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Abstract 

The aim of this study is to investigate the effect of different truncation combinations on the estimation of the 

normal distribution parameters. In addition, is to study methods used to estimate these parameters, including 

MLE, moments, and L-moment methods. On the other hand, the study discusses methods to estimate the mean 

and variance of the truncated normal distribution, which includes sampling from normal distribution, sampling 

from truncated normal distribution and censored sampling from normal distribution. We compare these 

methods based on the mean square errors, and the amount of bias. It turns out that the MLE method is the best 

method to estimate the mean and variance in most cases and the L-moment method has a performance in some 

cases. 

Keywords:   MLE method, method of moments, L-moment method, truncated normal distribution, censored 

sample. 

1. Introduction 

The idea of truncated samples appeared on surface quite early when Sir Francis, Galton (1897) studies registered 

speeds of American trotting horses. He assumed that the distribution is normal, estimated the mean by the 

sample modes, and used semi-interquartile ranges to estimate population standard deviations. Led Karl Pearson 

(1902) estimated the parameters of normal distribution from truncated sample by fitting parabolas to logarithms 

of the sample frequencies. Then, he used the method of moments to estimate the parameters from a singly left 

truncated sample with Alice Lee, Pearson. Special tables were needed to estimate practical procedure, which 

were expanded by Lee (1914). 

Since the equations of maximum likelihood estimates (MLE) from truncated and censored sample and from 

normal distribution could not be solved directly because of their rather complex non-linear equations, many 

researchers looked for methods to simplify and reduce this calculation and tried to be more accurate. For 

example, the tables by Cohen and Woodward 1953) for singly truncated normal samples which found the values 

by interpolating between table entries, figure by Cohen (1957) for doubly truncated and censored samples, 

tables by Gupta (1952) also gave the asymptotic variances for estimators of singly and doubly censored samples, 

tables and figure by Cohen (1959), Cohen (1961) tables for MLE of singly truncated and singly censored samples 

and tables of Cooley and Cohen after nearly 9 years. Lifsey (1965) gave an auxiliary estimating function for 

doubly truncated normal and expanded the table and figure that Cohen used. 

Shah and Jaiswal (1966) used the first four moments to estimate parameters of doubly truncated normal 

distribution and compared it with MLE. Sugiura and Gomi (1985) presented Pearson's diagrams for the truncated 

normal distributions. Mittal and Dahiya (1987) proposed a new estimating procedure called "Mixed Estimation." 

In addition, by simulation study, they compared between the MLEs and the modified MLEs, and found that the 

modified method was better than the MLE. 

Hegde and Dahiya (1989), studied the truncated normal distribution but this time just for singly truncated, by 

using simulation to compare between the modified maximum likelihood estimator, and the mixed estimator. 

Barr and Sherrill (1999) published a simulation study to estimate the mean and variance of truncated normal 

distributions for sample sizes (100, 50, 36, 25, and 10). They compared the results by the censored sample, and 

found that the full-sample estimators have greater mean square error than the censored-sample estimators in 

general. He proposed a new alternative expression for the variance in terms of the chi-square CDF of one-sided 

truncations. Barr's formula was used in standard software. However, this work is insufficient to return to take just 

the left truncated case for few value of truncated point too.   
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Many economy applications using truncated normal distribution were dissected. For example, Johnson and 

Thomopoulos (2002) talked about replacing used left truncated normal distribution instead of normal 

distribution to determine the safety stock required to achieve a better service level since the demand (the 

quantity of a commodity or a service that people are willing or able to buy at a certain price) truncated from left 

at zero value. which was done by other researchers as Bookbinder and Lordahl (1989), and  Sinha (1991).  

Johnson and Thomopoulos (2002) presented tables of the cumulative distribution function of the left truncated 

normal distribution, and later for doubly truncated case, Johnson (2002). 

Khasawneh, Bowling et al. (2004) made useful tables of a truncated standard normal distribution in a singly 

truncated case, which was extended the next year to doubly truncated case Khasawneh, Bowling et al. (2005).  

Iwueze (2007) took the mean equal one and studied the relation between truncated and untruncated normal 

distribution. He observed that the truncated values were greater than untruncated ones and the variables of 

truncated and untruncated had the same mean equal one and variance σ2. 

Bebu and Mathew (2009) took three cases of truncated cases with sample size ranging between five and eighty 

to provide formulas for (generalized) confidence intervals around the truncated moments, the mean and the 

second moment. Hattaway (2010) made a summary of truncated normal distribution problem in many sides. He 

took many compensations of mu and sigma of normal distribution and truncates all of them at zero to compare 

between MLEs and method of moment using simulation study. 

2. Truncated Distributions 

2.1 Normal distribution 

We know that the probability density function of the normal distribution is:  

          (2.1.1) 

Where μ is the mean or expectation and σ2 is the variance. The simplest form of the normal distribution occurs 

when the mean and variance equal zero and one respectively. The density function for the standard normal is:        

         (2.1.2) 

The CDF for normal distribution G(x) with mean μ and standard deviation σ, is  

         (2.1.3) 

Where 

         (2.1.4)  

The CDF of normal distribution in the standard form is:  

         (2.1.5)  
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 Where erf refers to the error function that is defined by:  

(2.1.6)  

2.2 Truncated Distributions 

A truncated distribution is a conditional distribution on a specific range, which restricted the full range. In fact, 

it is the part of an untruncated distribution that is above or below some specified value or between two values. 

That means if the range of untruncated distribution is all real number, the new range will be from minus infinity 

to a certain value or from a value to infinity, or between two values, but not separated  intervals. Truncated 

distributions issues happened when observation outside a certain region could not be measured or recorded. 

Furthermore, truncated random variables have found important applications in actuarial practice. They also can 

have potential applications in the context of lifetime data analysis. 

There are several types of truncated distributions: 

 One-sided truncation: Truncated from above: all values greater than a truncated point are cut off, so the range 

will be from the minimum value in un truncated range to a truncated point. Or truncated from below: all values 

smaller than a truncated point are cut off, so the range will be from the truncated point to maximum value in 

un truncated range.  

Two sided truncation (Double truncation): all values out the truncated region are cut off, so the new range will 

be between the two truncated points.  

Let X be a random variable with probability density function h(x) and with CDF H(x), then the probability density 

function of Y (the truncated version of the variable X which is truncated from the left at a and on the right at b) 

is given by : 

(2.2.1)  

In addition to that, the CDF of Y is:  

         (2.2.2) 

Notably, the expectation of a truncated random variable is given as: 

  

                         (2.2.3)  
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The probability density function of double truncated normal distribution is given by:  

         ( 2.2.4) 

Where φ and Ф are pdf and CDF for the standard normal defined in (2.1.2) and is defined in 

         (2.2.5)  

Finally, the mean and variance of this distribution are given as:  

(2.2.6) 

        

                    (2.2.7) 

While in the first case of one sided truncation, truncated from above, the lowest truncated point assumes to be 

-∞, so that, φ(α) = Ф (α) = 0. 

Then the mean and variance will be as:   

(2.2.8) 

(2.2.9)  

As well, the second case of one sided truncation, truncated from below, the largest  truncated point will be ∞, 

so that, φ(β) = 0 and Ф (β) = 1.  

Again, the mean and variance of this case will be, see Johnson and Kotz et. al. (1994):  

(2.2.10) 
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(2.2.11) 

Figures (1), (2), and (3) show some truncated normal distributions with μ=2 and  

σ =1 for different truncation combinations.       
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Fig. 1 : Truncated and untruncated  

normal distributions of μ = 2 , σ =1. 

Truncated by the  interval : [1,3] , 

 [0,4] , [-1,5] 

Fig. 2 : Truncated and untruncated  

normal distributions of μ = 2 , σ =1. 

Truncated by the  interval : [0,3], 

  (-∞,2] , [1,2] 

Fig. 3 : Truncated and untruncated  normal distributions of μ = 2 , σ =1. 

Truncated by the  interval : (-∞,1] , (-∞,2] , (-∞,3] 
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3. Methods of Estimation 

We will discuss three methods of estimation in this work: 

3.1 Method of Moment (MOM) 

It was introduced by Karl Pearson in 1894. The main idea here is to estimate population moments from samples 

that are drawn from this population. Method of  Moments (MOM) has the virtue of being quite simple to use, 

and has many advantages not only that its calculation is usually simple, but also, sometimes, it is used to be the 

first approximation in other estimation methods when needed like using Newton–Raphson technique in MLE. 

On the other hand, estimates found by this method may be out of the parameters range sometime, especially 

in large sample sizes.  

Definitions and Basic Properties   

Let X1, X2,…,Xn be a sample from a population with pdf, f(x, θ1,…,θk). Method of Moment estimators are found by 

equating the first k sample moments to the corresponding k population moments, and solving the resulting 

system of simultaneous equations. There are two forms of Method of Moments depending on the following 

definition: 

1) E(Xk) is the kth population moment of the distribution (about the origin), for k= 1,2, … 

2) E[(X – μ )k] is the kth (theoretical) moment of the distribution (about the mean), for k = 1, 2, ...  

3)                         is the kth sample moment about origin, for k = 1, 2, ... 

4)                                  is the kth sample moment about the mean, for k = 1, 2, ... 

The first form is done by equating the sample moments about the origin with the corresponding population 

moments, until we form equations that has a size equal to the number of parameters. The second form is formed 

by equating sample moments about the mean with the corresponding population moments about the mean. 

Once again, we form equations that has a size equal to the number of parameters. Casella and Berger (2002). 

Moments of Truncation Normal Distributions 

In light of the above definitions and properties, equating the E(X) of the truncated normal distribution from 

(2.2.6) by the first sample moment form:  

          (3.1.1) 

Where         are the parameters of normal distribution and      is the sample mean. 

Then, by the same way, equating E(X2) with the second sample moment about the origin forms: 

(3.1.2) 

The lack of a closed-form solution means that the MOM estimators must be found and can be done by using 

an iterative method.  
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For the one sided truncation, take truncation from below, that is by assuming the upper truncated point goes 

to infinity, and take the equation of one sided truncated normal  distribution mean and variance (2.2.8) , (2.2.9)  

into consideration, the previous double truncated equations transforms to one sided equations will be , see 

Casella and Berger (2002)  :    

         (3.1.3) 

  

          (3.1.4) 

3.2 Maximum likelihood Estimation (MLE) Method:  

Maximum likelihood estimation method (MLE) is the most popular method to derive estimators. The main idea 

in this method is finding the parameters values that maximizes the likelihood function form from the density 

function of the distribution.  

MLE’s of Truncated Normal Distribution 

The likelihood for the truncated normal distribution is: 
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Hattaway, (2010) 

3.3  L – Moment method (LMOM) 

L-moments are expectations of some linear combinations of orders statistics. This method is an alternative 

approach of moments method described by Hosking (1990)  based on quantities, L-moments are measures of 

the location, scale, and shape of probability distributions or data samples. They are based on linear combinations 

of order statistics, and can be defined for any random variable if the mean exists. L-moments may be more 

efficient parameter estimates than the maximum likelihood estimates in some cases.  

Definitions and Basic Properties   

Let X be a random variable with cumulative distribution function F(x) and quantile function x(F) (the value at 

which the probability of the random variable is less than or equal to the given probability) , and let Xl:n ≤ X2:n ≤ . 

. . ≤ Xn:n be the order statistics of a random sample of size n drawn from the distribution of X. The L-moments 

of X is defined as: 

( 3.3.1) 

So λ1= E(X) , λ2= (EX2:2 – EX1:2)/2  and   λ3= (EX3:3 – 2EX2:3 + EX1:3)/3 

Hosking (1990). Likewise, the first two L- moments can be written as:  

(3.3.2.a) 

         (3.3.2.b) 
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Hosking and Wallis (2005). In particular, the first two sample moments are: 
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L-moments of Truncated Normal Distributions 

 (3.3.5) 

          (3.3.6)  

Where  

Finally, using L-moments method to estimate the parameters passes through the same steps of (conventional) 

moments. This means equating the first p sample L-moments to the corresponding population quantities of 

distribution that has p of unknown parameter to estimate them. 

4. Simulation study 

The simulation is done by taking    μ = 2 and σ = 1, also when we selected the combination of truncated points 

we consider: First, the untruncated data percentage. Second, the symmetric properties of normal distribution. 

Third, presence of μ inside or outside the truncated interval or on the boundary. 

4.1.a.  Double sided truncation case 

 The combinations of the truncated points which are chosen with the approximation percentage of untruncated 

data are: ( [-1,5] 99.7% , [0,5]  97.5% , [0,4] 95.4%, [1,5] 83.9 %, [-1,2] 49.8% , [1,4] 81.8% , [1,3] 68.2% , [0,2] 47.7% 

, [-1,1] 15.7% , [-1,0] 2.1% , [0,1] 13.6% , [1,2 ] 34.1), but to minimize the no. of tables in this paper, we choose 

the intervals: [0,4], [-1,2]. 

Also, for each of previous truncated cases, we generate 3000 samples of the following sizes 

(10,15,25,50,75,100,250,1000) from truncated normal distribution with parameters   μ = 2 , σ = 1. In addition, the 

MSE and Bias were found for each truncated case and each sample size. However, to minimize the no. of tables 

in the paper, we choose: (10, 100, and 1000) sample sizes and all those tables are kept upon request. The initial 

values for the NR optimization were chosen to be the mean and the standard deviation of sample with 3000 

iteration. 

Table (1): MSE of μ estimations by the three methods for ([0,4], [-1,2]) double sided truncation. 

Truncation Sample n MLE MM L-Moments  

[0,4] 

10 0.078844185 0.11233926 0.062846153 

100 0.007629521 0.01063938 0.006067499 

1000 0.000774445 0.001082562 0.000615368 

[-1,2] 

10 0.623941272 0.528774206 0.759702526 

100 0.61898085 0.491141071 0.726105755 

1000 0.57366177 0.48751546 0.716500249 
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First of all, the collection of truncated combinations which is symmetric around the parameter of un truncated 

normal distribution μ [0, 4] will be called the Symmetric Truncation Combinations (STC). Those are chosen from 

a large no. of truncations, so we have to choose some of them, the cancelled ones are available upon request. 

From Table (1), it can be observed that the three methods for estimating the parameter μ of truncated normal 

distribution do follow a similar behavior with preference for LMOM method especially for the truncation period 

[-1,2] where μ falls on the boundary rather than inside the interval.  

Furthermore, the MSE value is approximately constant for the three methods when the parameter μ falls outside 

of the truncation interval or in one of its boundaries, with preference for MOM method on the other methods. 

The LMOM method falls back to last rank with greater MSE values. These methods order reappear in the 

combinations, which contain μ, especially for large sample sizes but with a reduction of MSE value. Moreover, 

for this case, the limitation of truncation level made the MSE values converge to a relatively small positive value. 

It should be noted that the variance of all estimations converge to zero in all combinations and for each method.  

Table (2): Bias of μ estimations by the three methods for ([0,4], [-1,2]) double sided truncation. 

Truncation Sample n MLE MM L-Moments  

[0,4] 

10 0.001278088 -0.01096151 -0.00524513 

100 -0.000997266 0.000689271 0.000571732 

1000 -0.00060565 -4.03384E-05 -3.69838E-05 

[-1,2] 

10 -0.73442021 -0.70149726 -0.85072192 

100 -0.784437862 -0.698149474 -0.849987368 

1000 -0.789690008 -0.697965431 -0.846251449 

Table (2) shows the absolute value of Bias convergence to zero for the three methods in STC case, and the 

changes of methods order as the sample size increases. In contrast, it has an approximately constant value in 

other combination. In addition, methods give large absolute bias value when μ falls outside the interval or on 

its boundary. Whatever are these cases, the methods (MOM,ML,LMOM) usually have increasing order with 

respect to bias value. 

Table (3): MSE of σ estimations by the three methods for ([0,4], [-1,2]) double sided truncation. 

Truncation Sample n MLE MM L-Moments  

[0,4] 

10 0.057075176 0.048226928 0.0487511 

100 0.020704944 0.017172733 0.017933238 

1000 0.014965969 0.014772472 0.015057324 

[-1,2] 

10 0.273790575 0.26170347 0.24698446 

100 0.179679301 0.232023777 0.228854371 

1000 0.170096806 0.229616386 0.237530261 

On the other hand, in estimating the parameter σ, the symmetry about μ has a limited effect when compared 

with the truncation level, as in table (3). 
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Table (4): Bias of σ estimations by the three methods for ([0,4], [-1,2]) double sided truncation. 

Truncation Sample n MLE MM L-Moments  

[0,4] 

10 -0.147323285 -0.136267508 -0.140922 

100 -0.134473412 -0.119831558 -0.123334659 

1000 -0.121224982 -0.120386622 -0.121581876 

[-1,2] 

10 -0.503912617 -0.496385899 -0.477871 

100 -0.421378322 -0.480236997 -0.477071613 

1000 -0.41219841 -0.479050692 -0.487203597 

Moreover, the MOM, L-MOM and MLE methods give very close values usually with preference to MLE method 

on them in [-1,2] case, except for the small sample size 10. Furthermore, the bias values for these methods will 

be close as it is clear in table (4) in STC case, and small value for MLE method in other cases.  

In one-sided truncation, decreasing the untruncated data (UTD) percentage makes parameters' estimation more 

difficult. For these cases, the methods have an increasing order; (MOM, ML, and LMOM) with smaller MSE values.  

4.1.b. One sided truncation case 

For the one sided truncated case, we work with the lower truncation because the other case will be the same 

since the normal distribution is symmetric. Like the double truncated case, our samples size will be (10, 100, and 

1000) with 3000 repetitions.  However the truncated combinations with the approximating percentages of un 

truncated data are ([2,∞) 50% , [1,∞) 84.2%).   

Table (5): MSE of μ estimations by the three methods for ([2,∞), [1,∞)) one sided truncation  

Truncation Sample n MLE MM L-Moments  

[2,∞) 

10 0.583415579 0.537408987 0.780712691 

100 0.630024312 0.498812394 0.743207637 

1000 0.633533494 0.492565162 0.73261041 

[1,∞) 

 

10 0.141020762 0.114075008 0.190164886 

100 0.089841624 0.047042249 0.125844083 

1000 0.082912822 0.040955215 0.119175433 

In addition, the absolute bias values are approximately constant over all sample sizes. However, this constant 

value is smaller in high UTD case, as in table (5). 

Table (6): Bias of μ estimations by the three methods for ([2,∞), [1,∞)) one sided truncation  

Truncation Sample n MLE MM L-Moments  

[2,∞) 

10 0.739916128 0.707948551 0.86149513 

100 0.791447354 0.703598041 0.859818588 

1000 0.795723727 0.701565899 0.855696723 

[1,∞) 

 

10 0.271834577 0.208471835 0.35769478 

100 0.289630027 0.199336171 0.346086442 

1000 0.286866604 0.200553827 0.344323792 

For table (6), it appears that the bias is smaller for the STC case when mean falls inside the truncation interval 

than when it is outside the truncation interval. 
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Table (7): MSE of σ estimations by the three methods for ([2,∞), [1,∞)) one sided truncation  

Truncation Sample n MLE MM L-Moments  

[2,∞) 

 

10 0.26987647 0.258785744 0.240781353 

100 0.169574879 0.225438819 0.221127593 

1000 0.160645048 0.221746462 0.228416219 

[1,∞) 

 

10 0.11246286 0.100816719 0.097054063 

100 0.044533877 0.067359264 0.069161244 

1000 0.043590135 0.064265161 0.070422031 

For table (7), the smallest MSE and bias values for σ came from MLE method for large sample sizes.  

Table (8): Bias of σ estimations by the three methods for ([2,∞), [1,∞)) one sided truncation  

Truncation Sample n MLE MM L-Moments  

[2,∞) 

 

10 -0.4956612 -0.494020884 -0.469875102 

100 -0.408459519 -0.473218289 -0.468368923 

1000 -0.400497612 -0.470745948 -0.4776699 

[1,∞) 

 

10 -0.2622055 -0.280147584 -0.26463474 

100 -0.205189025 -0.255679538 -0.258023333 

1000 -0.207969291 -0.253103366 -0.264843845 

For table (8), the smallest MSE and bias values for σ came from MLE method for large sample sizes.  

4.2 Estimating the mean and variance of truncated normal distribution 

The mean and variance of truncated normal distribution are functions of the parameters. We know that the 

sample mean and the sample variance are MLEs of parameters of full normal distribution, the sample mean and 

the samples expressions are:  

(4.2.1) 

           (4.2.2) 

Where the Etr(x) and VarTr (x) denote the mean and variance of truncated normal distribution respectively. Now, 

the simulation study is done by first, generating 3,000 samples from full normal distribution then substituting 

the samples mean and variance in (4.2.1) and (4.2.2) formulas to compute the MLEs. Second, it is done by 

censoring each sample by the truncated point and calculating the new sample mean and variance. The third 

stage is generating 3000 samples from truncated normal distribution with same parameters of the previous full 

distribution and calculating the sample mean and variance again.  
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Table (9): MSE of mean estimations by the three methods for ([0,4], [-1,2]) double sided truncation 

Truncation Sample n MLE CS TS 

[0,4] 

10 0.064894668 0.091367252 0.076431222 

100 0.005951892 0.009040314 0.008094043 

1000 0.00059569 0.000910166 0.000747738 

[-1,2] 

10 0.039609673 0.18800652 0.661327994 

100 0.003803323 0.156834895 0.627883698 

1000 0.000377413 0.154431563 0.626433735 

In fact, the MLE method is almost perfect to estimate the mean of truncated normal distribution as shown in 

table (9), since the MSE values converge to zero in all combinations, while the TS method gives smaller MSE 

values more than the censored sample (CS) method in the STC cases.          

Table (10):  Bias of mean estimations by the three methods for ([0,4], [-1,2])  double sided truncation.  

Truncation Sample n MLE CS TS 

[0,4] 

10 0.000984042 0.001823657 0.003896737 

100 -0.000669542 -0.000860404 -0.000210676 

1000 -0.000208852 -0.000233462 0.000244985 

[-1,2] 

10 0.055102736 0.392842199 -0.00068271 

100 0.004999822 0.391737378 0.000937487 

1000 0.000374846 0.392547498 -0.000101799 

From table (10), it was observed that the absolute bias of CS method converges to zero only when the 

combination belongs to STC. For the interval [-1,2], the MLE and TS have smaller bias than the CS case.  In fact, 

it must be stressed here that this increase in the values of the absolute bias accompanied by the steep decline 

in variance values may actually improve the CS method with small MSE values. This may give an unrealistic 

preference to this method.  

Table (11): MSE of variance estimations by the three methods for ([0,4], [-1,2])  double sided truncation 

Truncation Sample n MLE CS TS 

[0,4] 

10 0.048869436 0.066314036 0.04994314 

100 0.003380908 0.037043022 0.017454641 

1000 0.000336549 0.034833755 0.014717248 

[-1,2] 

10 0.017046482 0.077678673 0.209119558 

100 0.001894573 0.056798243 0.172252346 

1000 0.000191317 0.055271715 0.16882872 

For table (11) as expected, the ML method showed a very high effectiveness in estimating the variance, especially 

for large samples size. On the other hand, as in estimating mean case, the TS method has a poor performance 

to estimate the variance as UTD reduced, unlike the CS method.  
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Table (12) Bias of variance estimations by the three methods for ([0,4], [-1,2])  double sided truncation. 

Truncation Sample n MLE CS TS 

[0,4] 

10 -0.110134421 0.163243709 0.08791553 

100 -0.011442747 0.183834468 0.105000797 

1000 -0.000835708 0.185729231 0.106001741 

[-1,2] 

10 -0.043075096 0.201278743 0.21996201 

100 -0.004311321 0.230875408 0.239982338 

1000 -0.000329394 0.234368896 0.241955167 

For Table (12), we have smaller bias for the MLE method that converging to zero while constant for TS and CS 

cases.   

Table (13): MSE of mean estimations by the three methods for (-∞,3],  (-∞,2]) one sided truncation. 

Truncation Sample n MLE CS TS 

(-∞,3] 

10 0.064042929 0.11589587 0.146913094 

100 0.006193276 0.048933165 0.089472169 

1000 0.000600189 0.042478075 0.083405473 

(-∞,2] 

10 0.046853001 0.194081351 0.678700041 

100 0.004507811 0.162668824 0.643801233 

1000 0.000461222 0.159227624 0.637276802 

The MSE values in table (13), showed that the three methods follow a similar behavior in the one sided estimation 

for the mean and variance. Definitely, with a preference for the method of MLE in the first rank then followed 

by CS case, finally the method of TS with very high MSE values, especially when the values of UTD are low, but 

as mentioned before the performance of CS method may be not actual.  

Table (14): Bias of mean estimations by the three methods for (-∞,3],  (-∞,2])  one sided truncation. 

Truncation Sample n MLE CS TS 

(-∞,3] 

10 0.02329851 0.204473858 -0.003088 

100 0.002195019 0.204067468 -0.00048805 

1000 -5.59471E-05 0.204310292 -0.000121911 

(-∞,2] 

10 0.053815821 0.40017565 -0.00362762 

100 0.005588975 0.399144802 -0.0022248 

1000 0.000186358 0.398607621 -0.000185143 

For Table (14), it reveals that the absolute mean bias for the MLE methods always converges to zero, as well as 

in the TS method.  However, the CS method has a constant value.  
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Table (15): MSE of variance estimations by the three methods for (-∞,3],  (-∞,2]) one sided truncation. 

Truncation Sample n MLE CS TS 

(-∞,3] 

10 0.05596121 0.084428179 0.086238321 

100 0.005666458 0.058663281 0.046617141 

1000 0.000549254 0.056700119 0.042937556 

(-∞,2] 

10 0.02886035 0.07152637 0.200291426 

100 0.003123734 0.050771211 0.160670881 

1000 0.000320742 0.048850456 0.157863616 

Finally, the MSE values in table (15), showed that the three methods follow a similar behavior in the one sided 

estimation for the mean and variance. Definitely, with a preference for the method of MLE in the first rank then 

followed by CS case, finally the method of TS with very high MSE values, especially when the values of UTD are 

low, but as mentioned before the performance of CS method may be not actual.  

Table (16): Bias of variance estimations by the three methods for (-∞,3],  (-∞,2]) one sided truncation. 

Truncation Sample n MLE CS TS 

(-∞,3] 

10 -0.0566172 0.2181383 0.140063004 

100 -0.004401812 0.235078148 0.161860936 

1000 -3.52212E-05 0.23742005 0.163859673 

(-∞,2] 

10 -0.0352145 0.18067277 0.219032508 

100 -0.003704517 0.216936927 0.239086217 

1000 -5.11753E-05 0.220152651 0.239622248 

For Tables (16), we have smaller bias for the MLE method that converging to zero while constant for TS and CS 

cases.   

5. Conclusion 

The classical assumption is that a population may be a normal distribution, that is, it takes values between 

negative and positive infinity, which cannot actually happen. This is partially motivated by the statistical 

community to work on the truncated normal distribution. 

Looking at the tables for one and double sided estimators, the best mean estimator is the MLE-estimator. In 

fact, it is better than the TS case itself, particularly, when the UTD is small. In this case, the TS case performs 

poorly. Although it maintains low bias values, it is accompanied by very high variance values. Quite the contrary, 

the CS method shows a performance that seems relatively good, but it cannot be trusted because it is 

accompanied by high bias values. Excluded from this the cases when the combinations belong to STC where the 

MSE and bias of the mean in all methods converge to zero. The three methods take an ascending order from 

MLE method to CS case. It is noted also, that we can say that the three methods (MLE, MM and L-MM) perform 

well when the mean μ falls inside truncation period (STC) than when the mean falls on the boundary or outside 

the truncation period. Actually, it is recommended to use the MLE method to estimate the variance of truncated 

normal distribution in the first order, followed by the TS case only in cases where μ belongs to UTD. That is not 

only for one-sided truncated cases, but also for double truncated cases. 

On the other hand, it is preferred to use LMOM method to estimate μ in STC cases, followed by MLE method at 

the second rank. Moreover, the poor performance of the LMOMT appears not only in cases, which do not belong 

to STC but also in cases of one-sided truncation.  
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MOM method gains the advantage of being used in estimating μ not only in the cases that do not belong to 

STC, but also in one-sided truncation cases. While MLE method is the second best in use. It is in forefront at 

large UTD and sample sizes. 

In estimating the parameter σ, the three methods are very similar to STC. Otherwise, it  is preferred to use the 

MLE method approximately in all truncation cases, followed by the LMOM and MOM respectively, except for 

some special combinations. Finally, it becomes more difficult to estimate the parameters whenever the UTD 

decreases. 
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