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ABSTRACT 

Distribution theory has an important role in applied mathematics, that generalizes the classical notion of functions 
in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the 
classical sense. 

 Firstly, in the introduction part of this paper we will give some general notations, definitions and results in distribution 
theory, as  analytic representation of distribution, distributional jump behavior, distributional symmetric jump behavior, 
tempered distributions, formulas for the jump of distributions in terms of Fourier series, tempered derivative and integral. 
Then in final part we will state two results, the first one has to do on relation of analytic functions in the upper half-plane 
with some logarithmic averages in the case of symmetric jump behavior and the second one is related to decomposition of 
tempered distribution to series. 
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Introduction 

1.1 Definitions 

Firstly, let us give some introductory concepts.  With  
nP  we denote the subset of Rn

, which elements have nonnegative 

integers coordinates. For a function  1 2, : C , R , ( , , , ), N 0n n

n jf f k k k k k     , x , with 

( ) ( )kf x  we denote the differential operator 

1

1

( )

1 2( ) ( ) ( ), ... .
... n

n

k

k k

nkk

x x

f x f x f x k k k k


      
 

 

With (R )nC
 is denoted the space of all complex valued infinitely differentiable functions on Rn

and 
0 (R )nC

 denotes 

the subspace of (R )nC
  that consists of those functions of (R )nC

 which have compact support. 

Definition 1.The support of f  is the closure of the set x ,of points  for which f  is different from 

zero ( ( ) 0)f x  , and is denoted by sup. f .  

With D   we denote the space of 
0 (R )nC 

  functions, called the set of test functions in which convergence is defined in 

the following way : a sequence    of functions D   converges to D  in D  as 0   if and only if there is 

a compact set RnK   such that supp ( ) K   for each  , supp ( ) K   and  for every  n-tiple k of nonnegative 

integers the sequence   ( ) ( )kf t  converges to  
( ) ( )kf t  uniformly on K  as 0  .  

Distributions (or generalized functions) are objects that generalize the classical notion of functions in mathematical 
analysis. Distributions make it possible to differentiatefunctions whose derivatives do not exist in the classical sense. 

Definition 2.  A distributionT is continuous linear functional on D .  Instead of writing ( )T  , it is conventional to 

write  ,T   for the value of T acting on a test function  .  The space of all distributions is denoted by D . 

Schwartz space is the vector space 

    
R

R : R C, C , sup ( ) , ,
n

n n n

x

S x x P     



       . 

S  is the space of all continuous linear functionals on S , called the space of of tempered distributions. 

Definition 3. The value of distribution f  at point 0x  is defined as the limit  

 
0 0

0
( ) lim ( )

h
f x f x hx


  , 

if the limit exists in D , that is, if 

 0 0
0

lim ( ), ( ) ( ) ( )
h

f x hx x f x x dx 





     

for each (R).D
 

The Heaviside function is defined by 

 
1, 0

( )
0, 0

x
H x

x


 

 .

 

A distribution (R)f D  is said to have a distributional jump behavior (or jump behavior) at 0 Rx x  if  itstatisfies 

the distributional asymptotic relation  

 0( ) ( ) ( ) (1)f x hx c H x c H x o      , 
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as 0h   in D , c are constants and H is the Heaviside function. 

The jump of f at 0x x is defined as the number   
0

.
x x

f c c 
   

 A distribution (R)f D  is said to have a distributional symmetric jump behavior at 0 Rx x   if the jump 

distribution 
0 0 0( ) ( ) ( )x x f x x f x x      has a jump behavior at 0x  . In such a case, we define the jump of f  

at 
0x x  as  

00 0
/ 2.xx x x

f 
 

     

The (complex) Fourier series for the distribution T is the series    

1
~ with , , Z.

2

def
inx inx

n n

n

T c e c T e n







    
 

Let us define the subset of upper half-plane 
0( )x

  as the set of z such that 0arg( )z x       , where 

0 / 2   . Similarly we define the lower half-plane 
0( )x

 . 

 We may see f  as hyperfunction, that is ( ) ( 0) ( 0)f x F x i F x i    , where F  is analytic for 0Imz   or in the 

sense of distributions it means 
0

( ) lim( ( ) ( )),
y

f x F x iy F x iy


     then we say F  is analytic representation of f . 

We say that U(z), harmonic on 0Imz  , is a harmonic representation of (R)f D  if  

 
0

lim ( ) ( )
y

U x iy f x


     

in (R)D . 

Definition 4. Tempered derivate 
kD  of degree 

nk P  for a distribution (R )nk D  is defined as  

 

2 2

( )4 4( ( ))
x x

k kD f e e f x


  

where 

2 22

1 ...

4 4

nx xx  
 .  

Also the relation 

 
( ) ( )1

( ) ( ) ( ), ( ( )) ( ) ( ) ( )
2

j j j je e e e

j j jD f x f x x f x D x f x x D x f x f x    .    (4.1) 

is valid. 

Definition 5. Tempered integral ,kS  of order 
nk P  of locally integrable function F is defined as  

 
2 2|4 |4

0

( ) ( ) ,

x

k x t kS F x e e F t dt   

and 1( ,..., ) n

nk k k P  . 

We put  

 

1

1 1

(1,...,1)

(1 ) ...(1 ) , ( ,..., ) ,

.

n

r
rr n

n nx x x r r r

x x
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1.2  Auxiliary Facts 

Proposition 1.A sequence   of functions S   converges to S in S  as 0   if and only  if 

  
0

( )

R

lim sup ( ) ( ) 0.
n

k

x

x f x x


 

 




   

Let  be an element of one of the above function spaces D or S , and f be a function for which  

 , ( ) ( ) , ( )
n

fT f t t dt D S      


 

exists and is finite. Then  
fT  is regular distribution on D ( or S ) generated by f . 

Note 1. Fourier transform f


(see [4])  is continuous linear function from  (R )nS to (R )nS . 

 

Proposition 2.A trigonometric series 

 
inx

n

n

c e




  

converges in D , that is, lim
k

inx

n
k

n k

c e




  exists as a distribution, if and only if there are constants B and   such that  

 , 0̀.nc B n n


    

For every distribution T the Fourier series converges in S   to T. 

Note 2. Jump behavior implies symmetric jump behavior, but the converse is not true as shown by  Dirac delta function 

(see [4]). 

Proposition 3. Let f D  have a distributional jump behavior. Suppose that F  is analytic representation of f . 

Then for any 0 / 2    

 

 
0

0 0, ( )
0

( )
lim

log 2

x x

z z z x

fF z

z x i 



 
 


. (3.1) 

Proof. Note that if the above relation holds for one analytic representation, then it holds for any analytic representation of 

f  . In fact by the very well known edge of the wedge theorem, any two such analytic representations differ by an entire 

function, and for entire function (3.1) gives zero.Next, we see that we may assume that. Indeed we can decompose 

1 2f f f   where 2f  is zero in a neighborhood of 0x and 1f S . Let 1F  and 2F  be analytic representation of 1f and 

2f , respectively; then 2F  can be continued across a neighborhood of 0x (edge of wedge theorem once again), hence 

   2 2 0 0 0 0( ) ( ) | log | asF z F x o z x o z x z x      . Additionally, 1f  has the same jump behavior as. Thus, 

we assume that f S . Let f f f
  

 
   be a decomposition such that supp  ,0f




   and supp

 ,0f



  . Then,  

 

1
( ), , Im 0

2
( )

1
( ), , Im 0

2

izt

izt

f t e z

F z

f t e z
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is an analytic representation of  f . If we keep the number m on a compact set and 0  , then  

 
 

00 ( )

0

1 1
( , ) ( ), log (log ) as

2 2

x xi x x i m i x
fm

F x e f x e o
i

    
   







       , 

where we have used  

  0

0

log log
( ) ( ) ( ) as

i x x

x x
e f x f x o

i

  
  

 



 
    . 

Proposition 4. f D and ( )U z  is harmonic representation of f  than  

 
00

1
,

lim ( )
x xz x z l

U z d f




  
   

where l  is  a ray in the upper half-plane starting at 
0x  and making an angle   with the ray 

0x . 

Prposition 5. Set of function  ; n

kh k P where  

 

 

1

2 2

1

|4 |2 ( )1|2

( ) ( )... ( )

( ) ( 1) ( 2 !) ( ) , 1,2,...,

n

i i i i

i

k k k n

k x x k

k i i

h x h x h x

h x k e e i n 



  
 

is complete  orthonormal basis for 
2 (R )nL  spaces. This means  that if 

2(R )nf L , series  

, ( ) ( )
n

k k k k

k P

c h c f x h x dx



 

   

converges to f  in 
2 (R )nL  and the relation 

 
2

n

k

k P

c


   

is valid. 

The converse, if for complex numbers , n

kc k P  is true 
2

n

k

k P

c


  , than series  

 
n

k k

k P

c h


  

converges in 
2L  norms to any function of 

2 (R )nL . 

 

Proposition 6. It is valid  

 
!

for , 0 for ,
( )!

r r

k k r k

k
D h h r k D h r k

k r
   


(6.1) 

in which r k  means , 1,...,i ir k i n   and r k  means that exists 1 for which j jj n r k   . 

Proposition 7.If 
2(R ), than (R )n nF L SF L 

.
 

1. Main results 
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Theorem 1.Let F be analytic in the upper half plane, with distributional boundary values ( ) ( 0)f x F x i  . 

Suppose f  has a distributional symmetric jump behavior at 
0x x .Then, for any 0 / 2    

 

 
0

0 0 0( ) ~ log( ) as ( )
x x

i
F z f z x z x x






  

. 

Proof .Let 
0x  be the jump distribution at 

0x x . Then  
0x  has a jump behavior at 0x  and  

0 00
2x x xx

f


    . 

Observe that 
0 0( ) ( ) ( )U z F x z F x z



    is harmonic representation of 
0x  and 

0 0( ) ( ( ) ( ))V z i F x z F x z


      is harmonic conjugate.  Let us show if U is harmonic representation of f in the 

upper half-plane. Then 

 
 

0

0 0, ( )
0

( )
lim

log

x x

z x z x

fV z

z x 



 



          (1.1) 

for each 0 / 2   . 

We now show that we may work with any harmonic representation ( )U z of f . Suppose that 1 2andU U are two 

harmonic representations of f , then 1 2U U U   represents the zerodistribution. Then by applying the reflection 

principle to the real and imaginary parts of U , we have that  U  admits a harmonic extension to a neighborhood of 0x . 

Consequently, if 1 2andV V  are harmonic conjugate to 1 2andU U , we have that 1 2V V V   is harmonic conjugate 

to U  , and thus it admits a harmonic extension to a neighborhood of 0x  as well. Therefore 

0( ) (1) ( log )V z O o z x    shows that 1V satisfies (1.1) if and only if 2V  does. Let F be analytic representation of 

on Im 0f z  . 

We can assume then that  

_

( ) ( ) ( ), Im 0U z F z F z z   . We have that

_

( ) ( ( ) ( )), Im 0V z i F z F z z    , is 

harmonic conjugate to U. Therefore, an application of proposition 3  is valid (1.1).  

Hence, we can apply this result and proposition 4 to andU V  and obtain that 0 0( ) ( ) (1)F x z F x z O


     and 

 
0

0 0

2
( ) ( ) log ( log ) as (0) 0

x x

i
F x z F x z f z o z z 







        

and therefore follows necessary result. 

 

Theorem2.If for any 
nr P  the following relation is valid 

 
~

2
r

kk a


  where

~

k  is vector in 
nP , with components  

~

max 1,i ik k  and 

1~ ~ ~

1( ... )
nr r r

nk k k
  

 , than exists distribution (R )nf S  such that 
n

t

k k

k P

f a h


 .With t is denoted that the series 

n

k k

k P

a h


  converges in the sence of converges in S  to f . 

It is true the vice versa of theorem. Including and the relation , , n

k ka f h k P   . 

Proof. Let  f  is any element of S  . Let us prove that exists 
2(R )nF L  and 

nk P  such that  
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kf D

 
 

is valid. 

From the conditions of the theorem, exists 
nm P and 

nr P , continues function ( )G x , constant 0C   such that  

 ( ) and ( ) , R
r

m nf G G x C x x


   . 

From the proposition 7, exists continues function F  and constant C  such that  

 
1

1 ( ) and ( )m r mD F G F x C x


     

and (1 (1,1,...,1)) . 

This means that  

 1 2where (R )m r nf D F F L   . 

Respectivly 

 ( )
n

r r

k k

k P

f D F D c h


   . 

Let us show that sequence of tempered distribution ( )f  converges in S   to (R )nf S  than exists the sequence of 

functions
2( ) (R )nF L   and function 

2(R ),n nF L k P   such that  

 , ,k k

r rf D F f D F F F     

in
2L  norm. 

If we put  

 
1 1andF S F F S F    

while multiplying with a polynomial and differentiation are continues  operations in S   from (4.1) the necessary condition 

is fullfiled. 

From Holder inequality we obtain  

2 2

2 2

|2 |2

1 1 1

0

2 1|2|2 |2 1|2 1|2

1

0 0

| ( ) ( ) | ( ) ( )

( ) ( ( ) ( ) )

x

x t

r

x x

x t

F x F x e e F t F t dt

e e F t F t dt x 





   

 



 

 

where
2 1|2( ) ( ) ) 0 when .F t F t dt  





     

From the way offor functions 1 1( ), ( ) inF x F x S
  , we have that  

 

 
1 1( ) ( ) inF x F x S

 . 

Respectively 

 
n

t
r

k k

k P

f a D h


 . 
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From (6.1) we have  

n

t

k k

k P

f a h


  

where 

 
( )!

,
!

n

k k r

k r
a c k P

k



   

While
kc M we have that

2| |kc  . 

From inequality  

 
~ ~( )!

(1 )
!

r

rk r
k r k

k


    

we obtain the following  

 
~

2

n

r

k

k P

k a




  . 

Since  

 , , ,
n

s k k s s

k P

f h a h h a


     , 

while 

 , 0, for and , 1k s s sh h k s h h      

we obtain that coeficients are unique. Let we show the converse. 

If  
~

2

n

r

k

k P

k a




   from inequality 

 
~ ~( )!

(1 )
!

r

rk r
k r k

k


    

we have  

 
~

2 2!

( )!n n

r

k k

k P k P

k
a n a

k r



 

  


   

respectively 

 
!

( )!n

k k r

k P

k
F a h

k r







  

is element of 
2 (R )nL . 

From (6.1) we obtain  

 
n

t
r

k k

k P

D F f a h


  . 
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