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1. INTRODUCTION 
The stability problem of functional equations originated from a question of Ulam[11] in 1940, concerning the stability of 
group homomorphisms. Let (G1, *) be a group and let (G2, *) be a metric group with the metric d(.,.). Given 0 , does 

there exist a 0 , such that if a mapping h:G1  G2satisfies the inequality )(*)(),,(( yhxhyxhd  for all yx, G1, then 

there exists a homomorphism H : G1  G2with ))(),(( xHxhd  for all x G1? In the other words, Under what condition 

does there exist a homomorphism near an approximate homomorphism? The concept of stability for functional equation 
arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. In 1941, D.H. 
Hyers [6] gave a first affirmative answer to the question of Ulam for Banach space. Let EEf : be a mapping between 

Banach spaces such that 

 )()()( yfxfyxf  

for all Eyx , , and for some 0 . Then there exists a unique additive mapping EET :  such that 

 )()( xTxf  

for all Ex  . Moreover, if )(txf  is continuous in t for each fixed Ex  , then T  is linear. In 1950, T. Aoki [1] was the 

second author to treat this problem for additive mapping. Finally in 1978, Th. M. Rassias[8] proved the following Theorem: 
Theorem (Th. M. Rassias). Let EEf : be a mapping from a norm vector space E into a Banach space E subject to 

the inequality 

)()()()(
p

y
p

xyfxfyxf    

for all Eyx , ,where  and p are constants with 0 and 1p . Then there exists a unique additive mapping 

EET : such that 

P

P
xTxf x

22

2
)()(






 

for all Ex  . Also, if the function )(txft   from R  into E  is continuous for each fixed x in E , then T is linear. 

This stability phenomenon of this kind is called the Hyers-Ulam-Rassias stability. In 1991, Z. Gajda[3]answered the 

question for the case 1p , which was raised by Rassias. In 1994, a generalization of the Rassias' theorem was obtained 

by Gavruta as follows [4].  
The functional equation is called stable if any function satisfying that functional equation "approximately" is near to a true 
solution of functional equation. We say that a functional equation is superstable if every approximately solution is an exact 
solution of it. 

Suppose that A  is a Banach algebra. Recall that   0::)(  aAAaA
l

A  is the left annihilator ideal and

  0::)(  AaAaA
r

A is the right annihilator ideal on A . A Banach algebra A  is said to be strongly without order if 

 0)()(  A
r

AA
l

A . We say that a Banach algebra A  is quartic without orderif

           22; 0 0 ; 0r A ra a A r A a r a A        . It is not hard to see that if A  is weakly without order then A  is 

strongly without order. 
A linear mapping AAL : is said to be left centralizer on A if baLabL )()(  for all Aba , . Similarly, a linear mapping 

AAR : that )()( baRabR  for all Aba , is called right centralized on A . A double centralizer on A  is a pair ),( RL , 

where L is a left centralizer, R  is a right centralizer and baRbaL )()(  for all Aba , . For example, ),(
c

R
c

L is a double 

centralizer, where caa
c

L :)( and aca
c

R :)( . The set )(AD of all double centralizers equipped with the multiplication 

)
21

).(
21

()
2

,
2

).(
1

,
1

( RRLLRLRL  is an algebra. The notion of double centralizer was introduced by Hochschild[5]and by 

Johnson [7]. Johnson [7] proved that if A  is an algebra satisfying  0)()(  A
r

AA
l

A , and RL, are mappings on A

fulfilling baRbaL )()(  , ( Aba , ), then ),( RL  is a double centralizer. We can show that if AA 
2

or  0)()(  A
r

AA
l

A , 

then RL  if and only if L and R are both left and right centralizer. 
In particular, one of the important functional equations is the following functionalequation 

( ) ( ) 2 ( ) 2 ( ) (1.1)f x y f x y f x f y      
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which is called a quadratic functional equation. The function ( )
2

f x bx is a solution of this functional equation. Every 

solution of functional equation (1.1) is said to be a quadratic mapping. It is well known that a mapping f between real 

vector spaces is quadratic if and only if there exists a unique symmetric biadditive mapping B is 
given by 

( , ) ( ) ( ))
1

(
4

B x y f x y f x y     

The stability of quadratic functional equation (1.1) was proved by skof [10] for mapping :
1 2

f E E where 
1

E  is a normed 

space and 
2

E  is a Banach space. Cholewa[3] noticed that the theorem of Skof is still true if the relevant domain
1

E is 

replaced by an Abelian group. 

A Banach algebra A  is said to be weakly commutative if 
2 2 2

( )ab a b for all Aba , . We can show that there is a Banach 

algebra weakly commutative that is not commutative (see Example 2.4 of the present paper). 

Let K  be a field. A non- Archimedean absolute value on K is a function RK :. such that for any Kba , we have  

(i) 0a and equality holds if and only if 0a , 

(ii) baab  ,  

(iii)  .,max baba   

The condition (iii) is called the strict triangle inequality. By (ii), we have 111  . Thus, by induction, it follows from (iii) 

that 1n for each integern. We always assume in addition that . is non trivial, i.e., that there is an a0∊k such that 

 1,0
0
a . 

Let X  be a linear space over a scalar field K  with a non- Archimedean non- trivial Valuation . . A function RX :. is a 

non- Archimedean norm (valuation) if it satisfies the following conditions: 

(NA1) 0x if and only if 0x ; 

(NA2) xrrx  for all Kr  and Xx  ; 

(NA3) the strong triangle inequality (ultrametrie); namely,  

 yxyx ,max  ( Xyx , ). 

Then ).,( X is called a non-Archimedean spase. 

It follows from (NA3) that  

 max : 1 ( ),1x x x x l j m m lm l j j        

Therefore a sequence {xm} is Cauchy in X  if and if {xm+1-xm} converges to zero in non-Archimedean space. By a complete 
non-Archimedean space we mean on in which every Cauchy sequence is convergent. A non-Archimedean Banach 

algebra is a complete non-Archimedean algebra A  wich satisfies baab  for all Aba , . For more detailed 

definitions of non-Archimedean Banach algebra, we can refer to [9]. 

2. MAIN RESULTS 
In this section, let A  be a non-ArchimedeanBanachalgebra. We establish the stability of quadraticdouble centralizers. 

Definition 2.1. A mapping AAL : is a quadratic left centralizer if L  satisfies the following properties: 

1) L  is a quadratic mapping, 

2) L  is a quadratic homogeneous, that is, 
2

( ) ( )L a L a   for all Aa  and  ,C  

3) 
2

( ) ( )L ab L a b for all Aba , . 

Definition 2.2. A mapping AAR : is a quadratic right centralizer if R  satisfies the following properties: 

1) R  is a quadratic mapping, 

2) R  is quadratic homogeneous, that is, 
2

( ) ( )R a R a  for all Aa  and C , 

3) 
2

( ) ( )R ab a R b for all Aba , . 

Definition 2.3.A quadratic double centralizer of an algebra A  is a pair ),( RL , where L  is a quadratic left centralizer, 

R  is a quadratic right centralizer and 
2 2

( ) ( )a L b R a b for all Aba , . 

The following example introduces a quadratic double centralizer. 



 

 

Example2.4. Let ).,( A be a unitalnon-ArchimedeanBanachalgebra. Let B A A A   .We define 1 2 3a a a a  

for all ( , , )
1 2 3

a a a a in B . It is not hard to see that ).,(B is a banach space. for arbitrarily elements ( , , )
1 2 3

a a a a and 

( , , )
1 2 3

b b b b in B , we define (0, , 0)
1 3

ab a b . since A  is a non-ArchimedeanBanach algebra, we conclude that B  is a 

non-ArchimedeanBanach algebra. 

It is easy to see that    3
: , , 0B abc a b c B   But  2

: ,B ab a b B  is not zero. Now we consider the mapping BBT :

defined by  

2
( ) ( ).T a a a B   

Then T is a quadratic mapping and quadratichomogeneous. Since  3
0B  , we get 

2 2 2 2 2
( ) ( ) 0 ( ) ( )T ab ab a b T a b a T b      

and 

2 2 2 2
( ) 0 ( )a T b a b T a b    

For all Bba , . Hence ),( TT is a quadratic double centralizer of .B  

In the above example, B  is a weakly commutative algebra, but it is not commutative. 

Theorem 2.5.Suppose that  1,1s and that AAf : is a mapping with 0)0( f for which there exist a mapping 

AAg : with 0)0( g and functions    : 0, : 0, (1 2,1 3),A A A A A A j ij i             such that 

(2 ,2 ,2 ,2 )
( , , , ) : (1 2),

0 4

sk sk sk ska b c dj
a b c d jj sk

k






    



                                                          (2.1) 

(2 , ) ( ,2 )
lim 0 lim (1 3),

4 4

sn sna b a bi i
j

sn snn n

 
   

 
 

 

2 2 2

2 2 2

2

2

2 2

( ) ( ) 2 ( ) 2 ( ) 2 ( ) ( , , , )1

( ) ( ) 2 ( ) 2 ( ) 2 ( ) ( , , , ) (2.2)2

( ) ( ) ( , ) (2.3)1

( ) ( ) ( , )2

( ) ( ) ( , ) (2.4)3

f a b c f a b c f a f b f c a b c d

g a b c g a b c g a g b g c a b c d

f ab f a b a b

g ab a g b a b

a f b g a b a b

         

         







        

        

 

 

 

 

for all Aba , and all  : 1T C      .Also, if for each fixed Aa  the mappings )(taft  and )(tagt  from R  to 

A  are continuous, then there exists a unique quadratic double centralizer ),( RL on A  satisfying 

1
( ) ( ) ( , , 0, 0), (2.5)

14
f a L a a a    

1
( ) ( ) ( , , 0, 0), (2.6)

24
g a R a a a    

for all Aa  . 

Proof:Let 1s . Putting , 0a b c d   and 1 in (2.2), we have 

(2 ) 4 ( ) ( , , 0, 0)
1

f a f a a a   

for all Aa  . One can use induction to show that 

1
(2 ) (2 ) 1 (2 ,2 ,0,0)1

44 4 4

nn m k kf a f a a a

n m k
k m




 



         (2.7) 

for all 0 mn and all Aa  . It follows from (2.7) and (2.1) that sequence
(2 )

4

n
f a

n

 
 
 

 is Cauchy. Since A  is a non-

ArchimedeanBanach algebra, this sequence is convergent. Define 

(2 )
( ) : lim .

4

n
f a

L a
n

n



(2.8) 
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Replacing a and b by a
n

2 and b
n

2 , respectively, in (2.2), we get 

(2 , 2 , 0, 0)(2 ( )) (2 ( )) (2 ) (2 )2 2 1
|| 2 2 ||

4 4 4 4 4

n nn n n n
a bf a b f a b f a f b

nn n n n

   
 

 
     

Taking the limit as n , we obtain 

2 2
( ) ( ) ( ) ( )2 2L a b L a b L a L b          (2.9) 

for all Aba , and all T . Putting 1 in (2.9), we obtain that L  is a quadratic mapping. Setting :b a in (2.9), we get 

2
(2 ) ( )4L a L a   

for all Aa  , T . But L  is a quadratic mapping. So 

2
( ) ( )L a L a   

for all Aa  and all T . Under the assumption that )(taf is continuous in Rt  for each fixed Aa  , by the same 

reasoning as in the proof of [8], 
2

( ) ( )L a L a  for all Aa  and all R . we obtain 

2
( ) ( )L a L a   

for all Aa  and ).0(   C This means that L  is quadratic homogeneous. It follows from (2.3) and (2.8) that 

1 (2 , )12 2( ) ( ) lim (2 ) (2 ) lim 0
4 4

na bn nL ab L a b f ab f a b
n nn n


    

 
 

for all Aba , . Hence L  is a quadratic left centralizer on A . Applying (2.7) with 0m ,we get 
1

( ) ( ) ( , , 0, 0)
14

L a f a a a  

for all Aa  . It is well known that the quadraticmapping L satisfying (2.5) is unique. A similar argument gives us a unique 

quadratic right centralizer R defined by 

(2 )
( ) : lim

4

ng a
R a

nn



  

which satisfies (2.6). Now we let Aba , arbitrarily. Since L  is a quadratic homogeneous, it follows from (2.4) and (2.5) 

that 

12 2 2 2( ) ( ) (2 ) 4 ( )

1 2 2 2 2[ (2 ) (2 ) (2 ) ( )(4 )

2 24 ( ) 4 ( ) ]

( , 2 )1 2 23
(2 , 2 ) ( ) ( ) .11

4

4

44

n na L b R a b a L b R a b
n

n n n na L b a f b a f b g a b
n

n ng a b R a b

n
a bn n

b a a g a R a bnn




  

   

 

   




 

The right hand side of the last inequality tends to 
2

( ) ( )g a R a b as n . 

By (2.6), we obtain 

12 2( ) ( ) ( , , 0, 0) .
2

2

4
a L b R a b a a b    

Since R  is a quadratic mapping, we thus obtain 

2

12 2 2 2( ) ( ) 4 ( ) (2 )

21
(2 , 2 , 0, 0)

1 (2 ,2 )2 .

4

4

2

4
4

n na L b R a b a L b R a b
n

n n
a a a

k ka a
b

k
k n





  











  

Passing to the limit as n , we conclude 
2 2

( ) ( )a L b R a b . Thus ),( RL is a quadraticdouble centralizer. 

The proof for 1s is similar to 1s .  



 

 

Corollary 2.6.Suppose that AAf : is a mapping for which there exist a mapping AAg : and constants 0  and 

0 2p  such that 

2 2 2

2 2 2

2

2

2 2

( ) ( ) 2 ( ) 2 ( ) 2 ( ) ( ),

( ) ( ) 2 ( ) 2 ( ) 2 ( ) ( ),

( ) ( ) ,

( ) ( ) ,

( ) ( )

,

,

p p p p
f a b c f a b c f a f b f c a b c d

p p p p
g a b c g a b c g a g b g c a b c d

p p
f ab f a b a b

p p
g ab a g b a b

p p
a f b g a b a b

         

         







          

          

 

 

 

 

for all Aba , and all T .Also, if for each fixed Aa  the mappings )( taft  and )( tagt   from R to A  are 

continuous, then there exists a unique quadratic double centralizer ),( RL on A  satisfying 

2
( ) ( ) ,

4 2

p
f a L a a

p


 


 

2
( ) ( )

4 2

p
g a R a a

p


 


 

for all Aa  . 

Proof: For ,2,1j putting ( , ) ( )
p p p p

a b a b c d
j

    and for 1, 2, 3i  putting 
p

b
p

aba
i

 ),(  in Theorem 

2.5, we get the desired results. 
 

3. STABILITY OF QUADRATIC MULTIPLIERS 
Throughout this section, assume that A  is a non-ArchimedeanBanachalgebra.  

Definition3.1. We say that a mapping AAT : is a quadratic multiplier if T  satisfies the following properties:  

1) T is a quadratic mapping, 

2) T isquadratic homogeneous, that is, 
2

( ) ( )T a T a  for all Aa   and ,C  

3)
2 2

( ) ( )a T b T a b for all ., Aba   

Example 2.4 introduces a quadratic multiplier. We investigate the stability of quadraticmultipliers. 

Theorem 3.2.Suppose that  1,1s and that AAf : is a mapping with 0)0( f for which there exist functions,

   : 0, : 0,,A A A A A A          such that 

(2 ,2 ,2 ,2 )
( , , , ) : ,

0 4

sk sk sk ska b c d
a b c d

sk
k






  



                                                          (3.1) 

(2 , ) ( ,2 )
lim 0 lim ,

4 4

sn sna b a b

sn snn n

 
 

 
 

2 2 2
( ) ( ) 2 ( ) 2 ( ) 2 ( ) ( , , , ),f a b c f a b c f a f b f c a b c d                   

2 2
( ) ( ) ( , ) (3.2)a f b f a b a b   

for all Aba , and all T .Also, if for each fixed Aa  the mappings )( taft   from R  to A are continuous, then there 

exists a unique quadraticmultiplier T  on A satisfying 

1
( ) ( ) ( , , 0, 0), (3.3)

4
f a T a a a    

for all Aa  . 

Proof.Let 1s .Putting 0c d  .By the same reasoning as in the proof of Theorem 2.5, there existsa unique quadratic 

mapping AAT : defined by 

(2 )
( ) : lim

4

nf a
T a

nn



 

 

with satisfying
2

( ) ( )T a T a  for all Aa  and all C . Also, 
1

( ) ( ) ( , , 0, 0)
4

f a T a a a   for all Aa  .Let Aba , be 

arbitrarily. Then T  is quadratic homogeneous. 
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By using (3.2) and (3.3), we have 

12 2 2 2( ) ( ) (2 ) 4 ( )

1 2 2 2 2[ (2 ) (2 ) (2 ) ( )(4 )

2 24 ( ) 4 ( ) ]

1 ( , 2 )2 21
(2 , 2 , 0, 0) ( , , 0, 0) .

1

4

4

444

n na T b T a b a T b T a b
n

n n n na T b a f b a f b f a b
n

n nf a b T a b

n
a bn n

b a a a a bnn


 

  

   

 

  


 

 

It follows from (3.1) that 
212 2( ) ( ) ( , , 0, 0) .

4
a T b T a b a a b    

Finally, we obtain 

2

12 2 2 2( ) ( ) 4 ( ) (2 )

21
(2 , 2 , 0, 0)

1 (2 ,2 ,0,0) 2

0 .

4

4

4
4

n na T b T a b a T b T a b
n

n n
a a b

k ka a
b

k
k n

as n





  









  





 

So
2 2

( ) ( )a T b T a b . Hence T is a quadratic multiplier. 

The proof for 1s is similar.   

Corollary 3.3. Suppose that AAf : is a mapping for which there exist nonnegative real numbers   and p  with 

2p  such that 

2 2 2

2 2

( ) ( ) 2 ( ) 2 ( ) 2 ( ) ( ),

( ) ( )

p p
f a b c f a b c f a f b f c a b

p p
a f b f a b a b

         



         

 

 

for all Aba , and all T .Also, if for each fixed Aa   the mappings )( taft   from R  to A are continuous, then there 

exists a unique quadraticmultiplier T  on A satisfying 

2
( ) ( )

4 2

p
f a T a a

p


 


 

for all Aa  . 

Proof:Putting ( , ) ( )
p p p p

a b a b c d    and
p

b
p

aba  ),(  in Theorem 3.2, we get the desired results. 

4. SUPERSTABILITY OF QUADRATIC DOUBLE CENTRALIZERS 
In this section, we prove the superstability of quadratic double centralizers on non-ArchimedeanBanach algebras which 
are weakly without order and weakly commutative. 

Theorem 4.1. Suppose that A is a non-ArchimedeanBanachalgebra weakly without order and weakly commutative and 

 .1,1s Let AARL :, are mappings for which there exists a function   ,0: AA such that 

2 2
lim ( , ) 0 lim ( , )

s s s s
n n x y n x n y

n n
 

 
 

 
 

2 2
( ) ( ) ( , )x L y R y x y   

 

for all Ayx , . Then ),( RL  is a quadratic double centralizer. 

Proof: We first show that L  is a quadratic homogeneous. To do this, pick C and Ayx , . We have 



 

 

2 2 2 2 2 2 2 2( ( ) ( )) ( ) ( )

2 2 2 2 2 2 2 2( ) ( )( ) ( ) ( )

2
( , ) ( , ).

s s

s s sn z L x L x n z L x n z L x

s s s sn z L x R n z x R n z x n z L x

n z x n z x

   

   

   

  

   

 

 

So 

2 222 2( ( ) ( )) ( , ) ( , ).
s ss s

z L x L x n z x n z xn n    
 

    

Since A  is weakly without order, we conclude that 
2

( ) ( )L x L x  Thequadraticity of L follows from 

2

2( ( ) ( ) 2 ( ) 2 ( ))

2 2 2 2 2 2 2 2 2( ) ( ) 2 ( ) 2 ( )

2 2 2 2 2 2 2[ ( ) ( )( ) ( ) ( )( )

2 2 2 2 22 ( ) ( ) 2 ( ) ( ) ]

2
[ ( , ) ( ,

z L x y L x y L x L y

s s s s sn n z L x y n z L x y n z L x n z L y

s s s s sn n z L x y R n z x y n z L x y R n z x y

s s s sR n z x n z L x R n z y n z L y

s s s
n n z x y n z x 

    


     


       

   


    ) 2 ( , ) 2 ( , )]

s s
y n z x n z y  

 

for all Ayx , . 
Finally, since A is a quadratic commutative non-ArchimedeanBanach algebra, we have 

22 2 2 2 2 2 2( ( ) ( ) ) ( ) ( )

2 2 2 2[ ( ) ( )( )

2 2 2 2 2( ) ( ) ]

2 2
[ ( , ) ( , ) ]

s s sz L xy L x y n z L xy n z L x y

s s sn z L xy R n z xy

s sR n z x y n z L x y

s s s
n z xy n z x y

n

n

n  


  


 

 


 

 

for all Ayx , . So 
2

( ) ( )L xy L x y . Thus L  is a quadratic left centralizer. One can similarly prove that R  is a quadratic 

right centralizer. Since L  is quadratic homogeneous,
2

( ) ( )
s s

L x L n xn


 for all Nn  and Ax  . Thus 

 
22 2 2 2 2( ( ) ( ) ) ( ) ( )( )

2
( , )

s s sx L y R x y x L n y R x n y

s s
x n y

n

n 


  




 

and hence by (4. 1) we infer that 
2 2

( ) ( )x L y R x y for all Ayx , . Thus ),( RL is a quadratic centralizer.  

Corollary 4.2.Suppose A  is a non-ArchimedeanBanach algebra weakly without order and weakly commutative and 

AARL :, are mappings for which there exist a nonnegativereal number   and a real number p  either greater than 2 or 

less than 2, such that 

2 2
( ) ( )

pp
x T y R x y x y   

for all Ayx , . Then ),( RL is a quadratic double centralizer. 

Proof: Using Theorem 4.1 with 
p

y
p

xyx  ),( we get the desired result.  

 

5. SUPERSTABILITY OF QUADRATIC MULTIPLIERS 
In this section, we prove the superstability of quadratic multipliers on non-ArchimedeanBanach algebras which are weakly 
without order.  

Theorem 5.1.Suppose that A  is a Banach algebra with weakly without order and  .1,1s Let AAT : are 

mappings for which there exists a function   ,0: AA such that 

2 2
lim ( , ) 0 lim ( , )

s ss s
n x y x n y

n n
n n 
 

 
 

 

2 2
( ) ( ) ( , )x L y R y x y   
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for all Ayx , . Then ),( RL  is a quadraticmultiplier. 

Proof: By the same reasoning as in the proof of Theorem 4.1, putting ,TRL  we can show that the mapping T  is a 

quadratic multiplier.   

Corollary 5.2.Suppose that A  is a weakly without order non-ArchimedeanBanach algebra and that AAT :  is a 

mapping for which there exist a nonnegative real number   and a real number p  either greater than 2or less than 2, such 

that 

2 2
( ) ( )

pp
x T y T x y x y   

for all Ayx , . Then T  is a quadraticmultiplier. 

Proof:Using Theorem 5.1 with 
p

y
p

xyx  ),( ,we get the result. 
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