DOI: https://doi.org/10.24297/jam.v20i.8929

Coincidence points in θ -metric spaces

Maha Jawad Mousa I¹, Salwa Salman Abed II²

¹ Ministry of Education, School Shamsalmarifa, Baghdad, Iraq.

² Department of mathematics, College of Education for pure science Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

Abstract

In this paper, inspired by the concept of metric space, two fixed point theorems for α -set-valued mapping $T: A \to CB(A)$, $h_{\theta}(Tp,Tq) \le \alpha(d\theta(p,q)) d\theta(p,q)$, where $\alpha: (0,\infty) \to (0,1]$ such that $\alpha(r) < 1$, $\forall t \in [0,\infty)$) are given in complete θ -metric and then extended for two mappings with R-weakly commuting property to obtain a common coincidence point.

Keywords: Generalized metric space, non-commuting mappings, coincidence points.

1. Introduction and preliminaries

Bakhtin [1] defined the b-metric space as a generalization of a usual metric space and proved analogue of Banach's contraction principle. Then several articles have contained fixed points results in this space and its generalizations (e.g. see [1-7] and their **references**). Kamran, Samreen and Ain [8] introduced θ -metric space as an extended to b-metric space and established some fixed points results. Very recent results in this space will appear to the researcher Albundi [9].

Here, the coincidence point results for four mappings. Firstly, start with the following definition [4]:

"Let: $A \neq \emptyset$ and $\theta: A \times A \rightarrow [1,\infty)$ and $d_{\theta}: A \times A \rightarrow [0,\infty)$ be functions. If the following hold $\forall p, q, \in A$:

$$(d_{\theta} 1) d_{\theta}(p, q) = 0 \text{ iff } p = q$$

$$(d_{\theta}2) d_{\theta}(p,q) = d_{\theta}(q, p)$$

$$(d_{\theta}3)\ d_{\theta}(p,r) \leq \theta(p,r)[\ d_{\theta}(p,q) + d_{\theta}(q,r)].$$

Then (A, d_{θ}) is called θ -metric space"

Remark 1.1. If $\theta(p, q) = s$ for $s \ge 1$, then we obtain the definition of a b-metric space.

Example 1.2. If: $A = \{1, 2, 3\}$, and $\theta: X \times X \to [1, \infty)$. A function $d_{\theta}: A \times A \to [0, \infty)$ as:

$$\theta(p, q) = 1 + p + q$$

$$d_{\theta}(1, 1) = d_{\theta}(2, 2) = d_{\theta}(3, 3) = 0$$

$$d_{\theta}(1, 2) = d_{\theta}(2, 1) = 80, d_{\theta}(1, 3) = d_{\theta}(3, 1) = 1000, d_{\theta}(2, 3) = d_{\theta}(3, 2) = 600.$$

Example 1.3." Let A = ([p, q]) be the space of all continuous real valued functions define on [p, q]. Note that A is complete extended b -metric space by considering $d_{\theta}(p, q) = \sup_{t \in [p,q]} |p(t) - q(t)|^2$, with $\theta(p, q) = |p(t) - q(t)| + 2$, where $\theta : A \times A \to [1,\infty)$ " [4].

Definition 1.4 [8]: "Let (A, d_{θ}) is a θ -metric space and a sequence $\{p_n\}$ in A is said to be:

i. Cauchy if and only if $d_{\theta}(p_n, p_m) \rightarrow 0$ as $m, n \rightarrow \infty$.

ii.Converges to a point $p \in A$ if $d_{\theta}(p_n, p) \to 0$ as $n \to \infty$ and we write $\lim_{n \to \infty} p_n = p$.

A θ -metric space is complete if every Cauchy sequence A is convergent to q in A''.

Let
$$2^{A} = \{A : \emptyset \neq A \subset A\},\$$

 $CB(X) = \{A: A \text{ is a nonempty bounded closed subsets of } A\}.$

"For $p \in A$ and $A \subseteq X$, $d_{\theta}(p, A) = \inf \{d_{\theta}(p, q): q \in A\}$. Let h_{θ} be the θ -Hausdorff distance [8] with respect to d_{θ} , that is,

$$h_{\theta}(A,B) = \max\{d_{\theta}(p,B), d_{\theta}(q,A)\}^{"}$$
.

Immediately, the following is obtained

Lemma 1.5 [8] "If $A, B \in CB(A)$ and $a \in A$, then $\forall \varepsilon > 0$, $\exists b \in B$ such that

$$d_{\theta}\left(a,b\right)\leq h_{\theta}\left(A,B\right)+\varepsilon$$
".

Lemma 1.6 [8] "If $\{A_n\}$ is a sequence in CB(A) and $h_{\theta}(A_n,A)=0$ for $A\in CB(A)$. If $p_n\in A_n$ and $\lim_{n\to\infty}d_{\theta}(p_n,p)=0$, then $p\in A$ ".

Definition 1.7. "A set valued mapping $T: A \to 2^A$ is called contraction if $\exists k \in (0,1) \ni A$

$$h_{\theta}(T(p), T(q)) \le k d_{\theta}(p, q), \forall p, q \in \mathbb{A}^{n}$$

Definition 1.8. "A point $p \in A$ is called fixed point of set-valued mapping $T: A \to 2^A$ if $p \in Tp$ ".

Definition 1.9. "The mappings $T: A \to 2^A$ and $f: A \to A$ are coincide at p if $fp \in Tp$."

Definition 1.10. [9], [10] "Let A be a θ -metric space, $T: A \to 2^A$ and $f: A \to A$ be two mappings then

i.f and T are called commuting if $fTA \subseteq TfA$.

ii.f and T are called weakly commuting if, $\forall p \in A$, $fTp \in CB(A)$ and h_{θ} $(fTp, Tfp) \leq d_{\theta}(fp, Tp)$.

iii. f and Tare R-weakly commuting if $\forall p \in A$, $fTp \in CB(A)$, and $\exists R > 0$ such that

$$h_{\theta}(Tf(p), Tf(p)) \leq Rd_{\theta}(f(p), T(p))''.$$

Note the commutativity \Rightarrow weak commutativity \Rightarrow R-weakly commutativity. But the converse is not true. The following example illustrate this when R > 1.

Example 1.11. Consider A=R, with $d_{\theta}=|$ | (the absolute value) then (A,d_{θ}) is θ -metric space with $\theta(t)=2$, $\forall t$. If f, g: $A \to A$, are defined by T(p)=2p-1, $T(p)=p^2$. Then

$$d_{\theta}(fgp, gfp) = 2(p-1)^2, \quad d_{\theta}(fp, gp) = (p-1)^2, \forall p \in A.$$

That is, $d_{\theta}(fgp, gfp) = 2 d_{\theta}(fp, gp)$. So, f and g are 2-weakly commutating but are not weakly commuting.

In the next section, there are a generalization and an extension of some results in [11] and [12].

2. Main Result

We begin with following theorem.

Theorem 2.1. Let A = 0 be a complete θ -metric space and $T: A \to CB(A)$ such that

$$h_{\theta}(T(p), T(q)) \le k (d_{\theta}(p, q)) d_{\theta}(p, q), p, q \in A,$$

where $k: (0,\infty) \to (0,1]$ is a function $\ni \lim \sup_{r \to t^+} \alpha(r) < 1$, for $\forall t \in [0,\infty)$. Then, T has a fixed point in A.

Since a function k: $(0,\infty) \to (0, 1]$ such that $\lim \sup_{r \to t^+} (r) < 1$, $\forall t \in [0,\infty)$ is special case of the function α : $(0,\infty) \to (0, 1]$ such that $\alpha(r) < 1$, for $\forall t \in [0,\infty)$, so,

A general case which is included in the result below:

Theorem 2.2. Assume (A, d_{θ}) be a complete θ - metric space, and $T: A \to CB(A)$.

$$h_{\theta}\left(T(p),T(q)\right) \leq \alpha(d_{\theta}\left(p,q\right)) \ d_{\theta}\left(p,q\right), \ \forall p,q \in A,$$

where $\alpha: (0, \infty) \to (0, 1]$ is a function with $\alpha(r) < 1, \forall t \in [0, \infty)$.

Then T has a fixed point in A.

Proof: Suppose $p_0 \in A$ and $p_1 \in T$ (p_0). Choose a $n_1 \in N \ni$

$$\alpha^{n_1} (d_{\theta} (p_0, p_1) \le \{1 - \alpha (d_{\theta} (p_0, p_1))\} d_{\theta} (p_0, p_1).$$

Choose $p_2 \in T$ (p_1) with definition of the θ -Hausdorff distance,

$$d_{\theta}(p_2, p_1) \leq h_{\theta}(T(p_1), T(p_0)) + \alpha^{n_1}(d_{\theta}(p_0, p_1).$$

Therefore,

$$d_{\theta}(p_2, p_1) \leq \alpha(d_{\theta}(p_1, p_0)) d_{\theta}(p_1, p_0) + \alpha^{n_1}(d_{\theta}(p_0, p_1) < d_{\theta}(p_1, p_0).$$

Now, choose $n_2 \in N$, $n_2 > n_1 \ni$

$$\alpha^{n_2} ((d_\theta (p_2, p_1)) < \{1 - \alpha (d_\theta (p_2, p_1))\} d_\theta (p_2, p_1).$$

Since $T(p_2) \in CB(A)$, choose $p_3 \in T(p_2)$ so

$$d_{\theta}\left(p_{3},\,p_{2}\right)\leq h_{\theta}\left(T\left(p_{2}\right),\,T\left(p_{1}\right)\right)\,+\alpha^{n_{2}}\left(d_{\theta}\left(p_{2},\,p_{1}\right)\right).$$

Then

$$\begin{split} d_{\theta}\left(p_{3},\,p_{2}\right) &\leq h_{\theta}\left(T\left(p_{2}\right),\,T\left(p_{1}\right)\right) + \alpha^{n_{2}}\left(d_{\theta}\left(p_{2},\,p_{1}\right)\right). \\ &\leq \alpha(d_{\theta}\left(p_{2},\,p_{1}\right))\,d_{\theta}\left(p_{2},\,p_{1}\right) + \alpha^{n_{2}}\left(d_{\theta}\left(p_{2},\,p_{1}\right)\right) \\ &< d_{\theta}\left(p_{2},\,p_{1}\right). \end{split}$$

Again, for each k with $T(p) \in CB(A)$. Choose $n_k \in N \ni$

$$\alpha^{n_k} ((d_{\theta} (p_k, p_{k-1})) < \{1 - \alpha (d_{\theta} (p_k, p_{k-1}))\} d_{\theta} (p_k, p_{k-1}).$$

Now choose $p_{k+1} \in T(p_k)$ then

$$d_{\theta}(p_{k+1}, p_k) \leq h_{\theta}(T(p), T(p_{k-1})) + \alpha^{n_k}(d_{\theta}(p_k, p_{k-1})).$$

So, $d_{\theta}(p_{k+1}, p_k) < d_{\theta}(p_k, p_{k-1})$ then $d_{k} \equiv d_{\theta}(p_k, p_{k-1})$ is called a monotone non-increasing sequence of nonnegative number.

Now, the sequence $\{d_k\}$ so generated is Cauchy.

Let
$$\lim_{k\to\infty} d_{\theta_k} = c \ge 0$$
. By assumption, $\alpha(t) < 1$.

Hence
$$\exists k_0 \ni k \ge k_0 \Rightarrow \alpha(d_{\theta_k}) < h$$
, if $\alpha(t) < h < 1$.

Now,

$$\begin{split} d_{\theta_{k+1}} &= d_{\theta} \left(p_{k+1}, p_{k} \right) \\ &\leq h_{\theta} \left(T \left(p_{k} \right), T \left(p_{k-1} \right) \right) + \alpha^{n_{k}} (d_{\theta_{k}}) \\ &\leq \alpha (d_{\theta_{k}}) \, d_{\theta_{k}} + \alpha^{n_{k}} (d_{\theta_{k}}) \\ &\leq \alpha (d_{\theta_{k}}) \, \alpha (d_{\theta_{k-1}}) \, d_{\theta_{k-1}} + \alpha (d_{\theta_{k}}) \, \alpha^{n_{k-1}} \left(d_{\theta_{k-1}} \right) \alpha^{n_{k}} (d_{\theta_{k}}) \\ &\qquad \qquad \dots \dots \\ &\leq \prod_{i=1}^{k} (d_{\theta_{i}}) \, d_{\theta_{1}} + \sum_{m=1}^{k-1} \prod_{i=m+1}^{k} \alpha \left(d_{\theta_{i}} \right) \alpha^{n_{m}} \left(d_{\theta_{m}} \right) + \alpha^{n_{k}} (d_{\theta_{k}}) \\ &\leq \prod_{i=1}^{k} (d_{\theta_{i}}) \, d_{\theta_{1}} + \sum_{m=1}^{k-1} \prod_{i=max}^{k} \{k_{0}, m+1\}} \alpha \left(d_{\theta_{i}} \right) \alpha^{n_{m}} \left(d_{\theta_{m}} \right) + \alpha^{n_{k}} (d_{\theta_{k}}) \equiv A. \end{split}$$

From above inequality, we benefited by the fact that α < 1 to delete some α factors from the product.

Nov

$$\begin{split} & \sum_{m=1}^{k-1} \prod_{i=\max\{k_0,m+1\}}^k \alpha \; (d_{\theta_i}) \; \alpha^{n_m} \; (d_{\theta_m}) \leq (k_0 - 1) \; h^{k-k_0 + 1} \; \sum_{m=1}^{k_0 - 1} \alpha^{n_m} \; (d_{\theta_m}) \\ & + \sum_{m=1}^{k_0 - 1} \; h^{k-m} \; \alpha^{n_m} \; (d_{\theta_m}) \\ & \leq (k_0 - 1) \; h^{k-k_0 + 1} \; \sum_{m=1}^{k_0 - 1} \alpha^{n_m} \; (d_{\theta_m}) \; + \; + \sum_{m=k_0}^{k-1} h^{k-m+n_m} \end{split}$$

$$\leq Ch^{k} + \sum_{m=k_{0}}^{k-1} h^{k-m_{nm}}$$

$$\leq Ch^{k} + h^{k+n_{k_{0}}-k_{0}} + h^{k+n_{k_{0}-1}-(k_{0}-1)} + \dots + h^{k+n_{k-1}-(k-1)}$$

$$\leq Ch^{k} + \sum_{m=k+n_{k_{0}}-k_{0}}^{k+n_{k_{0}-1}-(k-1)} h^{m}$$

$$= Ch^{k} + \frac{h^{k+n_{k_{0}}-k_{0}+1} - h^{k+n_{k-1}-k+2}}{1-h}$$

$$= Ch^{k} + h^{k} \frac{h^{n_{k_{0}}-k_{0}+1}}{1-h}$$

$$= Ch^{k}$$

where C > 0. Now,

$$A \leq \prod_{i=1}^{k} \alpha (d_{\theta_{i}}) d_{\theta_{1}} + Ch^{k} + \alpha^{n_{k}} (d_{\theta_{k}})$$

$$< h^{k-k_{0}+1} \prod_{i=1}^{k_{0}-1} \alpha (d_{\theta_{i}}) d_{\theta_{1}} + Ch^{k} + h^{n_{k}}$$

$$< Ch^{k} + Ch^{k} + h^{k}$$

$$= Ch^{k},$$

C is a generic constant. If $k \ge k_0$, $m \in N$, so $\{x_k\}$ is Cauchy.

$$d_{\theta} (p_{k}, p_{k+m}) \leq d_{\theta} (p_{k}, p_{k+1}) + ... + d_{\theta} (p_{k+m-1}, p_{k+m})$$

$$= \sum_{i=k+1}^{k+m} d_{\theta_{i}}$$

$$< \sum_{i=k+1}^{k+m} Ch^{i-1}$$

$$= C \frac{h^{k+1} - h^{k+m}}{1-h}$$

$$\leq h^{k},$$

which tends to zero as $k \rightarrow \infty$. Let $p_k \rightarrow \in A$, so

$$d_{\theta}(p, T(p)) \leq d_{\theta}(p, p_{k}) + d_{\theta}(p_{k}, T(p))$$

$$\leq d_{\theta}(p, p_{k}) + \alpha(d_{\theta}(p_{k-1}, p)) d_{\theta}(p_{k-1}, p).$$

From above expression, both terms tent to zero as $k \to \infty$, then $p \in (p_k)$.

$$d_{\theta}\left(T(p),\,p\right) \leq \theta(T(p),\,p))[\;d_{\theta}\left(T(p),\,p_{n}\right) + d_{\theta}\left(p_{n},\,p\right)].$$

$$\leq 0 \text{ as } k \to \infty$$

So,

$$d_{\theta}(T(p), p) \leq \theta(T(p), p)[k d_{\theta}(p, p_{n-1}) + d_{\theta}(p_n, p)]$$

$$d_{\theta}(T(p), p) = 0.$$

Hence p is called a fixed point in T.

Theorem 2.3. Let A = A = A be a complete A = A = A, and A = A = A, and A = A = A are continuous mappings A = A = A = A.

$$h_{\theta} (Hp, Jq) \le \alpha(d_{\theta} (gp, fq)) d_{\theta} (gp, fq), p, q \in A$$
(1)

where $\alpha: (0,\infty) \to (0, 1] \ni \lim \sup_{r \to t^+} \alpha(r) < 1$, for $\forall t \in [0,\infty)$. If (g, J) and (f, H) are R-weakly commuting. Then g, H and f, J have a common coincidence point.

Proof: We organize sequences $\{p_n\}$, $\{q_n\}$, and $\{A_n\}$ in X and CB(X). Let $p_0 \in A$, and $q_0 = f(p_0)$.

Since $Hp_0 \subseteq gA$, $\exists p_1 \in A \ni q_1 = g p_1 \in H p_0 = A_0$. Select $n_1 \in N \ni$

$$\alpha^{n_1} ((d_\theta (q_0, q_1)) < \{1 - \alpha (d_\theta (q_0, q_1))\} d_\theta (q_0, q_1).$$
 (2)

By Lemma 1.5 and $JA \subseteq fA$, $\exists q_2 = f p_2 \in J p_1 = A_1 \ni$

$$d_{\theta}(q_{2}, q_{1}) \leq h_{\theta}(A_{1}, A_{0}) + \alpha^{n_{1}}((d_{\theta}(q_{0}, q_{1})). \tag{3}$$

From (1) and (2) $\Rightarrow d_{\theta} (q_{2}, q_{1}) < d_{\theta} (q_{0}, q_{1})$. Now select $n_{2} \in N \ni n_{2} > n_{1}$ such that

$$\alpha^{n_2} ((d_\theta (q_2, q_1)) < \{1 - \alpha (d_\theta (q_2, q_1))\} d_\theta (q_2, q_1). \tag{4}$$

By Lemma 1.5 and $HA \subseteq gAX$, implies that $q_3 = g \ p_3 \in H \ p_2 = A_2 \ni$

$$d_{\theta}(q_{3}, q_{2}) \le h_{\theta}(A_{2}, A_{1}) + \alpha^{n_{2}}((d_{\theta}(q_{2}, q_{1})).$$
(5)

So, (1) and (4) \Rightarrow d_{θ} (q_3 , q_2) $< d_{\theta}$ (q_2 , q_3).

Now, by induction, getting $\{p_n\}$, $\{q_n\}$ in A and $\{A_n\}$ in $CB(A) \ni$

$$q_{2k+1} = g \ q_{2k+1} \in H \ p_{2k} = A_{2k}, \qquad q_{2k} = f \ p_{2k} \in J \ p_{2k-1} = A_{2k-1}$$
 (6)

$$d_{\theta}(q_{2k+1}, q_{2k}) \le h_{\theta}(A_{2k}, A_{2k-1}) + \alpha^{n_k}((d_{\theta}(q_{2k}, q_{2k-1})). \tag{7}$$

where

$$\alpha^{n_{2k}} \left(\left(d_{\theta} \left(q_{2k}, q_{2k-1} \right) \right) < \{ 1 - \alpha \left(d_{\theta} \left(q_{2k}, q_{2k-1} \right) \right) \} d_{\theta} \left(q_{2k}, q_{2k-1} \right).$$

$$\tag{8}$$

So, d_{θ} $(q_{2k+1}, q_{2k}) < d_{\theta}$ $(q_{2k}, q_{2k-1}), \forall k$.

So, the real sequence $\{d_{\theta} (q_{2k+1}, q_{2k})\}$ is monotone non-increasing.

As proof of Theorem 2.1, $\{q_n\}$ is Cauchy sequence in A.

Moreover, (1) implies that $\{A_n\}$ is a Cauchy sequence in CB(A). If A is complete then is CB(A). Thus, when $q_n \to r$ and $A_n \to A$, $\exists r \in X$ and $A \in CB(A)$. So, $g \not p_{2k+1} \to r$ and $f \not p_{2k} \to r$. Since

$$d_{\theta}(r, A) = d_{\theta}(q_{n}, A_{n}) \le \lim_{n \to \infty} h_{\theta}(A_{n-1}, A_{n}) = 0$$
(9)

By Lemma 1.6, $r \in A$. Also

$$\lim_{k \to \infty} f p_{2k} = r \in A = \lim_{k \to \infty} H p_{2k}, \qquad \lim_{k \to \infty} g p_{2k+1} = r \in A = \lim_{k \to \infty} J p_{2k-1}$$
 (10)

By (6) and R-weak commutativity of (g, J) and (f, H), we obtain

$$d_{\theta} (gfp_{2k+2}, fgp_{2k+1}) \le h_{\theta} (gJp_{2k+1}, Jgp_{2k+1}) \le R d_{\theta} (gp_{2k+1}, Jp_{2k+1}),$$

$$d_{\theta} (fgp_{2k+1}, Hfp_{2k}) \le h_{\theta} (fHp_{2k}, Hfp_{2k}) \le R d_{\theta} (fp_{2k}, Hp_{2k}). \tag{11}$$

Then, the continuity of f, g, J and H give $\in Jr$ and $fr \in Hr$. The proof is complete.

If we set J=H and f=g in Theorem (2.2), the following corollary.

Corollary 2.4. If A be a complete θ -metric space and $f: A \to A$, $T: A \to CB(A)$ are continuous mappings $\ni TA \subseteq fA$ such that

$$h_{\theta}(Tp, Tq) \leq \alpha(d_{\theta}(fp, fq)) d_{\theta}(fp, fq), p, q \in A,$$

where $\alpha:(0,\infty)\to(0,1]\ni\lim \sup_{r\to t^+}\alpha(r)<1,\ \forall\ t\in[0,\infty)$ and . If f, T are called R-weakly commuting. Then f, T have a coincidence point.

Our results are generalization and an extension of the results in [11] and [12].

References

- 1. Bakhtin, I. (1989). The contraction mapping principle in quasimetric spaces. *Func. An., Gos. Ped. Inst. Unianowsk, 30, 26-37.*
- 2. George, R., & Fisher, B. (2013). Some generalized results of fixed points in cone b-metric spaces. *Mathematica Moravica*, *17*(2), 39-50.

- 3. Aydi, H., Bota, M. F., Karapinar, E., & Moradi, S. (2012). A common fixed point for weak φ-contractions on b-metric spaces. *Fixed Point Theory*, *13*(2), 337-346.
- 4. Kamran, T., Samreen, M., & UL Ain, Q. (2017). A generalization of b-metric space and some fixed point theorems. *Mathematics*, *5*(2), 19.
- 5. Abed, S. S. (2018). Fixed Point Principles in General b-Metric Spaces and b-Menger Probabilistic spaces. *Journal of AL-Qadisiyah for computer science and mathematics*, 10(2), Page-42.
- 6. Abed, S. S., Jabbar, H. A. (2017). Two theorems in general metric space with ρ –distance, JAM, Vol. 1 2 No .1
- 7. Abed, S. S., Jabbar, H. A. (2017). A fixed point theorem via -distance with an application, *Conf.23 College of education, AL-Mustansiriya*.
- 8. Albundi, Sh. S., Iterative function system in Ø-metric spaces, accepted in bspm.
- 9. Joshi, B., Padaliya, S. K., & Pandey, N. K. (2018). Some common fixed point theorems for contractive maps and applications. *Filomat*, *32*(10), 3751-3758.
- 10. Shoaib, M., Sarwar, M., & Abdeljawad, T. (2019). Hybrid Coupled Fixed Point Theorems in Metric Spaces with Applications. *Journal of Function Spaces*, 2019.
- 11. Daffer, P. Z., & Kaneko, H. (1995). Fixed points of generalized contractive multi-valued mappings. *Journal of Mathematical Analysis and Applications*, 192(2), 655-666.
- 12. PANŢ, R. (1994). Common fixed points of noncommuting mappings.

