nll 5 = S Jy, loal 2 dx < T (f, (196 + [60]2) dx)
<O, (1 (90nl2 + 100l ) * [, (V60 + 602 dx
< (supy Jy, (9002 + 1600 dx) * 5 f, (ol + 10nf?) dx
< O (supy [, (V60 + [6a[) ) * 1160 By -
On the other hand, from V(¢) = 0 and condition (G1), we conclude that

k
C C 2
© = SJlon3 < MY lIball S,
j=1
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which gives us a contradiction, since |[¢y, ||, +2 — 0, as n — oo for r; > 0, in the case that we had vanishing.

If we assume Dichotomy, then there is 0 < v < o such that for a given € > 0, there exist Ry > 0, a sequence (y,, ), C R?,
R, 1 +00, and a bounded sequence (¢¢,),, C H'(R?) for i = 1,2 (all depending on ¢) such that

supp(¢y,) C Bry(an), supp(¢?) C R*\ Bg, (xn) (13)
én — ¢n — P2l (me) <€ (14)

IVnll3 = IVenll3 — [IVAEI3] < Ce (15)

(16)

limsup,, o0 (17 = fgz P(60) dx| + (00 = 7) = [ge p(¢7,) dx]) < e.
The first remark (passing to a subsequence) is that

i ([ (o6 pl6}) — p(62) ax) =0

n—oo

since we have that

lim
n— o0

[, () = plh) = pla2) ax

< tim |y [ ptobax+ lon =) - [ ple?) ax
n—oo R2 R2
In particular, we have that ¢& # 0 for k = 1,2. Now, from , and using that j(u) = I for any u € R, we have that

Ip+e > 3T(¢n)
>3 (T(g)) + T(g2)) — £
> j(V(6L) + i (V(d2) — <
>Io+ I — 5,

implying that Iy > 2y — %, but this is a contradiction if € > 0 is small enough. In other words, we have ruled out
Dichotomy, meaning that we have Compactness. From this fact, there is a sequence (y,,), C R? such that for a given
€ > 0, there exists Ry > % such that

/A WO (17)

where A(n) = R?\ Bg,(y,) with Bgr,(y,) being the open ball of radius Ry around y,,. If we set bn () = dn(x — yn),
then we have that ¢, — ¢ in H!(R?). Moreover, we also have that ¢, — ;¢ a. e. in L2(R?) for [ = 0,1,2 and
q~5n — c;~50 a. e. in L?(R?) for p > 2. From the compactness condition , we have for n large enough that,

/ V|2 dx < 2e, / |pn|? dx < 2e.
A(0) A(0)
On the other hand, from the Sobolev inequality, we conclude for ¢ > 2 that
/ |go|?dx < €?,  A(0) = R%\ Bg,(0,0). (18)
A(0)

Now, from Fatuo’s Lemma for ¢ > 2 we have that

fR2 \(50|q dx <liminf,,— fRQ |$n|q dx
< liminf,, e ano(O) |dn ]9 dx + 2e€
= fBR(O) |(Z50|q dx + 2e
< Jge [G0]7 dx + 2e,
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where we are using that the embedding H'(Bg,(0)) — L4(Bg,(0)) for 1 < g < oo is compact. From this, we have that
bn — ¢o in LI(R?) for 1 < g < oo, since we have weak convergence (¢,, — ¢o in L9(R?)) and the convergence of the

norms (||<;~Sn||Lq(R2) — ||gz~50||Lq(Rz)). From this fact, we conclude that

lim V(¢n) = V(¢o),

n—oo

meaning that ¢y € 3y. Moreover, again from Fatou’s lemma and the compactness of the embedding H'(Bg,(0)) —
L9(Bg,(0)) for 2 < ¢ < oo, we also have that

Jeo p(0) dx < limiinf [, p(@n) dx
< liminf (T(3n) + fya |n)[2 dx)
< 2j(p) + [ 1G0]” dx.,

which implies that

Now, we will see that X # (. In fact, let ¢b € 3y be a solution of the minimization problem . Then, there is a
Lagrange multiplier A such that for any v € H!(R?)

(OT (), v) = A0V (), v),

where the pairing (-,-) is between the spaces H~1(R?) and H'(R?). In other words, v satisfies the equation
—AY = A +g(¥)).

We see directly that A # 0. Now, we claim that A > 0. In fact, let v € H*(R?) such that (§V (), v) < 0 and take t € R.
Then we see directly that

Vi +tv) =V(@)+ fot (OV (¢ + sv),v) ds = fot (0V (¢ + sv),v) ds,
T +tv) =T(p)+ 2t (0T (¥),v) + 12T (v) = T () + 2tA 5V (¥),v) + 2T (v).

If we assume that A < 0 and take ¢ small enough but negative, then form the continuity of 7" and V', we conclude that
T(¢ +tv) < T(¢) with V(¢ + tv) < 0, which contradicts the second characterization of the minimization problem
(Theorem (2.2)). So, we see that 1 (x) = ¢ (y) with 2 = v/Ay satisfies the travelling wave equation and ¥, € X. O

In the case N = 3 , we use the embedding H'(U) C L4(U) is compact, for 2 < ¢ < 6 and U C R? bounded, the
concentration-compactness, the variational characterization j, the conditions (G1)-(G3), and the additional condition

on G,

[(G5)]| There is a continuous map Gg : H!(R3) x H!(R3) — R such that
a) If either ©» = 0 or ¢ = 0, then Go(¢,¢)(x) =0,

b)

G+ ) (2) dx / G)2)dx+ | GW)(z)dx+ / Golé, ) dx, (19)
R3 R3 R3 R3

/ Go(d, ¥)(z)dx = / Golé, ) dx = / Go(, ) dx, (20)
R3 supp ¢ R3

whenever supp (¢) N supp () = 0, and

¢) For any bounded sequence (v, ¢n)n C H'(R?) x H(R?), the sequence (Go (1, dn))n converges.
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Theorem 3.2 (i) X = {¢) € H'(R3) : ¢ # 0, 1 solves } has a function.

(i) There is po < 0 such that ¢ € X if and only if ¢ solves the minimization problem

{ ¥ € .ZILO (21)
T(p) =mf{T():V(¥) = po}.

Proof. Let j(u) be defined in . We want to show that the problem (21)) has a solution. In fact, let (¢n)n C 2,
such that

Ho = inf {T(¢n) : V((bn) = MO} = nll—>H;o T(¢n)

We claim that the sequence (||¢n||2)n is bounded. If not, assume that for some subsequence, we have that ||¢n, |2 — oo,
as [ — 0o0. So, from the Gagliardo-Nirenberg-Sobolev inequality and that the sequence (||Vyl||2)n is bounded, we

conclude that

w)d g
lhm (W)‘ < Mllim M =0,
o nliz =R P

c — 1o
0< <+ lim ( > =
2 =00 \ | ¢mll2
which is a contradiction, meaning that the sequence (¢, ), is bounded in H!(R3). From this, there is ¢g € H'(R?)

such that, for a subsequence (denoted the same), if necessary, we have that ¢,, — ¢ (weakly) in H*(R?)

Now, we set the measure v, with density p(¢,) with respect to the Lebesgue measure given by

p(¢) = [Vo|* + 0],

which implies that

/]RS an:/RBP@n)dXi:Un%UO, n — 00.

So, we have that o9 > 5 2 i (o) = _Mo 3 I. We now apply the Lions’ Concentration-Compactness Principle (see [9]-[10]).
First,we see that vanishing is not possible. In fact, as in previous result, covering R? with a sequence of open boxes J,

in such a way that J N .J,, = (), then we see that

)
2 2
||¢n||:;iz<0(sgp / <|v¢n|2+|¢n|2>dx) 1621 )
k

which implies, in the case we have vanishing, that ||¢y|,;4+2 — 0, as n — oo for 0 < r; < 2. On the other hand, from
V(én) = o and condition (G2), we conclude that

k 3r; T
C 22 94
0< Sll6nB —po <MD llgnll gl 7

j=1
which gives us a contradiction.

If we assume Dichotomy, then there is 0 < v < o such that for a given € > 0, there exist Ry > 0, a sequence (y,, ), C R3,
R, 1 400, and a bounded sequence (¢%),, C H(R?) for i = 1,2 (all depending on €) such that

supp(¢y,) C Bry(2,), supp(¢p) C R*\ Bg, (z,)
[on — ép — D2 1 rsy < € (22)
IVnll3 = IVenl3 — ||V¢2||2\ < Ce
limsup,, o (17 = [z p(63) dx| + |(00 =) = [gs p(¢7) dx|) < e.
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The first remark (passing to a subsequence) is that

n—oo

i ([ (o)~ teh) - e2) ax) =0,
RS
since we have that
lim

n—oo n—oo

[ (060 = ptoh) = pt2) ix

<t [lr= [ pehax+loo - - [ pla)axd].
R3 R3
Passing to a subsequence, if necessary, we may assume for ¢ = 1,2 that

T (6] s sy = 03(€) > 0, lim V(@) = pui(e).

n—oo

In particular, form , we have that
o1(€) + o2(€) > g9 > 0.

From the fact that V € C1(H'(R?)), we easily see that
V(én) = V(en + 02)| < Clllgnllzr)on — (6n + &7l g2y, (23)

using that )
V(6) - V() = / 6V (56 + (1— $)6),6 — W)y 1 g ds.

From the hypothesis (G5), we have that

V(0) = V() = V() = V(o) = VIeh+ ) + [ Goloh o) (2)ax. (24)
Now, if we set ¢! (x) = ¢% (x — y,), then we note
Go(h 2 dx = [ Go(h 32 dx = [ x;Galdh, ) x) dx
R3 Be RS2

where x4 denotes the characteristic function on the set A and B,, = Bpg, (0). On the other hand, the embedding
H'(Bgr,) C LY(Bg,) is compact, for 2 < ¢ < 6. So, using that (¢}), is bounded in H'(R3), there is ¢} € H'(R?) such
that ¢~>,11 — ¢} in L9(Bg,) for 2 < g < 6. Moreover, for any ¢ € H(R?®) we have that Go(w,gz;}L) — Go(1, #}) and also

that x e Go( N}” é%) — 0 almost everywhere, then the Lebesgue convergence theorem implies that

lim Gl(qﬁ”(bi)dx: lim/ XB%G1((;~5:N(5$L)(X)(1X=O.
R3 n— 00 R3

n—oo

From the estimates and , we conclude for n large enough that
[V(én) = V(en) = V(en)l < (), (25)
where lim,_.g+ d(e) = 0. So, taking limit as n — 0o, we see that
o = (11 (€) + p2(e€))] < 6(e).

Assume that lim,_,o+ p1(€) > 0, then we conclude that

po = lim po(e) < 0.

e—0t

Now, we note that

162 = / 62 dx < C(Ro, 1)L 12,».
Ro (Yn
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Now, from the Gagliardo-Nirenberg-Sobolev inequality for 0 < r; < 4, we have that

. .
2—4 2—-

3r; 3r;
42 -2 v
lénllr, 2 < CONIIVERllS™ llénlly” ™ < Clr Ro)lIVenlla™ llénllr, 45 -

If for a subsequence of (¢,,),, (denoted the same) we have that lim, ., T'(¢,) = 0, then we conclude that ||d),11||7.j+2 — 0,
as n — 0o, which implies that lim, . V(¢}) = 0. In other words, there is M; > 0 such that T(¢,) > T(¢L) > M;

with M7 independent of ¢ and n. Moreover,
3(p0) = limy 00 3T (¢n) > 3 My + liminf, o 3T(¢2) — €C' > My + j(pa(e)) — €C,

which implies from Lemma ([2.1)), after taking ¢ — 0, that

Wl
W=
Wl

(—0) I> M+ (—po)l,

N | =

1
1> 5M1 + (—pe2)

but this is a contradiction since 0 > pg > pa. So, we may assume that u;(e) < 0 for ¢ = 1,2. Then, from , we have
that

3 (T(@n1) + T(na)) = 5

iV (0n1) +3(V(én2)) - 5

(i (€) + j(p2(e) — %,

which implies from Lemma , after taking ¢ — 0, that

J(o) +e >
>
>

ol

> (—pu1)¥ + (—p2)3,

Wl

1
((=p1) + (=p2))® = (—po)
but this contradicts the fact that the function f(t) = t3 is strictly concave for ¢t € RT, since we have that

f(tl + tg) < f(t1> + f(tg), fOT ti,t2 > 0.

So, we have ruled out Dichotomy. Using the compactness property as in the case N = 2, we conclude that there is a
minimizer pg € H*(R?) for j(uo),
T(po) = 2j(n)-

Now, we will see that X # (). In fact, let ¢ € ¥, be a solution of the minimization problem . Then, there is a
Lagrange multiplier A such that for any v € H!(R?)

(0T (), v) = A0V (¥),v),
where the pairing (-,-) is between the spaces H1(R3) — H(R?). In other words, 1 satisfies the equation

—AY = A(e +9(¢)).-

We see directly that A # 0. Now, we claim that A > 0. In fact, let v € H1(R?) such that (§V(¢)),v) < 0 and take t € R.
Then we see directly that

V(@ +tv) =V(©)+ [y (6V(©+ sv),0) ds = [y (5V (2 + sv),v) ds,
T +tv) =T()+ 2t (8T (), v) + 2T (v) = T () + 2tA (V (), v) + 3T (v).

If we assume that A < 0 and take ¢ small enough but negative, then form the continuity of 7" and V', we conclude that
T(y + tv) < T(¢) with V(¢ + tv) < 0, which contradicts the second characterization of the minimization problem
(Theorem (2.2))). So, we see that ¥y, () = ¥(y) with = /Aoy satisfies the travelling wave equation (2)) and ¢, € X
with Ag = AZ2. O
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4 Applications

In this section we provide some examples of operators g satisfying the conditions imposed on G. Before we go further,

we introduce some notation to be considered. Hereafter, we set

. ) 0o for N = 2,
L for N = 3.

4.1 Generalizations of the KdV and the Gardner equation in R
We consider the dispersive model of the form u; + Au, — (alulP~'u — blu|9™ u) = 0. For this model, the z-travelling
equation is given by -cu+ Au — (a|u\p’1u — b|u|q*1u) = 0. In this particular case, we have that

g1(t) = alt|P~'t —b|t|7 ',

and that G; is given by
b

a

G1(t) = ——[t[PT? — ——|¢|772.
() = i -
We will establish the existence of travelling waves by imposing some restrictions on the parameters a and p. We start
defining
00, for p < g
ao(p) = b, forp=gq |
p p
2(p—q) \P~9 ((p+2)gb\ 9
(cq(p+2)> ( (¢+2)p ) ) for p > gq.

_ be(p+2)
) = Gy b P>0

We also define the sets
Acgp ={(p;a) : 0<p<p*, a<ao(p)}
and
Begs ={(p,a): 0 <p<p", ai(p) <a<ao(p)},

for ¢ > b and p > ¢ in the case a1 (p) < ag(p)-

We are going to verify the conditions (G1)-(G5) for the function G;. First note that

|a| |b| p+2 q+2
[ 1ca@ax < (S B (heigts + noizts)

meaning that the condition (G1) holds. Now, note that the condition (G3) holds. In fact,

p+2 q+2

Gl()‘t) = a;)\_t,_g |t|p+2 - b;\_:,_g |t|q+2
q—p

— \p+2 p12|t|p+2 _ b2+2 \t|q+2)

P—q
— )\a+2 aﬁ+2 |t[P+2 — qu2|t|q+2) .

Now, we verify the condition (G2) holds for (p,a) € Ac qp-

1) Assume that either p < g or a < 0. Then we have for any non trivial ¢ € H'(R?), we define

ar® +2 b +2 27
o129l = 1l ) = Aha (V).

o) = V() =2 (0l +

Then we see that hy(0) > 0 and limy o hy(A) = —00, where hg(X) = A2hg()). So, for Ag > 0 large enough, we have
that he(Ao) < 0. In other words, g = Ao is such that V() < 0.
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2) Assume that p > ¢ and take a > 0. Now, for A > 0 and a non trivial ¢ € H*(RY), we define the function ¢* as
¢ (z,y) = ANig(w, z), where w = Az and y = z € RN~1. Then, we have that
A2 a7 bA

2 q9=2
+2 ‘4 +2
9 o3 + m\|¢||§+2 - m||¢||g+27

V(eh) =
If we set for A > 0 the function g defined in (0, 00) by

_1 p—2 a-2 1 1
ATE 5 aNT L DT s <;+G(A4S)p b()\4s)q>.

Irpa(s) = —5—s R q+2

From this definition, we set the function

- c awP bw?
Grp,g(w) = §+p+2 BVET)

We see directly that there is a unique positive real number wy such that % Grp.q(wo) = 0, with wg given by

= (B

Moreover, we also have that

p
_ c a p C —q 1 p (p+2)qb pma
= — 1—= P = TS 1-= (a4 Ny ’
Gp.q(wo) 2+p+2( q)wo 2+ap qp+2< q)((q+2)p

We see that g» p.q(wo) <0, for 0 < a < ag(p, g, c,b) by taking

_ (2<p - q>>q <<p+ 2>qb)«
cq (g+2)p ) ’
which implies that there is sg > 0 such that gy, 4(s0) < 0, in the case 0 < a < ao(p, g, ¢, b).

Now, if we consider ¢r s = sx By, where xp, denotes the characteristic function on the ball Br of radius R denoted,
then we have that ||¢r s||. = |Bgr|s" for r > 1 and that

V((¢r.s)") = | BRlgrp.a(s),

which implies that V((¢r.s,)*) = |Brlgr(s0) < 0. By a density argument, we have that there is ¢y € H*(RY) such
that V(pg) < 0.

3) Assume that p = ¢ and take a < b, Then we see that

¢  (a—=0)

ghp,p(“’) = 3 pt2 w?,

which implies the existence of wy > 0 such that g p,(wo) < 0, as desired. In other words, we reach the condition
(G2).

Now, we verify the condition (G4) for either (p,a) € Acp 4 for p < g or (p,a) € Acp,q for ¢ > b and p > q. So, take ¢
such that V(¢) = 0 and define the function Bd, by

aAP +2 bA? +2
e AR T e}

hy(3) = SlIwll3 +

Clearly, hy(0) > 0 and Ay (1) = V(1) = 0. First assume that a < 0. In this case, we see that ?sz()\) < 0 for A > 0 and
that hy(A) <0 for A > 1.
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On the other hand, in the case a > 0, we see that hy (1) = V(1)) = 0 implies that

b
2 2
o IvInt < el

We also conclude that there is a unique Ay > 0 such that

qb(p+2) [[¥)a3

BL(M)=0 < MN79=
v alg+2) [

> ];. (26)

Moreover, we also have that
a

plg+2) +2)
So, for ¢ > p we have that \g < 1, that l~L¢(/\O) > 0, and also that hy(X) < 0 for A > 1.

Ry (o) = 5613 + (a =PI,

Assume now that p > ¢ and a > 0. In this case, we have that there is a unique A\g > 0 given by . If we had A\g =1,

then we conclude that e
[l gb(p+2)  [wl3 _ 2b(p—q)

[)|2t5  palg+2)" |y)|25  pelg+2)

On the other hand, we also have for 2 < ¢ < p that

2 2
i = ([ o+ wemacs i+ ik
l<1 [¢]=>1

which implies that

< ®p+2)  2b(p—q)
~ pa(g+2)  pe(q+2)

& alep(g+2) —2(p — q@)b) < gbe(p +2).

If we assume for example that ¢ > b, and choose a > 0 such that

gbc(p + 2)
~ep(g+2) —2(p—q)b’

then we conclude that A\g # 1. Now, if we had A\g < 1 and a > 0 satisfies , then from we see that

PAS > g,

meaning that the function w(p) = pAj is an increasing function, but this happens, only if 1 + pln(A\g) > 0, which
requires Ay > 1, but we are assuming that Ag < 1. In other words, under the assumption that a > 0 satisfies , we
have necessarily that Ao > 1, and so, we see directly that hy(X) < 0 for A > 1, but close to 1*. Finally, the case p = ¢
and a < b follows trivially.

Finally, we note that condition (Gb5) is trivially obtained.

Now, we consider the model

ug + Aug — (a|u|p*1u — buq)x = 0, which the z-travelling equation is given by -cu+Au — (a|u\p*1u — buq) = 0. So, we
have that
got) = alt|P~t — b4,

and that G5 is given by

SLETEE)

q+2

Galt) = ——

" ‘t|p+2 _
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In order to obtain similar results as in previous case, we need to adjust some issues. For instance, we take ¢ > 2,5 >0
and (p,a) € Cc g5, where
Ceqp ={(p;a) : 0 <p<p*, anl(p) <a<ax()},

and
0, forp < gq

d22 = 2(p—q) P (p+2)gb ’
(cq<p+2>) (<q+2)p) , forp>gq.

First, we have that G5 is given by

Qs

a b
Ga(t) = —|t|PH? — —— 192
2 () = S5l -
As in the case above, the conditions (G1) and (G3) hold using the same argument.
We now verify the condition (G2) holds for (p,a) € Acp,q with p # q.

1) Assume that either p < g or a < 0. Recall that for ¢ € H'(R"), we define the function

~ c alP bA?
h )\:7 2+ P+2_7/ q+2 d
o) = GI0IE + ol — g [ 67 x)ax
If we choose ¢ in such a way that
/ pI2 dx > 0,
RN

we have that hg(0) > 0 and limy_o hg(A) = —0o. So, for Ag > 0 large enough, we have that hg(\g) < 0. In other
words, g = A\o¢ is such that V() < 0.

2) Assume that p > q. If ¢ € H'(RY) is non trivial, we define ¢* for A > 0 as the function ¢*(x,y) = )\iqﬁ(z, w) where
x = w and y = z € R¥N~1, Then, we have that

ATE o aAT s DA o2
-2 d
5ol + =5 1ol — =5 /RNqﬁ X,

As done for Gy, if for A > 0 we set the function g, , , defined in (0, 00) by

V(eh) =

1
cAT2

a\'z D%n
gk,p,q(s) = 2 s°+ s — g2

p+2 q+2

From previous case, we know that there is so > 0 such that gy, 4(s0) < 0, for 0 < a < @, meaning that we have
the condition (G2) since by a density argument as in previous case, we have that there is pg € H!(RY) such that
V(o) <O0.

Now, we establish the validity of the condition (G4). In this case, take 1) such that V(i) = 0. We see directly that

= B 9 adP pr2  bAY / a+2
P = ez + =51 lhe - 75 LR

Clearly, hy(0) > 0 and hy (1) = V(1) = 0. The first remark is that

2
}’l/ )\ _ 0 bq fRN ¢q+2 dX q _ ap||¢“£i2 )\p
po)=0 & q+2 07 p42 TV

In the case

a | ¢iT%dx <0,
RN

we conclude that ﬁ;()\) < 0 for A > 0 and so hy(X\) <0 for A > 1.
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Now, in the case a f]RN 912 dx > 0, we have that there is a unique g > 0 such that

qb(p+2) fov ¥ dx

ala+2)  |vlpi

hy(Mo) =0 <« M7=

Moreover, we also have that

~ P
hy(Mo) = elll3 + 20~ (q — p) w512 > 0,
o) = el + 220 (g =PI

if we assume a(q — p) > 0. So, supposing that a > 0, then we have that ¢ > p and that fRN 9t2 dx > 0. In this case,

we conclude that )
qbp+2) [pn ¥ dx ¢

AB=T — L
alg+2) [|lp|E73

)

since we have from the condition V(1) = 0 that

b(p +2) Jp V72 dix

2
alg+2)  |lvllprs

From this fact, we conclude that ¢ > p, and also that A\g < 1. So, from this analysis, we have that hy(A\) < 0 for A > 1,

but close to 1.

Now, assume that a < 0, then we have that p > ¢ and that IRN 912 dx < 0. In this case, we conclude that

qbp+2) [pn¥Pdx ¢

<,
ala+2)  [olpi p

p—q _
Ay =

because the condition V(1) = 0 implies that

b(p +2) Jyow V12 dix

2
alg+2)  |lvllprs

Moreover, we also have that h,(\o) = |93 + q(%i)(q —p)||z/1||£i§ > 0 and also that \g < 1. So, from this analysis,

we have that hy(A\) < 0 for A > 1, but close to 17, for a < 0 and p > q.

Finally as in previous case, condition (G5) for N = 2 follows trivially.

We note that using the same type of arguments as above, we also verify conditions (G1)-(G5) in the case
g3(t) = at® Tt — ptPTL = q|t|*Pt — P+

for appropriates p and a.

4.2 Davey-Stewartson type systems

We consider the standing wave equation for the Davey-Stewartson system in RY

iug + Au+ bE([u*)u — alulPu =0,
~Av = by(Jul?),

where p > 0, b =b1by > 0, a € R, and F is a (non local) linear operator defined via the Fourier transform F by

B(u)(€) = T1(6)a(o). r1<s>—||§1|27 € RN,
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In this case, standing wave equation associated with the Davey-Stewardson system is reduced to find solutions u of the
Schrédinge like model, -¢ u +Au = alu[Pu — bE(|u?)u, uw € HY(RY)\ {0}. From this model, we have that
a

b
5[l = ZE(lul?)ul*.

= alulPu — bE(|ul*)u, Ga(u) =
9a(u) = alul’u (lul®)u,  Ga(u) )

We will establish the existence of travelling waves by imposing some restrictions on the parameters a and p. We start

defining
0, forp <2
ao(p) =1 b . . forp=2
-2 \7=2 ((p+2)b) 2
(C&+2)) ( pzp ) , for p > 2.

be 2
a1 (p) :%, c>b, p>2.

We also define the sets
Acp ={(p,a) : 0 <p<p", a<ao(p)},
and
Bep ={(p,a): 0 <p<p’, ailp) <a<a(p)},
for ¢ > b and p > 2 in the case a;1(p) < ap(p)-

The condition (G1)-(G5) are verified in the work by Rolci Cipolatti (see [4]) applied to the operator —V'). For
instance, the condition (G1) follows from the Remark (2.2) estimate (2.13) applied to [¢|2.

To verify the condition (G2) for (p,a) € A.p, we proceed as in the first example with ¢ = 2. For instance, assume
that a > 0. So, for a non trivial ¢ € HY(RY), we define the function ¢* for A > 0 as the function ¢*(z,y) = A1 ¢p(w, 2)
where w = Az and y = z € RV~1. Then, for f()) defined as

FO = fon B(6)?)[6 dar dy
= fon o1 (&) |F (102?)| dnde 2
= % fes o1 (&) | F (101) (§om)| anae
= fon 010 |F (1612) (€.m)|” dnde.

From this expression we see that f(0) = 0, that f is an increasing function, and that
Jim 7(3) = [[6]14
—00
From this, given € > 0 there is A > 0 such that
_é E A2 A2 da d _ 9 4
2 [ B PP drdy <~ 2allt
RN

Now, if we take R > 0 and ¢r s = sxp, Where By is the characteristic function of the ball of radius R centered at the

origin, we have that ||¢g || = |Br|s” for r > 1 and for some A > 0 that

1 p—2

2 a +2
V((¢rs)*) —€e < 252 6nsl3 + L lor,sliis — 4loms|lt
a(Ais)p b()\%s)2
p+2 4 ’

<A ig? (S +

We see that gx p2(wo) <0, for 0 < a < ap(p, 2, ¢, b), where

D
P
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which implies that there is sg > 0 such that gy ,2(so) < 0, in the case 0 < a < ag(p, ¢, b), and also that

V((¢r,50)") — € < |Brlga(so),

which implies that V((¢r.s,)*) < 0 taking R > 0 large enough, as desired.

On the other hand, it is straightforward to verify the condition (G4) for either (p,a) € A.p for p <2 or (p,a) € Acp
for ¢ > b and p > 2. For non trivial ¢ € Hl(RN) we define

bA?
P L BRI dx

hy(N) = ¢l gll3 +

Clearly, we for a < 0, we see that ng(/\) < 0 for A > 0 and that hy(A) <0 for A > 1.

On the other hand, in the case a > 0, we see that Ay (1) = V(1)) = 0 implies that

b
p+2 2 2
We also conclude that there is a unique A\g > 0 such that

- 2 2b(p+2) 2d 2
My(h)=0 & N77= (b+2) Jov W"pl'f' x5 (28)
p da 1]l p+a p

Moreover, we also have that
~ bA3
hy(Xo) = ||1/sz + T(Z p)/ E([y*)[y]* dx.

So, for p < 2 we have that hy(Xg) > 0, that Ao < 1, and also that hy(A) < 0 for A > 1.

Assume now that p > 2 and a > 0. In this case, we have that there is a unique Ay > 0 given by . If we had A\g =1,
then we conclude that
Il bp+2) 1113 _bp—2)
Jen EQUP[W2dx — 2pa 7 [on B([91?)]]2 dx pe
On the other hand, we also have for p > 2 that [,n E([¢]*)|[¢?dx < |¢[f = (f\w\51+f\w\21) [p(2)[tdx <
]2 + ||1/)||p 5. which implies that

b(p+2) blp—2)
: - - .
Y T T e a(2ep — (p — 2)b) < be(p +2)

If we assume for example that ¢ > b, and choose a > 0 such that
be(p +2)
~ 2p—(p—2)b°
then we conclude that Ay # 1. So, as in the first case, under the assumption that a > 0 satisfies , we have necessarily
that Ao > 1, and so, we see directly that hy(X) < 0 for A > 1, but close to 1. Finally, the case p =2 and a < b follows

(29)

trivially as in the first case.

Now, we verify the condition (G5) only for N = 3 (the case N = 2 does not require this argument) for the operator
Gs(u) = 2E(|ul?)|ul?. Let ¢, ¢ € H*(R3) be such that supp (¢) N supp (¢) = 0, then we have that

Jan Gs( + @) dx = [pn E(|t + ¢|*) | + ¢[? dx
= Jav E(WP)W12 dx + [z E(16%)|6]1? dx + [ 2E(1)[6]* dx
- f]RN G5 dX+ fRN GS dX+ fRN GO 1/%(25) dX,

where Go(¢, ¢) = 2E(|¢|?)|#|%. Due to the nature of the operator E, we have that

/RN Go(th, §) dx = /RN Gol, 1) dx = /Supp o) i
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4.3 Benney-Roskes/Zakharov-Rubenchik system

The Benney-Roskes/Zakharov-Rubenchik system that describes the interaction of high-frequency and low-frequency

waves in plasmas and magnetohydrodynamics given by

O + €02 = —a1 ALY+ (oY) + W(p + Dd.p)) ¥,
atp+028zp = _AJ_SD_aESD_DaZ(h/}F)v
Opp + 020, = —ﬁf)_ |2,

We refer to [14) [ [§] for more details on the physical background of this system. If we look for ground state solutions

for the Benney-Roskes/Zakharov-Rubenchik system of the form
Y(x,t) = eux), plx,t) =v(x), @x,1) = wx),
where ¢ > 0 and (u,v,w) € H}(RY) x L2(RN) x HY(RY), then u must satisfy the following problem

—cu+ ed*u+ o Aju = (o — M>*W)ul?u — W(D — M?03)?E(Jul?)u.
u € HYRN)\ {0}.

where v and w are given by
v =—M?090,w — M?|u|*, 0,w= (M?0y — D)E(|u|?).

and the operator F is defined by its Fourier symbol as

o £

E(u)(§) = T2(&u(§), Ta(E):= @+ &+ (1- M)

in the case 0 < M < 1. In this case, we have that
gs(u) = (0 — WM?)|u|?>u — W (M?0y — D)?E(|u)*)u,

with
Gs(u) = (0 — I/I/’M2)|u|4 — W(M202 — D)QE(|u\2)u2.

The condition (G1)-(G5) are verified by adapting previous case (see also the work by J. Quintero and J. Cordero [5]).

4.4 A generalized Benney-Roskes/Zakharov-Rubenchik system

As established by J. Quintero in [12]-[13], the generalized nonlinear type Schrodinger equation,
i0p + €02 + 1 ALY = o[ — MPWIP[*) = W(D — M?02)* E([¢]*),

in R? and R?® comes from the generalized Zakharov-Rubenchik system (or the Benney-Roses system) given by

iOp) + €02 = —01 AL+ (o]p|P + W (p+ D)) v,
Op+020.p = *AMP*az‘P*Daz(W’P),
O+ 0200 = —gpmp— [V,

If we look for a ground state solutions

b(xt) = eulx), plxt) =v(x), @xt) = wx),
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for the nonlinear type Schrodinger equation or the Benney-Roskes/Zakharov-Rubenchik system with ¢ > 0, (u,v) €
HY(RM) x L2(RY) and w, € L?(RY), then u must satisfy the following problem

—cu+ed?u+ o Aju = olulPu— M>*Wlu|?>u — W(D — M?02)?E(Jul?)u.
u€ HYRN)\ {0}.

where v and w are given by
v =—M?030,w — M*|ul*, 0.w= (M?0y — D)E(|ul?).

and the operator E is defined by its Fourier symbol as

= £

E(u)(§) =Ts(&u), Ts(&):= (E+&3+(1— M2y

in the case 0 < M < 1. In this case, we have that
g6(u) = o|ulPu — WM?|u*u — W(M?cy — D)>E(Jul*)u,

with
Ges(u) = oluPt? — WM?|u|* — W(M?0y — D)?E(|u|?)u?.
In this case, we see that existence of travelling waves follows by imposing the same restrictions on the parameters a

and p stated by Rolci Cipolatti in [4] for the Davey-Stewardson system (case 3 ) given by,

00, for p < 2

ao(p) — b, fOI‘ p = 2
—2 \P=2 ((p+2)b) 2

(c&+2)> (pT) , for p > 2.

b
ai(p) :%, c>b, p>2.

We also define the sets
Acp ={(p,a) : 0 <p <p*, a<aolp)},
and
By ={(p,a): 0 <p<p*, ai(p) <a<ao(p)}

for ¢ > b and p > 2 in the case a;1(p) < ap(p)-
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