DOI: https://doi.org/10.24297/jam.v20i.8976

Coefficient Estimates for Some Subclasses of m-Fold Symmetric Bi-univalent Functions Defined by Linear Operator

Dhirgam Allawy Hussein I¹, Sahar Jaafar Mahmood II²

¹ Directorate of Education in Al-Qadisiyah , Diwaniyah , Iraq

² Department of Multimedia, College of Computer Science and Information Technology, University of AlQadisiyah P.O. Box 88, Al Diwaniyah, Al-Qadisiyah, Iraq

dhirgam.allawy@qu.edu.iq , sahar.abumalah@qu.edu.iq

Abstract

The articles introduces and investigates "two new subclasses of the bi-univalent functions $f(z)\&f^{-1}(z)$." These are analytical functions related to the m-fold symmetric function $\mathcal{H}_{\Sigma_m}(\eta,\delta;\alpha)$ and $\mathcal{H}_{\Sigma_m}(\eta,\delta;\beta)$. We calculate the initial coefficients for all the functions that belong to them, as well as the coefficients for the functions that belong to a field where finding these coefficients requires a complicated method. Between the remaining results, the upper bounds for "the initial coefficients $|a_{m+1}| \& |a_{2m+1}|$ "are found in our study as well as several examples. We also provide a general formula for the function and its inverse in the m-field. A function f(z) is called analytical if it does not take the same values twice $f(z_1) \neq f(z_2)$ if $z_1 \neq z_2$. It is called a univalent function if it is analytical at all its points, and the function is called a bi-univalent if it and its inverse are univalent functions together. We also discuss other concepts and important terms.

Keywords: " Analytic function ,Univalent & Bi-univalent function ,m-fold symmetric function, m-fold symmetric bi-univalent function".

Introduction

"Let \mathcal{F} be the class of analytic functions defined on the open unit disk $U = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$ and normalized under the condition f(0) = 0 = f'(0) - 1 in U. A function $f \in \mathcal{F}$ has Taylor's series expansion of the form":

(1.1)
$$f(z) = z + \sum_{j=2}^{\infty} a_j z^j$$
 $(z \in U)$

Further, "by S we shall denote the subclass of \mathcal{F} consisting of form (1.1), which is also univalent in U".

Theory of Koebe One-Quarter [2] is "the image of U under every function f from S contains" one-quarter of the radius.

$$f^{-1}(f(z)) = z$$
, $(z \in U)$, & $f^{-1}(f(z)) = w$, $(|w| < r_0(f), r_0(f) \ge \frac{1}{4})$

Where

$$(1.2) f^{-1}(w) = g(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$

and f and f^{-1} are univalent, $f \in \mathcal{F}$ is named "bi-univalent in U."

We symbolize by Σ the class of all "bi-univalent functions" defined in U. $\forall f \in S$, the function

(1.3)
$$"h(z) = \sqrt[m]{f(z^m)}, (z \in U, m \in \mathbb{N})"$$

"is univalent and maps the unit disk U in to a region with m-fold symmetry. A function is said to be m-fold symmetric [4] if it has the following normalized" from:

$$(1.4) f(z) = z + \sum_{k=1}^{\infty} a_{mk+1} z^{mk+1} (z \in U.m \in \mathbb{N}).$$

We symbolize" by S_m the class of m-fold symmetric univalent" function "in U, which are normalized by the series expansion "(1.4). "In fact, the functions in class S are one-fold symmetric". Brannan and Taha [3] introduce certain subclasses $S^*(\alpha)$ and $\mathcal{K}(\alpha)$ of "starlike and convex" functions of order $\alpha(0 \le \alpha < 1)$ respectively [1]. The classes $S^*_{\Sigma}(\beta)$ and $\mathcal{K}_{\Sigma}(\beta)$ "of bi-starlike functions of order β and bi-convex functions of order β corresponding to the function classes $S^*(\alpha)$ and $\mathcal{K}(\alpha)$, were also introduced analogously. For each of the function" class $S^*_{\Sigma}(\beta)$ and $\mathcal{K}_{\Sigma}(\beta)$, "they found non-sharp estimates on the initial coefficients". In [5] Srivastava et al. "specified that m-fold symmetric bi-univalent function analogues to the concept of m-fold symmetric univalent function and these gave some important results, such as each function $f \in \Sigma$ generates an m-fold symmetric bi-univalent function for each $m \in \mathbb{N}$, in their study. Furthermore, for the normalized from of f given by (1.4) is concerned, they obtained the series expansion the expansion for f^{-1} as follows":

$$(1.5) "g(w) = w - a_{m+1}w^{m+1} + [(m+1)a_{m+1}^2 - a_{2m+1}]w^{2m+1} - [\frac{1}{2}(m+1)(3m+2) \times a_{m+1}^3 - (3m+2)a_{m+1}a_{2m+1} + a_{3m+1}]w^{3m+1} + \cdots "$$

where $f^{-1}(w) = g(w)$. We symbolize by \sum_m "the class of m-fold symmetric bi-univalent functions in U. For m = 1, formula" (1.5) "coincides with formula" (1.2).

Also many researchers have studied m field such as[7,8,9,10]

Aljarah and Darus [6] defined the following differential operator:

$$D^0_{\xi,\sigma,\theta,\tau}f(z)=f(z),$$

$$D_{\xi,\sigma,\theta,\tau}^{1}f(z) = \left[(1 - (\theta - \tau)(\sigma - \xi))f(z) + \left[(\theta - \tau)(\sigma - \xi) \right] z f'(z) \right],$$

(1.6)
$$D_{\xi,\sigma,\theta,\tau}^{\delta}f(z) = z + \sum_{k=1}^{\infty} [k(\theta - \tau)(\sigma - \xi) + 1]^{\delta} a_{mk+1} z^{mk+1}$$

Where
$$f(z) \in S_m$$
, ξ , σ , θ , $\tau \ge 0$, $\theta > \tau$, $\sigma > \xi$, $\delta = 1,2,3...$

In the work, we derive "estimates on the initial coefficients $|a_{m+1}|$ and $|a_{2m+1}|$ for functions belonging to the general subclasses $\mathcal{H}_{\Sigma_m}(\eta,\delta;\alpha)$ and $\mathcal{H}_{\Sigma_m}(\eta,\delta;\beta)$ of Σ_m ". Also some interesting applications of the results presented here are also discussed . "We now introduce the following general subclasses of" m-fold symmetric "bi-univalent functions".

Definition 1.1: A function $f \in \Sigma_m$ given by (1.4) is said $f \in \mathcal{H}_{\Sigma_m}(\eta, \delta; \alpha)$

 $(z, w \in U, \eta \ge 1; 0 < \alpha \le 1, m \in N)$ if the following conditions are convinced:

$$(1.7) f \in \Sigma_m \left| arg \left(z \left(\frac{(1-\eta)D_{\xi,\sigma,\theta,\tau}^{\delta} f(z)}{z} \right) + z \left(\eta(D_{\xi,\sigma,\theta,\tau}^{\delta} f(z)) \right)^{n} \right) \right| < \frac{\alpha\pi}{2}$$

and

$$(1.8) g \in \Sigma_m \left| arg \left(w \left(\frac{(1-\eta)D_{\xi,\sigma,\theta,\tau}^{\delta} g(w)}{w} \right) + w \left(\eta(D_{\xi,\sigma,\theta,\tau}^{\delta} g(w)) \right)^{n} \right) \right| < \frac{\alpha\pi}{2}$$

 $g = f^{-1}$ is given by (1.5).

Definition 1.2. "A function $f \in \Sigma_m$ given by (1.4) is said " $f \in \mathcal{H}_{\Sigma_m}(\eta, \delta; \beta)$

 $(z, w \in U, \eta \ge 1; 0 \le \beta < 1, m \in N)$ if the following conditions are convinced:

$$(1.9) f \in \Sigma_m \& Re \left(z \left(\frac{(1-\eta)D_{\xi,\sigma,\theta,\tau}^{\delta} f(z)}{z} \right) + z \left(\eta(D_{\xi,\sigma,\theta,\tau}^{\delta} f(z)) \right)^{n} \right) > \beta$$

and

$$(1.10) g \in \Sigma_m \& Re\left(w\left(\frac{(1-\eta)D_{\xi,\sigma,\theta,\tau}^{\delta}g(w)}{w}\right) + w\left(\eta(D_{\xi,\sigma,\theta,\tau}^{\delta}g(w))\right)^{n}\right) > \beta$$

$$g = f^{-1}$$
 is given by (1.5).

for showing our results ,the study need the lemma [2].

Lemma 3 [2]: "If $h \in \mathcal{P}$, then $|c_k| \le 2$ for each $k \in \mathbb{N}$, where \mathcal{P} is the family of all functions h, analytic in U, for which Re(h(z)) > 0 $(z \in U)$ "

Where

$$h(z) = 1 + cz + c_2 z^2 + \cdots$$
. $(z \in U)$.

2. Main Results

Theorem 2. 1. Let f(z) in (1.4) & $f \in \mathcal{H}_{\Sigma_m}(\eta, \delta; \alpha)$

 $(z, w \in U, \eta \ge 1; 0 < \alpha \le 1, m \in N)$ Then

$$(2.1) \quad |a_{m+1}| \le \frac{2\alpha}{\sqrt{\alpha(2m+4\eta m^2)(m+1)[2(\theta-\tau)(\sigma-\xi)+1]^{\delta} - (\alpha-1)((m+\eta m^2)[(\theta-\tau)(\sigma-\xi)+1]^{\delta})^2}}$$

&

$$(2.2) \quad |a_{2m+1}| \le \frac{2\alpha}{(2m+4\eta m^2)[2(\theta-\tau)(\sigma-\xi)+1]^{\delta}} + \frac{2\alpha^2(m+1)}{((m+\eta m^2)[(\theta-\tau)(\sigma-\xi)+1]^{\delta})^2}$$

Proof: If $f \in \mathcal{H}_{\sum_{m}}(\eta, \delta; \alpha)$.Then

(2,3)
$$\left(z \left(\frac{(1-\eta)D_{\xi,\sigma,\theta,\tau}^{\delta} f(z)}{z} \right)^{'} + z \left(\eta(D_{\xi,\sigma,\theta,\tau}^{\delta} f(z)) \right)^{''} \right) = [p(z)]^{\alpha}$$

&

$$(2,4) \qquad \left(w \left(\frac{(1-\eta)D_{\xi,\sigma,\theta,\tau}^{\delta} g(w)}{w} \right)^{1} + w \left(\eta (D_{\xi,\sigma,\theta,\tau}^{\delta} g(w)) \right)^{n} \right) = [q(w)]^{\alpha}$$

where $g(w) = f^{-1}(w), p(z), q(w)$ in \mathcal{P} and have the forms:

$$(2.5) p(w) = 1 + p_m z^m + p_{2m} z^{2m} + p_{3m} z^{3m} + \cdots$$

&

$$(2.6) q(w) = 1 + q_m w^m + q_{2m} w^{2m} + q_{3m} w^{3m} + \cdots$$

"equating the coefficients in (2.3) and (2.4)"

(2.7)
$$(m + \eta m^2)[(\theta - \tau)(\sigma - \xi) + 1]^{\delta} a_{m+1} = \alpha p_m$$

$$(2.8) \quad (2m + 4\eta m^2)(m+1)[2(\theta-\tau)(\sigma-\xi)+1]^{\delta}a_{2m+1} = \alpha p_{2m} + \frac{\alpha(\alpha-1)}{2}p_m^2$$

And

$$(2.9) - (m + \eta m^2)[(\theta - \tau)(\sigma - \xi) + 1]^{\delta} a_{m+1} = \alpha q_m$$

$$(2.10) \quad \left(2m + 4\eta m^2\right) \left[2(\theta - \tau)(\sigma - \xi) + 1\right]^{\delta} \left[(m + 1)a_{m+1}^2 - a_{2m+1}\right] = \alpha q_{2m} + \frac{\alpha(\alpha - 1)}{2} q_m^2$$

From (2.7) & (2.9), we get

$$(2.11) p_m = -q_m$$

And

$$(2.12) \quad 2\langle (m + \eta m^2)[(\theta - \tau)(\sigma - \xi) + 1]^{\delta} \rangle^2 a_{m+1}^2 = a^2 (p_m^2 + q_m^2)$$

Now, by adding (2.8) & (2.10), we have

$$(2.13) \left(2m + 4\eta m^2\right) \left[2(\theta - \tau)(\sigma - \xi) + 1\right]^{\delta} (m + 1) a_{m+1}^2 = \alpha(p_{2m} + q_{2m}) + \frac{\alpha(\alpha - 1)}{2} \left(p_m^2 + q_m^2\right)$$

Using (2.12) we get

$$(2.14) \quad (2m + 4\eta m^2)[2(\theta - \tau)(\sigma - \xi) + 1]^{\delta} (m + 1) a_{m+1}^2$$

$$= \alpha (p_{2m} + q_{2m}) + \frac{(\alpha - 1)((m + \eta m^2)[(\theta - \tau)(\sigma - \xi) + 1]^{\delta})^2 a_{m+1}^2}{\alpha}$$

Therefore, we obtain

$$(2.15) \quad a_{m+1}^2 = \frac{\alpha^2 (p_{2m} + q_{2m})}{\alpha (2m + 4\eta m^2)(m+1)[2(\theta - \tau)(\sigma - \xi) + 1]^{\delta} - (1 - \alpha)((m + \eta m^2)[(\theta - \tau)(\sigma - \xi) + 1]^{\delta})^2}$$

Lemma 3 is applied for p_{2m} and q_{2m} ,

$$|a_{m+1}| \leq \frac{2\alpha}{\sqrt{\alpha(2m+4\eta m^2)(m+1)[2(\theta-\tau)(\sigma-\xi)+1]^{\delta}-(1-\alpha)((m+\eta m^2)[(\theta-\tau)(\sigma-\xi)+1]^{\delta})^2}}$$

That provided $|a_{m+1}|$ showed in (2.1).

Next , for finding $|a_{2m+1}|$, by subtracting (2.10) from(2.8)

$$(2.17) \quad \left(2m + 4\eta m^2\right) \left[2(\theta - \tau)(\sigma - \xi) + 1\right]^{\delta} \left[2a_{2m+1} - (m+1)a_{m+1}^2\right] = \alpha(p_{2m} - q_{2m}) + \frac{\alpha(\alpha - 1)}{2}(p_m^2 - q_m^2)$$

It follows from (2.11),(2.12) and(2.15), that

$$a_{2m+1} = \frac{\alpha(p_{2m} + q_{2m})}{2(2m + 4\eta m^2)[2(\theta - \tau)(\sigma - \xi) + 1]^{\delta}} + \frac{\alpha^2(m+1)(2p_m^2)}{4((m+\eta m^2)[(\theta - \tau)(\sigma - \xi) + 1]^{\delta})^2}$$

Lemma 3 applied for " p_m , p_{2m} and q_{2m} "

$$(2.18) |a_{2m+1}| \leq \frac{2\alpha}{(2m+4\eta m^2)[2(\theta-\tau)(\sigma-\xi)+1]^{\delta}} + \frac{2\alpha^2(m+1)}{((m+\eta m^2)[(\theta-\tau)(\sigma-\xi)+1]^{\delta})^2}$$

That provided $|a_{2m+1}|$ as showed (2.2).

Theorem 2.2: Let f(z) given by (1.4) & $f \in \mathcal{H}_{\sum_{m}}(\eta, \delta; \beta)$

 $(z, w \in U, \eta \ge 1; 0 \le \beta < 1, m \in N)$. Then

$$(2.19) |a_{m+1}| \le \sqrt{\frac{4(1-\beta)}{(m+1)(2m+4\eta m^2)[2(\theta-\tau)(\sigma-\xi)+1]^{\delta}}}$$

And

$$(2.20) \quad |a_{2m+1}| \le \frac{2(1-\beta)}{(2m+4\eta m^2)[2(\theta-\tau)(\sigma-\xi)+1]^{\delta}} + \frac{4(1-\beta)^2(m+1)}{((m+\eta m^2)[(\theta-\tau)(\sigma-\xi)+1]^{\delta})^2}$$

Proof : If $f \in \mathcal{H}_{\sum_{m}}(\eta, \delta; \beta)$. Then

$$(2.21) \qquad \left(z\left(\frac{(1-\eta)D_{\xi,\sigma,\theta,\tau}^{\delta}f(z)}{z}\right)^{1}+z\left(\eta(D_{\xi,\sigma,\theta,\tau}^{\delta}f(z))\right)^{n}\right)=\beta+(1-\beta)p(z)$$

&

$$(2.22) \left(w \left(\frac{(1-\eta)D_{\xi,\sigma,\theta,\tau}^{\delta} g(w)}{w} \right) + w \left(\eta(D_{\xi,\sigma,\theta,\tau}^{\delta} g(w)) \right)^{n} \right) = \beta + (1-\beta)q(w)$$

"p(z), $q(w) \in \mathcal{P}$ ", it has "forms: (2.5) and (2.6)".

Equating the coefficients in (2.21) and (2.22), we get

$$(2.23) \qquad (m + \eta m^2)[(\theta - \tau)(\sigma - \xi) + 1]^{\delta} a_{m+1} = (1 - \beta)p_m$$

$$(2.24) \qquad (2m + 4\eta m^2)(m+1)[2(\theta-\tau)(\sigma-\xi)+1]^{\delta}a_{2m+1} = (1-\beta)p_{2m}$$

&

$$(2.25) - (m + \eta m^2)[(\theta - \tau)(\sigma - \xi) + 1]^{\delta} a_{m+1} = (1 - \beta)q_m$$

$$(2.26) \qquad (2m + 4\eta m^2)[2(\theta - \tau)(\sigma - \xi) + 1]^{\delta} [(m+1)a_{m+1}^2 - a_{2m+1}] = (1 - \beta)q_{2m}$$

Then, by making use of(2.23) & (2.25), we have

$$(2.27)$$
 $p_m = -q_m$

&

$$(2.28) 2\langle (m + \eta m^2)[(\theta - \tau)(\sigma - \xi) + 1]^{\delta} \rangle^2 a_{m+1}^2 = (1 - \beta)^2 (p_m^2 + q_m^2)$$

Adding(2.24)& (2.26) we have

(2.29)
$$a_{m+1}^2 = \frac{(1-\beta)(p_{2m+}q_{2m})}{(m+1)(2m+4\eta m^2)[2(\theta-\tau)(\sigma-\xi)+1]^{\delta}}$$

Lemma 3 applied for p_{2m} and q_{2m}

(2.30)
$$|a_{m+1}| \le \sqrt{\frac{4(1-\beta)}{(m+1)(2m+4\eta m^2)[2(\theta-\tau)(\sigma-\xi)+1]^{\delta}}}$$

That provided $|a_{m+1}|$ as showed in (2.19).

Now, for finding
$$|a_{2m+1}|$$
, by subtracting (2.26) from (2.24)
(2.31) $(2m + 4\eta m^2)[2(\theta - \tau)(\sigma - \xi) + 1]^{\delta}(2a_{2m+1} - (m+1)a_{m+1}^2) = (1 - \beta)(p_{2m} - q_{2m})$

It follows from (2.27)&(2.27) that

$$(2.32) a_{2m+1} = \frac{(1-\beta)(p_{2m}-q_{2m})}{2(2m+4nm^2)[2(\theta-\tau)(\sigma-\xi)+1]^{\delta}} + \frac{(m+1)(1-\beta)^2(2p_m^2)}{4((m+nm^2)[(\theta-\tau)(\sigma-\xi)+1]^{\delta})^2}$$

Lemma 3 applied for p_m , p_{2m} and q_m ,

$$(2.33) |a_{2m+1}| \le \frac{2(1-\beta)}{(2m+4nm^2)[2(\theta-\tau)(\sigma-\xi)+1]^{\delta}} + \frac{2(1-\beta)^2(m+1)}{((m+nm^2)[(\theta-\tau)(\sigma-\xi)+1]^{\delta})^2}$$

That provided $|a_{2m+1}|$ as showed (2.20).

Corollary 2.3. Let f(z) in $(1.1) \& f \in \mathcal{H}_{\sum_{m}}(0, \delta; \alpha)$

 $(z, w \in U; \eta = 0, 0 < \alpha \le 1, m \in N)$ Then

$$(2.34) |a_{m+1}| \le \frac{2\alpha}{\sqrt{\alpha(2m+4\eta m^2)(m+1)-(\alpha-1)(m+\eta m^2)^2}}$$

&

$$(2.35) |a_{2m+1}| \le \frac{2\alpha}{(2m+4\eta m^2)} + \frac{2\alpha^2(m+1)}{(m+\eta m^2)^2}$$

Corollary 2.4. Let f(z) in(1.1) & $f \in \mathcal{H}_{\sum_{m}}(0, \delta; \beta)$

 $(z, w \in U, \eta = 0, 0 \le \beta < 1, m \in N)$. Then

(2.36)
$$|a_{m+1}| \le \sqrt{\frac{4(1-\beta)}{(m+1)(2m+4\eta m^2)}}$$

&

$$(2.37) |a_{2m+1}| \le \frac{2(1-\beta)}{(2m+4\eta m^2)} + \frac{2(1-\beta)^2(m+1)}{(m+\eta m^2)^2}$$

Reference

- 1. C . Pommerenke , On the coefficients of close-to-convex functions , Michigan Math. J.,9(1962) , 259 269 .
- 2. P. L. Duren, Univalent Functions, In: Grundlehren der Mathematischen Wissenschaften, Band 259, Springer- Verlag, New York, Berlin, Hidelberg and Tokoyo, (1983).
- 3. D. A. Brannan and T. S. Taha, On some classes of bi- univalent functions, Studia Univ. BabeŞ- Bolyai Math.,31(2)(1986),70 77.
- 4. W. Koepf, Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc., 105(1989), 324 329.
- 5. H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial Coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7(2)(2014), 1-10.
- 6. A. Aljarah and M. Darus, On certain subclass of p-valent functions with positive coefficients Journal of Quality Measurement and Analysis, 10(2)(2014), 1-10.
- 7. H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Africa J. Math., Dol 10.1007/s13370 016 0478 0(2016), 1 14.
- 8. S. Altinkaya and S. Yalcin ,On some subclasses of m-fold symmetric bi-univalent functions , Commun . Fac .Sci . univ. Ank. Series Al, 67(1) (2018).
- 9. W. G. Atshan and N. A. Jiben ,Coefficient bounds for a new subclasses of m-fold symmetric bi-univalent functions, Inter. J. Adv. Res. Sci,Eng. Tech.,6(8)(2019),10403-10409.
- 10. D.A. Hussein, A.K. Wanas and S.J. Mahmood, coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions ,Journal of SJU,55,(3)(2020).

