APPROXIMATION OF THEQUADRATIC DOUBLE CENTRALIZERS AND QUADRATIC MULTIPLIERS ON NON-ARCHIMEDEAN BANACH ALGEBRAS
 H. Molaei ${ }^{1}$, H. Baghban ${ }^{2}$
 ${ }^{1}$ UNIVERSITY COLLEGE OF SCIENCE AND TECHNOLOGY ELM O FANN URMIA, P. O. BOX 57351-33746, URMIA, IRAN
 ${ }^{1}$ DEPARTMENT OF MATHEMATICS TECHNICAL AND VOCATINAL UNIVERSITY GAZITABATABAEI, P. O. BOX 57169-33950, URMIA, IRAN E-mail:Habibmolaei@Gmail.com
 ${ }^{2}$ UNIVERSITY COLLEGE OF SCIENCE AND TECHNOLOGY ELM O FANN URMIA, P. O. BOX 57351-33746, URMIA, IRAN
 E-mail:Hamid.baghban66@yahoo.com

Abstract

In this paper, we establish stability of quadratic double centralizers and quadratic multipliers on non-ArchimedeanBanach algebras. We also prove the superstability of quadraticdouble centralizers on non-ArchimedeanBanach algebras which are weakly commutative and weakly without order, and of quadratic multipliers on non-ArchimedeanBanach algebras which are weakly withoutorder. Mathematics subject classification: 39B82, 47B47, 39B52, 46H25 Keywords: quadratic functional equation; non-ArchimedeanBanach algebras; multiplier; double centralizer; Stability; Superstability

Council for Innovative Research

Peer Review Research Publishing System
 Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol. 9, No. 6
www.cirjam.com , editorjam@gmail.com

1. INTRODUCTION

The stability problem of functional equations originated from a question of Ulam[11] in 1940, concerning the stability of group homomorphisms. Let $\left(\mathrm{G}_{1}, *\right)$ be a group and let $\left(\mathrm{G}_{2}, *\right)$ be a metric group with the metric $\mathrm{d}(.,$.$) . Given \varepsilon>0$, does there exist a $\delta>0$, such that if a mapping $\mathrm{h}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{2}$ satisfies the inequality $d\left(h(x, y), h(x) * h(y)<\delta\right.$ for all $x, y \in \mathrm{G}_{1}$, then there exists a homomorphism $H: \mathrm{G}_{1} \rightarrow \mathrm{G}_{2}$ with $d(h(x), H(x))<\varepsilon$ for all $x \in \mathrm{G}_{1}$? In the other words, Under what condition does there exist a homomorphism near an approximate homomorphism? The concept of stability for functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. In 1941, D.H. Hyers [6] gave a first affirmative answer to the question of Ulam for Banach space. Let $f: E \rightarrow E^{\prime}$ be a mapping between Banach spaces such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$

for all $x, y \in E$, and for some $\delta>0$. Then there exists a unique additive mapping $T: E \rightarrow E^{\prime}$ such that

$$
\|f(x)-T(x)\| \leq \delta
$$

for all $x \in E$. Moreover, if $f(t x)$ is continuous in t for each fixed $x \in E$, then T is linear. In 1950, T. Aoki [1] was the second author to treat this problem for additive mapping. Finally in 1978, Th. M. Rassias[8] proved the following Theorem: Theorem (Th. M. Rassias). Let $f: E \rightarrow E^{\prime}$ be a mapping from a norm vector space E into a Banach space E^{\prime} subject to the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E$, where ε and p are constants with $\varepsilon>0$ and $p<1$. Then there exists a unique additive mapping $T: E \rightarrow E^{\prime}$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \varepsilon}{2-2^{P}}\|x\|^{P}
$$

for all $x \in E$. Also, if the function $t \rightarrow f(t x)$ from R into E^{\prime} is continuous for each fixed x in E, then T is linear.
This stability phenomenon of this kind is called the Hyers-Ulam-Rassias stability. In 1991, Z. Gajda[3]answered the question for the case $p<1$, which was raised by Rassias. In 1994, a generalization of the Rassias' theorem was obtained by Gavruta as follows [4].
The functional equation is called stable if any function satisfying that functional equation "approximately" is near to a true solution of functional equation. We say that a functional equation is superstable if every approximately solution is an exact solution of it.
Suppose that A is a Banach algebra. Recall that $A_{l}(A):=\{a \in A: a A=\{0\}\}$ is the left annihilator ideal and $A_{r}(A):=\{a \in A: A a=\{0\}\}$ is the right annihilator ideal on $A . A$ Banach algebra A is said to be strongly without order if $A_{l}(A)=A_{r}(A)=\{0\}$. We say that a Banach algebra A is quartic without orderif $\left\{r \in A\left\{r a^{2} ; a \in A\right\}=\{0\}\right\}=\{0\}=\left\{r \in A\left\{a^{2} r ; a \in A\right\}=\{0\}\right\}$. It is not hard to see that if A is weakly without order then A is strongly without order.
A linear mapping $L: A \rightarrow A$ is said to be left centralizer on A if $L(a b)=L(a) b$ for all $a, b \in A$. Similarly, a linear mapping $R: A \rightarrow A$ that $R(a b)=a R(b)$ for all $a, b \in A$ is called right centralized on A. A double centralizer on A is a pair (L, R), where L is a left centralizer, R is a right centralizer and $a L(b)=R(a) b$ for all $a, b \in A$. For example, $\left(L_{c}, R_{c}\right)$ is a double centralizer, where $L_{c}(a):=c a$ and $R_{c}(a):=a c$. The set $D(A)$ of all double centralizers equipped with the multiplication $\left(L_{1}, R_{1}\right) \cdot\left(L_{2}, R_{2}\right)=\left(L_{1} L_{2}\right) \cdot\left(R_{1} R_{2}\right)$ is an algebra. The notion of double centralizer was introduced by Hochschild $[5]$ and by Johnson [7]. Johnson [7] proved that if A is an algebra satisfying $A_{l}(A)=A_{r}(A)=\{0\}$, and L, R are mappings on A fulfilling $a L(b)=R(a) b,(a, b \in A)$, then (L, R) is a double centralizer. We can show that if $A^{2}=A \quad$ or $A_{l}(A) \cap A_{r}(A)=\{0\}$, then $L=R$ if and only if L and R are both left and right centralizer.
In particular, one of the important functional equations is the following functionalequation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

which is called a quadratic functional equation. The function $f(x)=b x^{2}$ is a solution of this functional equation. Every solution of functional equation (1.1) is said to be a quadratic mapping. It is well known that a mapping f between real vector spaces is quadratic if and only if there exists a unique symmetric biadditive mapping B is given by

$$
B(x, y)=\frac{1}{4}(f(x+y)-f(x-y))
$$

The stability of quadratic functional equation (1.1) was proved by skof [10] for mapping $f: E_{1} \rightarrow E_{2}$ where E_{1} is a normed space and E_{2} is a Banach space. Cholewa[3] noticed that the theorem of Skof is still true if the relevant domain E_{1} is replaced by an Abelian group.
A Banach algebra A is said to be weakly commutative if $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in A$. We can show that there is a Banach algebra weakly commutative that is not commutative (see Example 2.4 of the present paper).
Let K be a field. A non- Archimedean absolute value on K is a function $\| . /: K \rightarrow R$ such that for any $a, b \in K$ we have
(i) $|a| \geq 0$ and equality holds if and only if $a=0$,
(ii) $|a b|=|a||b|$,
(iii) $|a+b| \leq \max \{|a|,|b|\}$.

The condition (iii) is called the strict triangle inequality. By (ii), we have $|1|=|-1|=1$. Thus, by induction, it follows from (iii) that $|n| \leq 1$ for each integern. We always assume in addition that $\|$ is non trivial, i.e., that there is an $\mathrm{a}_{0} \in \mathrm{k}$ such that $\left|a_{0}\right| \notin\{0,1\}$.
Let X be a linear space over a scalar field K with a non- Archimedean non- trivial Valuation \|. . A function \|.\|\|: $X \rightarrow R$ is a non- Archimedean norm (valuation) if it satisfies the following conditions:
(NA1) $\|x\|=0$ if and only if $x=0$;
(NA2) $\|r x\|=\mid r\|x\|$ for all $r \in K$ and $x \in X$;
(NA3) the strong triangle inequality (ultrametrie); namely,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\} \quad(x, y \in X)
$$

Then $(X,\| \|)$ is called a non-Archimedean spase.
It follows from (NA3) that

$$
\left\|x_{m}+x_{l}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|: l \leq j \leq m-1\right\} \quad(m>l)
$$

Therefore a sequence $\left\{\mathrm{x}_{\mathrm{m}}\right\}$ is Cauchy in X if and if $\left\{\mathrm{x}_{\mathrm{m}+1}-\mathrm{x}_{\mathrm{m}}\right\}$ converges to zero in non-Archimedean space. By a complete non-Archimedean space we mean on in which every Cauchy sequence is convergent. A non-Archimedean Banach algebra is a complete non-Archimedean algebra A wich satisfies $\|a b\| \leq\|a\| b b \|$ for all $a, b \in A$. For more detailed definitions of non-Archimedean Banach algebra, we can refer to [9].

2. MAIN RESULTS

In this section, let A be a non-ArchimedeanBanachalgebra. We establish the stability of quadraticdouble centralizers.
Definition 2.1. A mapping $L: A \rightarrow A$ is a quadratic left centralizer if L satisfies the following properties:

1) L is a quadratic mapping,
2) L is a quadratic homogeneous, that is, $L(\lambda a)=|\lambda|^{2} L(a)$ for all $a \in A$ and $\lambda \in C$,
3) $L(a b)=L(a) b^{2}$ for all $a, b \in A$.

Definition 2.2. A mapping $R: A \rightarrow A$ is a quadratic right centralizer if R satisfies the following properties:

1) R is a quadratic mapping,
2) R is quadratic homogeneous, that is, $R(\lambda a)=|\lambda|^{2} R(a)$ for all $a \in A$ and $\lambda \in C$,
3) $R(a b)=a^{2} R(b)$ for all $a, b \in A$.

Definition 2.3.A quadratic double centralizer of an algebra A is a pair (L, R), where L is a quadratic left centralizer, R is a quadratic right centralizer and $a^{2} L(b)=R(a) b^{2}$ for all $a, b \in A$.
The following example introduces a quadratic double centralizer.

Example2.4. Let $(A,\| \|)$ be a unitalnon-ArchimedeanBanachalgebra. Let $B=A \times A \times A$. We define $\|a\|\|=\| a_{1}\|+\| a_{2}\|+\| a_{3} \|$ for all $a=\left(a_{1}, a_{2}, a_{3}\right)$ in B. It is not hard to see that $(B,\| \| \|)$ is a banach space. for arbitrarily elements $a=\left(a_{1}, a_{2}, a_{3}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}\right)$ in B, we define $a b=\left(0, a_{1} b_{3}, 0\right)$. since A is a non-ArchimedeanBanach algebra, we conclude that B is a non-ArchimedeanBanach algebra.
It is easy to see that $B^{3}=\{a b c: a, b, c \in B\}=\{0\}$ But $B^{2}=\{a b: a, b \in B\}$ is not zero. Now we consider the mapping $T: B \rightarrow B$ defined by

$$
T(a)=a^{2}(a \in B)
$$

Then T is a quadratic mapping and quadratichomogeneous. Since $B^{3}=\{0\}$, we get

$$
T(a b)=(a b)^{2}=0=a^{2} b^{2}=T(a) b^{2}=a^{2} T(b)
$$

and

$$
a^{2} T(b)=a^{2} b^{2}=0=T(a) b^{2}
$$

For all $a, b \in B$. Hence (T, T) is a quadratic double centralizer of B.
In the above example, B is a weakly commutative algebra, but it is not commutative.
Theorem 2.5.Suppose that $s\{-1,1\}$ and that $f: A \rightarrow A$ is a mapping with $f(0)=0$ for which there exist a mapping $g: A \rightarrow A$ with $g(0)=0$ and functions $\varphi_{j}: A \times A \times A \times A \rightarrow[0, \infty), \psi_{i}: A \times A \rightarrow[0, \infty)(1 \leq j \leq 2,1 \leq i \leq 3)$ such that

$$
\begin{align*}
& \tilde{\varphi}_{j}(a, b, c, d):=\sum_{k=0}^{\infty} \frac{\varphi_{j}\left(2^{s k} a, 2^{s k} b, 2^{s k} c, 2^{s k} d\right)}{|4|^{s k}}<\infty \quad(1 \leq j \leq 2), \tag{2.1}\\
& \lim _{n \rightarrow \infty} \frac{\psi_{i}\left(2^{s n} a, b\right)}{|4|^{s n}}=0=\lim _{n \rightarrow \infty} \frac{\psi_{i}\left(a, 2^{s n} b\right)}{|4|^{s n}} \quad(1 \leq j \leq 3), \\
& \left\|f(\lambda a+\lambda b+\lambda c)+f(\lambda a-\lambda b-\lambda c)-2 \lambda^{2} f(a)-2 \lambda^{2} f(b)-2 \lambda^{2} f(c)\right\| \leq \varphi_{1}(a, b, c, d) \\
& \left\|g(\lambda a+\lambda b+\lambda c)+g(\lambda a-\lambda b-\lambda c)-2 \lambda^{2} g(a)-2 \lambda^{2} g(b)-2 \lambda^{2} g(c)\right\| \leq \varphi_{2}(a, b, c, d) \tag{2.2}\\
& \left\|f(a b)-f(a) b^{2}\right\| \leq \psi_{1}(a, b) \tag{2.3}\\
& \left\|g(a b)-a^{2} g(b)\right\| \leq \psi_{2}(a, b) \\
& \left\|a^{2} f(b)-g(a) b^{2}\right\| \leq \psi_{3}(a, b) \tag{2.4}
\end{align*}
$$

for all $a, b \in A$ and all $\lambda \in T=\{\lambda \in C:|\lambda|=1\}$. Also, if for each fixed $a \in A$ the mappings $t \rightarrow f($ ta) and $t \rightarrow g(t a)$ from R to A are continuous, then there exists a unique quadratic double centralizer (L, R) on A satisfying

$$
\begin{align*}
\|f(a)-L(a)\| & \leq \frac{1}{|4|} \tilde{\varphi}_{1}(a, a, 0,0) \tag{2.5}\\
\|g(a)-R(a)\| & \leq \frac{1}{|4|} \tilde{\varphi}_{2}(a, a, 0,0) \tag{2.6}
\end{align*}
$$

for all $a \in A$.
Proof:Let $s=1$. Putting $a=b, c=d=0$ and $\lambda=1$ in (2.2), we have

$$
\|f(2 a)-4 f(a)\| \leq \varphi_{1}(a, a, 0,0)
$$

for all $a \in A$. One can use induction to show that

$$
\begin{equation*}
\left\|\frac{f\left(2^{n} a\right)}{|4|^{n}}-\frac{f\left(2^{m} a\right)}{|4|^{m}}\right\| \leq \frac{1}{\mid 4} \sum_{k=m}^{n-1} \frac{\varphi_{1}\left(2^{k} a, 2^{k} a, 0,0\right)}{|4|^{k}} \tag{2.7}
\end{equation*}
$$

for all $n>m \geq 0$ and all $a \in A$. It follows from (2.7) and (2.1) that sequence $\left\{\frac{f\left(2^{n} a\right)}{4^{n}}\right\}$ is Cauchy. Since A is a nonArchimedeanBanach algebra, this sequence is convergent. Define

$$
L(a):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} a\right)}{4^{n}} .
$$

Replacing a and b by $2^{n} a$ and $2^{n} b$, respectively, in (2.2), we get

$$
\left\|\frac{f\left(2^{n}(\lambda a+\lambda b)\right)}{4^{n}}+\frac{f\left(2^{n}(\lambda a-\lambda b)\right)}{4^{n}}-2 \lambda^{2} \frac{f\left(2^{n} a\right)}{4^{n}}-2 \lambda^{2} \frac{f\left(2^{n} b\right)}{4^{n}}\right\| \leq \frac{\varphi_{1}\left(2^{n} a, 2^{n} b, 0,0\right)}{|4|^{n}}
$$

Taking the limit as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
L(\lambda a+\lambda b)+L(\lambda a-\lambda b)=|2||\lambda|^{2} L(a)+|2||\lambda|^{2} L(b) \tag{2.9}
\end{equation*}
$$

for all $a, b \in A$ and all $\lambda \in T$. Putting $\lambda=1$ in (2.9), we obtain that L is a quadratic mapping. Setting $b:=a$ in (2.9), we get

$$
L(2 \lambda a)=|4||\lambda|^{2} L(a)
$$

for all $a \in A, \lambda \in T$. But L is a quadratic mapping. So

$$
L(\lambda a)=|\lambda|^{2} L(a)
$$

for all $a \in A$ and all $\lambda \in T$. Under the assumption that $f(t a)$ is continuous in $t \in R$ for each fixed $a \in A$, by the same reasoning as in the proof of $[8], L(\lambda a)=\lambda^{2} L(a)$ for all $a \in A$ and all $\lambda \in R$. we obtain

$$
L(\lambda a)=|\lambda|^{2} L(a)
$$

for all $a \in A$ and $\lambda \in C(\lambda \neq 0)$. This means that L is quadratic homogeneous. It follows from (2.3) and (2.8) that

$$
\left\|L(a b)-L(a) b^{2}\right\|=\lim _{n \rightarrow \infty} \frac{1}{|4|^{n}}\left\|f\left(2^{n} a b\right)-f\left(2^{n} a\right) b^{2}\right\| \leq \lim _{n \rightarrow \infty} \frac{\psi_{1}\left(2^{n} a, b\right)}{|4|^{n}}=0
$$

for all $a, b \in A$. Hence L is a quadratic left centralizer on A. Applying (2.7) with $m=0$, we get $\|L(a)-f(a)\| \leq \frac{1}{|4|} \tilde{\varphi}_{1}(a, a, 0,0)$ for all $a \in A$. It is well known that the quadraticmapping L satisfying (2.5) is unique. A similar argument gives us a unique quadratic right centralizer R defined by

$$
\square R(a):=\lim _{n \rightarrow \infty} \frac{g\left(2^{n} a\right)}{4^{n}}
$$

which satisfies (2.6). Now we let $a, b \in A$ arbitrarily. Since L is a quadratic homogeneous, it follows from (2.4) and (2.5) that

$$
\begin{aligned}
\left\|a^{2} L(b)-R(a) b^{2}\right\| & =\frac{1}{|4|^{n}}\left\|a^{2} L\left(2^{n} b\right)-4^{n} R(a) b^{2}\right\| \\
& \leq \frac{1}{|4|^{n}}\left[\left\|a^{2} L\left(2^{n} b\right)-a^{2} f\left(2^{n} b\right)\right\|+\left\|a^{2} f\left(2^{n} b\right)-g(a)\left(4^{n} b^{2}\right)\right\|\right. \\
& \left.+\left\|4^{n} g(a) b^{2}-4^{n} R(a) b^{2}\right\|\right] \\
& \leq \frac{1}{|4|^{n+1}} \tilde{\varphi}_{1}\left(2^{n} b, 2^{n} a\right)\|a\|^{2}+\frac{\psi_{3}\left(a, 2^{n} b\right)}{|4|^{n}}+\|g(a)-R(a)\|\|b\|^{2} .
\end{aligned}
$$

The right hand side of the last inequality tends to $\|g(a)-R(a)\|\|b\|^{2}$ as $n \rightarrow \infty$.
By (2.6), we obtain

$$
\left\|a^{2} L(b)-R(a) b^{2}\right\|=\frac{1}{|4|} \tilde{\varphi}_{2}(a, a, 0,0)\|b\|^{2} .
$$

Since R is a quadratic mapping, we thus obtain

$$
\begin{aligned}
\left\|a^{2} L(b)-R(a) b^{2}\right\| & =\frac{1}{|4|^{n}}\left\|4^{n} a^{2} L(b)-R\left(2^{n} a\right) b^{2}\right\| \\
& \leq \frac{1}{|4|} \tilde{\varphi}_{2}\left(2^{n} a, 2^{n} a, 0,0\right)\|a\|^{2} \\
& =\frac{1}{|4|} \sum_{k=n}^{\infty} \frac{\varphi_{2}\left(2^{k} a, 2^{k} a\right)}{|4|^{k}}\|b\|^{2} .
\end{aligned}
$$

Passing to the limit as $n \rightarrow \infty$, we conclude $a^{2} L(b)=R(a) b^{2}$. Thus (L, R) is a quadraticdouble centralizer.
The proof for $s=-1$ is similar to $s=1$.

Corollary 2.6. Suppose that $f: A \rightarrow A$ is a mapping for which there exist a mapping $g: A \rightarrow A$ and constants $\varepsilon>0$ and $0 \leq p \neq 2$ such that

$$
\begin{aligned}
& \left.\left\|f(\lambda a+\lambda b+\lambda c)+f(\lambda a-\lambda b-\lambda c)-2 \lambda^{2} f(a)-2 \lambda^{2} f(b)-2 \lambda^{2} f(c)\right\|_{\leq \varepsilon \|}\|a\|^{p}+\|b\|^{p},\|c\|^{p}+\|d\|^{p}\right), \\
& \left\|g(\lambda a+\lambda b+\lambda c)+g(\lambda a-\lambda b-\lambda c)-2 \lambda^{2} g(a)-2 \lambda^{2} g(b)-2 \lambda^{2} g(c)\right\|_{\leq \varepsilon \|}\left(a\| \|^{p}+\|b\|^{p},\|c\|^{p}+\|d\|^{p}\right), \\
& \left\|f(a b)-f(a) b^{2}\right\| \leq \varepsilon\|a\|^{p}\|b\|^{p}, \\
& \left\|g(a b)-a^{2} g(b)\right\| \leq \varepsilon\|a\|^{p}\|b\|^{p}, \\
& \left\|a^{2} f(b)-g(a) b^{2}\right\| \leq \varepsilon\|a\|^{p}\|b\|^{p}
\end{aligned}
$$

for all $a, b \in A$ and all $\lambda \in T$.Also, if for each fixed $a \in A$ the mappings $t \rightarrow f(t a)$ and $t \rightarrow g(t a)$ from R to A are continuous, then there exists a unique quadratic double centralizer (L, R) on A satisfying

$$
\begin{aligned}
& \|f(a)-L(a)\| \leq \frac{2 \varepsilon}{|4|-|2|^{p}}\|a\|^{p}, \\
& \|g(a)-R(a)\| \leq \frac{2 \varepsilon}{|4|-|2|^{p}}\|a\|^{p}
\end{aligned}
$$

for all $a \in A$.
Proof: For $\left.{ }_{j=1,2, \text { putting } \varphi_{j}(a, b)=\varepsilon \|}\|a\|^{p}+\|b\|^{p}+\|c\|^{p}+\|d\|^{p}\right)$ and for $i=1,2,3$ putting $\psi_{i}(a, b)=\varepsilon\|a\|^{p}\left\|_{b}\right\|^{p}$ in Theorem 2.5 , we get the desired results.

3. STABILITY OF QUADRATIC MULTIPLIERS

Throughout this section, assume that A is a non-ArchimedeanBanachalgebra.
Definition3.1. We say that a mapping $T: A \rightarrow A$ is a quadratic multiplier if T satisfies the following properties:

1) T is a quadratic mapping,
2) T isquadratic homogeneous, that is, $T(\lambda a)=\lambda^{2} T(a)$ for all $a \in A$ and $\lambda \in C$,
3) $a^{2} T(b)=T(a) b^{2}$ for all $a, b \in A$.

Example 2.4 introduces a quadratic multiplier. We investigate the stability of quadraticmultipliers.
Theorem 3.2. Suppose that $s \in\{-1,1\}$ and that $f: A \rightarrow A$ is a mapping with $f(0)=0$ for which there exist functions, $\varphi: A \times A \times A \times A \rightarrow[0, \infty), \psi: A \times A \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\tilde{\varphi}(a, b, c, d):=\sum_{k=0}^{\infty} \frac{\varphi\left(2^{s k} a, 2^{s k} b, 2^{s k} c, 2^{s k} d\right)}{|4|^{s k}}<\infty, \tag{3.1}\\
\lim _{n \rightarrow \infty} \frac{\psi\left(2^{s n} a, b\right)}{|4|^{s n}}=0=\lim _{n \rightarrow \infty} \frac{\psi\left(a, 2^{s n} b\right)}{|4|^{s n}}, \\
\left\|f(\lambda a+\lambda b+\lambda c)+f(\lambda a-\lambda b-\lambda c)-2 \lambda^{2} f(a)-2 \lambda^{2} f(b)-2 \lambda^{2} f(c)\right\| \leq \varphi(a, b, c, d), \\
\left\|a^{2} f(b)-f(a) b^{2}\right\| \leq \psi(a, b) \tag{3.2}
\end{gather*}
$$

for all $a, b \in A$ and all $\lambda \in T$. Also, if for each fixed $a \in A$ the mappings $t \rightarrow f(t a)$ from R to A are continuous, then there exists a unique quadraticmultiplier T on A satisfying

$$
\begin{equation*}
\|f(a)-T(a)\| \leq \frac{1}{|4|} \tilde{\varphi}(a, a, 0,0), \tag{3.3}
\end{equation*}
$$

for all $a \in A$.
Proof.Let $s=1$. Putting $c=d=0$.By the same reasoning as in the proof of Theorem 2.5, there existsa unique quadratic mapping $T: A \rightarrow A$ defined by

$$
T(a):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} a\right)}{4^{n}}
$$

with satisfying $T(\lambda a)=|\lambda|^{2} T(a)$ for all $a \in A$ and all $\lambda \in C$. Also, $\|f(a)-T(a)\| \leq \frac{1}{\mid 4} \tilde{\varphi}(a, a, 0,0)$ for all $a \in A$. Let $a, b \in A$ be arbitrarily. Then T is quadratic homogeneous.

By using (3.2) and (3.3), we have

$$
\begin{aligned}
\left\|a^{2} T(b)-T(a) b^{2}\right\|= & \frac{1}{|4|^{n}}\left\|a^{2} T\left(2^{n} b\right)-4^{n} T(a) b^{2}\right\| \\
& \leq \frac{1}{|4|^{n}}\left[\left\|a^{2} T\left(2^{n} b\right)-a^{2} f\left(2^{n} b\right)\right\|+\left\|a^{2} f\left(2^{n} b\right)-f(a)\left(4^{n} b^{2}\right)\right\|\right. \\
& \left.+\left\|4^{n} f(a) b^{2}-4^{n} T(a) b^{2}\right\|\right] \\
& \leq \frac{1}{\mid 4^{n+1}} \tilde{\varphi}\left(2^{n} b, 2^{n} a, 0,0\right)\|a\|^{2}+\frac{\psi\left(a, 2^{n} b\right)}{|4|^{n}}+\frac{1}{|4|} \tilde{\varphi}(a, a, 0,0)\|b\|^{2} .
\end{aligned}
$$

It follows from (3.1) that

$$
\left\|a^{2} T(b)-T(a) b^{2}\right\|=\frac{1}{|4|} \tilde{\varphi}(a, a, 0,0)\|b\|^{2} .
$$

Finally, we obtain

$$
\begin{aligned}
\left\|a^{2} T(b)-T(a) b^{2}\right\| & =\frac{1}{|4|^{n}}\left\|4^{n} a^{2} T(b)-T\left(2^{n} a\right) b^{2}\right\| \\
& \leq \frac{1}{|4|} \tilde{\varphi}_{2}\left(2^{n} a, 2^{n} a, 0,0\right)\|b\|^{2} \\
& =\frac{1}{|4|} \sum_{k=n}^{\infty} \frac{\varphi\left(2^{k} a, 2^{k} a, 0,0\right)}{\mid 4^{k}}\|b\|^{2} \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

So $a^{2} T(b)=T(a) b^{2}$. Hence T is a quadratic multiplier.
The proof for $s=-1$ is similar.
Corollary 3.3. Suppose that $f: A \rightarrow A$ is a mapping for which there exist nonnegative real numbers ε and p with $p \neq 2$ such that

$$
\begin{gathered}
\left\|f(\lambda a+\lambda b+\lambda c)+f(\lambda a-\lambda b-\lambda c)-2 \lambda^{2} f(a)-2 \lambda^{2} f(b)-2 \lambda^{2} f(c)\right\| \leq \varepsilon\left(\|a\|^{p}+\|b\|^{p}\right), \\
\left\|a^{2} f(b)-f(a) b^{2}\right\| \leq \varepsilon\|a\|^{p}\|b\|^{p}
\end{gathered}
$$

for all $a, b \in A$ and all $\lambda \in T$.Also, if for each fixed $a \in A$ the mappings $t \rightarrow f(t a)$ from R to A are continuous, then there exists a unique quadraticmultiplier T on A satisfying

$$
\|f(a)-T(a)\| \leq \frac{2 \varepsilon}{|4|-|2|^{p}}\|a\|^{p}
$$

for all $a \in A$.
Proof:Putting $\varphi(a, b)=\varepsilon\left(\|a\|^{p}+\|b\|^{p}+\|c\|^{p}+\|d\|^{p}\right)$ and $\psi(a, b)=\varepsilon\|a\|^{p}\|b\|^{p}$ in Theorem 3.2, we get the desired results.

4. SUPERSTABILITY OF QUADRATIC DOUBLE CENTRALIZERS

In this section, we prove the superstability of quadratic double centralizers on non-ArchimedeanBanach algebras which are weakly without order and weakly commutative.
Theorem 4.1. Suppose that A is a non-ArchimedeanBanachalgebra weakly without order and weakly commutative and $s \in\{-1,1\}$. Let $L, R: A \rightarrow A$ are mappings for which there exists a function $\psi: A \times A \rightarrow[0, \infty)$ such that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} n^{-2 s} \psi\left(n^{s} x, y\right)=0=\lim _{n \rightarrow \infty} n^{-2 s} \psi\left(x, n^{s} y\right) \\
\left\|x^{2} L(y)-R(y)^{2}\right\| \leq \psi(x, y)
\end{gathered}
$$

for all $x, y \in A$. Then (L, R) is a quadratic double centralizer.
Proof: We first show that L is a quadratic homogeneous. To do this, pick $\lambda \in C$ and $x, y \in A$. We have

$$
\begin{aligned}
\left\|n^{2 s} z^{2}\left(L(\lambda x)-\lambda^{2} L(x)\right)\right\| & =\left\|n^{2 s} z^{2} L(\lambda x)-\lambda^{2} n^{2 s} z^{2} L(x)\right\| \\
& \leq\left\|n^{2 s} z^{2} L(\lambda x)-R\left(n^{s} z\right)(\lambda x)^{2}\right\|+\left\|\lambda^{2} R\left(n^{s} z\right) x^{2}-\lambda^{2} n^{2 s} z^{2} L(x)\right\| \\
& \leq \psi\left(n^{s} z, \lambda x\right)+|\lambda|^{2} \psi\left(n^{s} z, x\right) .
\end{aligned}
$$

So

$$
\left\|z^{2}\left(L(\lambda x)-\lambda^{2} L(x)\right)\right\| \leq|n|^{-2 s} \psi\left(n^{s} z, \lambda x\right)+|\lambda|^{2}|n|^{-2 s} \psi\left(n^{s} z, x\right) .
$$

Since A is weakly without order, we conclude that $L(\lambda x)=|\lambda|^{2} L(x)$ Thequadraticity of L follows from

$$
\begin{aligned}
& \left\|z^{2}(L(x+y)+L(x-y)-2 L(x)-2 L(y))\right\| \\
& \quad=|n|^{-2 s}\left\|n^{2 s} z^{2} L(x+y)+n^{2 s} z^{2} L(x-y)-2 n^{2 s} z^{2} L(x)-2 n^{2 s} z^{2} L(y)\right\| \\
& \quad \leq|n|^{-2 s}\left[\left\|n^{2 s} z^{2} L(x+y)-R\left(n^{s} z\right)(x+y)^{2}\right\|+\left\|n^{2 s} z^{2} L(x-y)-R\left(n^{s} z\right)(x-y)^{2}\right\|\right. \\
& \left.\quad+|2|\left\|R\left(n^{s} z\right) x^{2}-n^{2 s} z^{2} L(x)\right\|+|2|\left\|R\left(n^{s} z\right) y^{2}-n^{2 s} z^{2} L(y)\right\|\right] \\
& \quad \leq|n|^{-2 s}\left[\psi\left(n^{s} z, x+y\right)+\psi\left(n^{s} z, x-y\right)+|2| \psi\left(n^{s} z, x\right)+|2| \psi\left(n^{s} z, y\right)\right]
\end{aligned}
$$

for all $x, y \in A$.
Finally, since A is a quadratic commutative non-ArchimedeanBanach algebra, we have

$$
\begin{aligned}
\left\|z^{2}\left(L(x y)-L(x) y^{2}\right)\right\| & =|n|^{-2 s}\left\|n^{2 s} z^{2} L(x y)-n^{2 s} z^{2} L(x) y^{2}\right\| \\
& \leq|n|^{-2 s}\left[\left\|n^{2 s} z^{2} L(x y)-R\left(n^{s} z\right)(x y)^{2}\right\|\right. \\
& \left.+\left\|R\left(n^{s} z\right) x^{2} y^{2}-n^{2 s} z^{2} L(x) y^{2}\right\|\right] \\
& \leq|n|^{-2 s}\left[\psi\left(n^{s} z, x y\right)+\psi\left(n^{s} z, x\right)\|y\|^{2}\right]
\end{aligned}
$$

for all $x, y \in A$. So $L(x y)=L(x) y^{2}$. Thus L is a quadratic left centralizer. One can similarly prove that R is a quadratic right centralizer. Since L is quadratic homogeneous, $L(x)=|n|^{-2 s} L\left(n^{s} x\right)$ for all $n \in N$ and $x \in A$. Thus

$$
\begin{aligned}
\left\|x^{2}\left(L(y)-R(x) y^{2}\right)\right\| & =|n|^{-2 s}\left\|x^{2} L\left(n^{s} y\right)-R(x)\left(n^{2 s} y^{2}\right)\right\| \\
& \leq|n|^{-2 s} \psi\left(x, n^{s} y\right)
\end{aligned}
$$

and hence by (4. 1) we infer that $x^{2} L(y)=R(x) y^{2}$ for all $x, y \in A$. Thus (L, R) is a quadratic centralizer.
Corollary 4.2.Suppose A is a non-ArchimedeanBanach algebra weakly without order and weakly commutative and $L, R: A \rightarrow A$ are mappings for which there exist a nonnegativereal number ε and a real number p either greater than 2 or less than 2, such that

$$
\left\|x^{2} T(y)-R(x) y^{2}\right\| \leq \varepsilon\|x\|^{p}\|y\|^{p}
$$

for all $x, y \in A$. Then (L, R) is a quadratic double centralizer.
Proof: Using Theorem 4.1 with $\psi(x, y) \leq \varepsilon\|x\|^{p}\|y\|^{p}$ we get the desired result.

5. SUPERSTABILITY OF QUADRATIC MULTIPLIERS

In this section, we prove the superstability of quadratic multipliers on non-ArchimedeanBanach algebras which are weakly without order.
Theorem 5.1. Suppose that A is a Banach algebra with weakly without order and $s \in\{-1,1\}$. Let $T: A \rightarrow A$ are mappings for which there exists a function $\psi: A \times A \rightarrow[0, \infty)$ such that

$$
\begin{gathered}
\lim _{n \rightarrow \infty}|n|^{-2 s} \psi\left(n^{s} x, y\right)=0=\lim _{n \rightarrow \infty}|n|^{-2 s} \psi\left(x, n^{s} y\right) \\
\left\|x^{2} L(y)-R(y)^{2}\right\| \leq \psi(x, y)
\end{gathered}
$$

for all $x, y \in A$. Then (L, R) is a quadraticmultiplier.
Proof: By the same reasoning as in the proof of Theorem 4.1, putting $L=R=T$, we can show that the mapping T is a quadratic multiplier.
Corollary 5.2.Suppose that A is a weakly without order non-ArchimedeanBanach algebra and that $T: A \rightarrow A$ is a mapping for which there exist a nonnegative real number ε and a real number p either greater than 2 or less than 2 , such that

$$
\left\|x^{2} T(y)-T(x) y^{2}\right\| \leq \varepsilon\|x\|^{p}\|y\|^{p}
$$

for all $x, y \in A$. Then T is a quadraticmultiplier.
Proof:Using Theorem 5.1 with $\psi(x, y)=\varepsilon\|x\|^{p}\|y\|^{p}$,we get the result.

ACKNOWLEDGEMENTS:

The author sincerely thank the anonymous reviewer for a careful reading, constructives to improve the quality of the paper and suggesting a related reference.

REFERENCES

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), pp 64-66.
[2] P. W.Cholewa, Remarks on the stability of functional equations, Aequations Mat. 27 (1984), 76-86.
[3]Z. Gajda, On stability of additive mappings, Internet. J. Math. Sci. 14 (1991) 431-434.
[4] M. EshaghiGordji, M. Ramezani, A. Ebadian, and Choonkil Park, Quadratic double centralizers and quadratic multipliers, Ann. Univ. Ferrara. 57 (2011), 27-38.
[5]G. Hocchsehild, Gohomology and representations of associative algebras, Duke Math. J. 14 (1947), 921-948.
[6] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941) 222-224.
[7] B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. 14 (1964), 299-320.
[8] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
[9] N. Shilkret, Non-ArchimedianBanach algebras, Thesis (Ph.D.)-Polytechnic University. 1968. 178 pp. ProQuest LLC, Thesis.
[10] F. Skof, Proprietlocali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53(1983),113-129.
[11] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1940.

