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Abstract 

The purpose of this paper is to explore the concept of the regional boundary asymptotic gradient full order 

observer (RBAGFO-observer) in connection with the characterizations of sensors structures. Then, we present 

various results related to different types of measurements, domains and boundary conditions for distributed 

parameter systems (DPSS) in parabolic systems problem.  The considered approach of this work is derived from 

Luenberger observer theory which is enable to estimate asymptotically the state gradient of the original system 

on a sub-region of the domain boundary 𝜕Ω  in order that the RBAGFO-observability notion to be achieved. We 

also show that there exists a dynamical system for the considered system is not BAGFO-observer in the usual 

sense, but it may be regional RBAGFO-observer. 

Keywords: RBG-strategic sensors, RBAG-detectability, RBAGFO-observers, diffusion system. 

Mathematics Subject Classification: 93A30; 93B07; 93B30; 93C2. 

1. Introduction

There are many situations in modern technology in which it is necessary to estimate the state of a dynamic

system using only the measured input and output data of the system [1]. An observer is a dynamic system Ŝ

which to estimates the state of another considered system S using only the measured input and output letter.

If the order of Ŝ is equal to the order of S, the observer is called full-order state observer [2-4].

The asymptotic observer theory explored by Luenberger in [5] for finite-dimensional linear systems and 

extended infinite-dimensional distributed parameter systems govern by strongly continuous semi-group in 

Hibert space by Gressang and Lamont as in [6]. The study of this approach via another variable like sensors and 

actuators developed by El-Jai et al. as in ref.s [2-7] in order to achieve asymptotic observability.  

One of the most important approach in system theory is focused on the reconstruction of the state of the system 

from the knowledge of dynamic system and the output function on a sub-region ω of a spatial domain Ω this 

problem is called regional observability problem has been received much attention as in [8-10].  

An extension of this notion has been given in [11-12] to the regional gradient case. The regional asymptotic 

notion has been introduced and developed by Al-Saphory and El- Jai in [13-14]. Thus, this notion consists in 

studying the asymptotic behavior of the system in an internal sub-region ω of a spatial domain Ω.  

Thus, the asymptotic regional state reconstruction studied and developed in [15-16]  and extended to the 

regional asymptotic gradient full-order observer (RGFO-observer) which allows estimating the state gradient of 

the original system.  

The purpose of this paper is to study and examine the concept of RBAGFO-observer by using the choice of 

sensors. The principle reason for considering this case is that, in the first time, the existent of a dynamical system 

which is observed asymptotically the gradient of the system state on some boundary region Γ ⊂ ∂Ω [17]. In 

second time, it is closer to a real situation, the treatment of water by using a bioreactor where the objective is 

to observe the concentration of substrate at the boundary output of the bioreactor in order the water regulation 

is achieved (for example see figure 1). 

https://doi.org/10.24297/jam.v18i.8543


Journal of Advances in Mathematics Vol 18 (2020) ISSN: 2347-192                       https://rajpub.com/indx.php/jam 

29 

 

Fig. 1: Observation of substrate concentration at the boundary output of the reactor. 

The outline of this paper is organized as follows: Section 2 is devoted to the problem statement and some basic 

concept related to the regional  boundary gradient stability (RBAG-stability), regional boundary asymptotic 

gradient detectability (RBAG-detectability). Section 3, we focus on RBAGFO-observer so we introduced and 

characterize the existing of RBAGFO-observer to provide RBAGFO-estimator of gradient state for the original 

system in terms of sensors structure. In the last section, we have been applied these result to the two (DPSS) for 

different zone and pointwise sensors case.  

2. Problem Formulation and Preliminaries 

This section present considered system and formulation of the problem with some definitions and 

characterizations, which is related to the present work. 

2.1 Problem Statement  

Let  Ω  be an open bounded subset of 𝑅𝑛 with boundary 𝜕Ω and  Γ  be a region subset of  𝜕Ω. We denote 𝑄 =

 Ω ×]0,∞[ and Σ =  ∂Ω ×]0,∞[. Consider the parabolic system which is described by the following state-space 

equation                  

          

{
 

 
𝜕𝑥

𝜕𝑡
(𝜉, 𝑡) = 𝐴𝑥(𝜉, 𝑡) + 𝐵𝑢(𝑡)           𝑄 

𝑥(𝜉, 0) = 𝑥0(𝜇)                                  Ω̅ 
𝜕𝑥

𝜕𝑣
(𝜂, 𝑡) = 0                                        Σ 

                                                                                 (1) 

 augmented with the output function  

       𝑦 (. , 𝑡) = 𝐶𝑥(. , 𝑡)                                                                                                                 (2) • The separable 

Hilbert spaces are 𝑋, 𝑈 and 𝒪 where 𝑋 = 𝐻1(Ω̅)  is the state space, 𝑈 = 𝐿2(0, 𝑇, 𝑅𝑝) is the control space and 𝒪 =

𝐿2(0, 𝑇, 𝑅𝑞) is the observation space, where 𝑝 and 𝑞 are the numbers of actuators and sensors. 

• 𝐴 = ∑
𝜕

𝜕𝑥𝑗

𝑛
𝑖,𝑗=1 (𝑎𝑖𝑗

𝜕

𝜕𝑥𝑗
)   with 𝑎𝑖𝑗 ∈ 𝐷(�̅�) (the domain of �̅�) is a second-order linear differential operator, which 

generates a strongly continuous semi-group (𝑆𝐴(𝑡) )𝑡≥0 on the state space 𝑋 and is self-adjoint with compact 

resolvent [18]. 

• The operators  𝐵 ∈ 𝐿(𝑅𝑝, 𝑋) and  𝐶 ∈ 𝐿(𝑋, 𝑅𝑞) depend on the structure of actuators and sensors as in [19] 

(figure 2)  

 

      Fig. 2: Mathematical model: domain Ω, region Γ, and sensors Locations. 
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• The mathematical model in figure 2 is more general and complex than the the spatial case of real model in 

figure 1.  

• Under the given assumptions above, the system (1) has a unique solution given by the following form [20-21]. 

        𝑥(𝜉, 𝑡) = 𝑆𝐴(𝑡)𝑥0(𝜉) + ∫ 𝑆𝐴(𝑡 − 𝑠)𝐵𝑢(𝑠) 𝑑𝑠
𝑡

0
                                                                       (3) 

• The problem is how to reconstruct a dynamical system may be called estimator for the current state gradient 

in a given region on  Γ, and to give a sufficient condition for the existence of a RBAGFO-observer. 

• The initial state 𝑥0 and its gradient ∇𝑥0 are supposed to be unknown, the problem concerns the reconstruction 

of the initial gradient ∇𝑥0 on the region Γ of the system domain 𝜕Ω. 

  

• Now, we consider the operator 𝐾 given by the form 

          𝐾: 𝑋 → 𝒪                                                                                                                          (4) 

               𝑥 → 𝐶𝑆𝐴(.)𝑥  

where 𝐾 is a bounded linear operator as in [7, 22, 24]. And the adjoint operator 𝐾∗of 𝐾 is defined by 

          𝐾∗: 𝒪 → 𝑋, and represented by the form 

           𝐾∗𝑦∗ = ∫ 𝑆𝐴
∗(𝑠)𝐶∗𝑦∗(𝑠)𝑑𝑠

𝑡

0
                                                                                               (5) 

• The operator ∇ denotes the gradient is given by 

           {
∇: 𝐻1(Ω) → (𝐻1(Ω) ) 𝑛   

𝑥 → ∇𝑥= (
𝜕𝑥

𝜕𝜉1
, … ,

𝜕𝑥

𝜕𝜉𝑛
)   

                                                                                                 (6) 

and, the adjoint of ∇ denotes by ∇∗ is given by 

           {
∇∗: (𝐻1(Ω) ) 𝑛 → 𝐻1(Ω)

𝑥 →  ∇𝑥
∗ = 𝑣                       

                                                                                                  (7) 

where 𝑣 is a solution of the Dirichlet problem 

         {
∆𝑣= −𝑑𝑖𝑣(𝑥)     Ω              

𝑣 = 0                    𝜕Ω           
                                                                                                  (8) 

• The trace operator of order zero is described by [23] 

           𝛾0: 𝐻
1(Ω) → 𝐻1 2⁄ (𝜕Ω)                                                                                                     (9)        

which is a linear, subjective, and continuous [20]. Thus, the extension of the trace operator [23] which is denoted 

by  𝛾 defined as                   

          𝛾: (𝐻1(Ω))𝑛 → (𝐻1 2⁄ (𝜕Ω))𝑛                                                                                              (10) 

and the adjoints are respectively given by 𝛾0
∗, 𝛾∗. 

• For  a region Γ of  𝜕Ω, we define the gradient restriction operator by the form 
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          𝜒Γ: (𝐻
1 2⁄ (∂Ω))𝑛 ⟶ (𝐻1 2⁄ (Γ))𝑛                                                                                       (11) 

where the adjoint of 𝜒Γ denotes by 𝜒Γ
∗ is defined by 

           𝜒Γ
∗: (𝐻1 2⁄ (Γ))𝑛 ⟶ (𝐻1 2⁄ (∂Ω))𝑛                                                                                      (12) 

• Finally, we denote the operator 𝐻Γ
∗𝐺 = 𝜒Γ𝛾∇𝐾

∗ from 𝒪  into (𝐻1 2⁄ (Γ))𝑛 and the adjoint of this operator given 

by 𝐻Γ
∗𝐺
∗ = 𝐾∇∗𝛾∗𝜒Γ

∗. 

• For a sub-region Γ  of the boundary regional boundary gradient Γ𝑅𝐵𝐺 = Γ
∗
.      

Now, the problem is how to build an approach which observe (estimates) regional state gradient on a region  

Γ
∗ of  the boundary 𝜕Ω ⊂ Ω̅  asymptotically by using a dynamic system (an observer) in full order case only may 

be called full-order observer in region Γ
∗
. The important of an observer is that to estimates all the gradient of 

state variables, regardless of whether some are available for direct measurements or not [1].  

2.2 𝚪∗G-observability and 𝚪∗  AG-detectability  

This sub section devotes the relation between the concept of RBG-observability and RBAG-detectability on Γ
∗
. 

As well known the observability [19-22] and asymptotic observability [1-5, 7, 24] are important concepts to 

estimate the unknown state of the considered dynamic system from the input and output functions. Thus, These 

notions are studied and introduced to the DPSS analysis with different characterizations by El-Jai, Zerrik and Al-

Saphory et al. in many paper for example [8-18, 28-31] in connection with strategic sensors.  

• The systems (1)-(2) are said to be exactly regionally boundary gradient observable (EΓ
∗
G-observable) on Γ

∗  if  

           𝐼𝑚 𝛨 = 𝐼𝑚𝜒Γ
∗∇𝐾∗ = (𝐻1 2⁄ (Γ∗))𝑛 

• The systems (1)-(2) are said to be weakly regionally boundary gradient observable  (WΓ
∗
G-observable)  on Γ

∗
  

if  

           𝐼𝑚 𝐻=𝐼𝑚𝜒Γ
∗𝛻𝐾∗=(𝐻1 2⁄  (Γ

∗))𝑛 

It is equivalent to say that the systems (1)-(2) are WΓ
∗
G-observable  if  

                                 𝐾𝑒𝑟 𝐻∗ = 𝑘𝑒𝑟𝐾  𝛻∗𝜒Γ
∗ = {0} 

• If the systems (1)-(2) are is WΓ
∗
G-observable, then 𝑥0(𝜉, 0) is given by  

                             𝑥0 = (𝐾
∗𝐾)−1𝐾∗𝑦 = 𝐾†𝑦,  

where 𝐾† is the pseudo-inverse of the operator  𝐾 [9-10].  

• A sensor (𝐷, 𝑓) is a regional boundary gradient strategic (Γ
∗
G-strategic)  on Γ

∗
 if the observed system is WΓ

∗
G-

observable. 

 • The measurements can be obtained by the use of zone or pointwise sensors, which may be located in Ω or 

𝜕Ω [24]. 

• Then, according to the choice of the parameters 𝐷𝑖 and 𝑓𝑖 , we have different types of sensors׃ 

• It may be zone, if  𝐷𝑖 ⊂ Ω̅ and 𝑓𝑖 ∈ 𝐿
2(𝐷𝑖). In this case, the operator 𝐶 is bounded, and the output function (2) 

may be given by the form 
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       𝑦(𝑡) = ∫ 𝑧(𝜉, 𝑡)𝑓𝑖(𝜉) 𝑑𝜉        𝐷𝑖
                                                                                             (13) 

 • It may be pointwise, if 𝐷𝑖 = {𝑏𝑖} with  𝑏𝑖 ∈ Ω̅ and 𝑓 = 𝛿(. −𝑏𝑖) where 𝛿  is a Dirac mass concentrated in 𝑏 [14, 

21, 28]. In this case, the operator 𝐶 is un bounded, and the output function (2) may be given by the form 

       𝑦(𝑡) = ∫ 𝑥(𝜉, 𝑡)𝛿𝑏𝑖(𝜉 − 𝑏𝑖) 𝑑𝜉 Ω
                                                                                         (14)  

•  It  may be  boundary zone,  if  Γ𝑖 ⊂ 𝜕Ω  and  𝑓𝑖 ∈ 𝐿
2(Γ𝑖),  the output function (2) may be given by the form 

         𝑦(𝑡) = ∫ 𝑥(𝜂, 𝑡) 𝑓𝑖(𝜂) 𝑑𝜂 Γ𝑖
                                                                                               (15) 

Definition 2.1: The semi-group (𝑆𝐴(𝑡))𝑡≥0 is regionally boundary asymptotically gradient stable (Γ
∗
AG-stable) 

on Γ
∗
, if and only if for some positive constants 𝑀Γ

∗ , 𝛼Γ
∗ ,  we have 

          ‖𝜒Γ
∗γ∇𝑆𝐴(. )‖𝐿((𝐻1 2⁄ (Γ∗) ) 𝑛, 𝐻1(Ω̅) )≤ 𝑀Γ

∗  𝑒𝛼Γ
∗  , ∀𝑡 ≥ 0. 

Remark 2.2: If the semi-group (𝑆𝐴(𝑡))𝑡≥0 is Γ
∗
AG-stable on (𝐻1𝑙2(Γ∗))𝑛, then for all 𝑥ₒ ∈ 𝐻1(Ω), the  solution  of 

the associated  system satisfies 

lim
𝑡⟶∞

‖𝜒Γ
∗γ∇𝑥(. , 𝑡)‖(𝐻1 2⁄ (Γ∗) ) 𝑛 = lim

𝑡⟶∞
‖𝜒Γ

∗γ∇𝑆𝐴(𝑡)𝑥0‖(𝐻1 2⁄ (Γ∗) ) 𝑛 

                                                                         = 0                                                                  (16)  

Definition 2.3: The system (1) is said to be Γ
∗
AG-stable on Γ

∗
 if the operator 𝐴 generates a semi-group which is 

Γ
∗
AG-stable on the space (𝐻1 2⁄ (Γ∗))𝑛. 

Definition 2.4: The system (1)-(2) is  said to be regionally boundary asymptotically gradient detectable (Γ
∗
AG-

detectable) on Γ
∗
, if there exists an operator  𝐻Γ

∗𝐴𝐺 : 𝑅
𝑞 → (𝐻1 2⁄ (Γ∗) ) 𝑛, such that the operator (𝐴− 𝐻Γ

∗𝐴𝐺𝐶) 

generates a strongly continuous semi-group (𝑆𝐻
Γ
∗𝐴𝐺
(𝑡) ) 𝑡≥0, which is Γ

∗
AG-stable on (𝐻1 2⁄ (Γ∗) ) 𝑛. 

  

Proposition 2.5: If the system (1)-(2) is Γ
∗
G-observable on Γ

∗
, then it is Γ

∗
AG-detectable on Γ

∗
. This  results gives  

the  following  inequality: ∃ 𝑘Γ
∗
AG > 0, such that 

           ‖𝜒Γ
∗γ∇𝑆𝐴(. )𝑥‖(𝐻1 2⁄ (Γ∗) ) 𝑛 ≤  𝑘 Γ∗AG‖𝐶𝑆𝐴(. )𝑥‖𝐿2(0,∞,𝒪),                                                    (17)  

for all  𝑧 ∈ (𝐻1 2⁄ (Γ∗) ) 𝑛  .        

Proof׃  We conclude the proof of  this proposition is conclude  from  the results on observability considering 

 𝜒Γ
∗∇𝐾∗. We have the following  forms [21, 24] 

1. 𝐼𝑚𝑓 ⊂ 𝐼𝑚𝑔.  

2. There exists  𝑘 > 0,  such that 

          ‖𝑓∗𝑥∗‖𝐸∗ ≤ 𝑘 ‖𝑔∗𝑥∗‖𝐹∗ , for all  𝑥∗ ∈ 𝐺∗ 

From the right hand said of above inequality  𝑘Γ
∗
AG ‖𝑔

∗𝑥∗‖𝐹∗ , there exists 𝑀Γ
∗
AG, 𝜔Γ

∗
AG > 0 with 𝑘Γ

∗
AG < 𝑀Γ

∗
AG, 

such that  

          𝑘Γ
∗
AG ‖𝑔

∗x‖𝐹∗ ≤ 𝑀Γ
∗
AG𝑒

−𝜔
Γ
∗
AG
𝑡‖𝑥∗‖𝐹∗ 
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where  𝐸, 𝐹 and 𝐺 be a reflexive Banach spaces and 𝑓 ∈ 𝐿(𝐸, 𝐺), 𝑔 ∈ 𝐿(𝐹, 𝐺). If we apply this result, considered   

          𝐸 = 𝐺 = (𝐻1/2(Г∗))𝑛 , 𝐹 = 𝒪, 𝑓 = 𝐼𝑑(𝐻1/2(Г∗))𝑛  

and  

          𝑔 = 𝑆𝐴
∗(. )𝜒Γ

∗𝛾∗∇∗𝐶∗  

where 𝑆𝐴(. ) is a strongly continuous semi-group generates by 𝐴, which is Γ
∗
AG-stable on Γ

∗
, then it is Γ

∗
AG-

detectable on Γ
∗
. Thus, the notion of Γ

∗
AG-detectability is a weaker property than the Γ

∗
G-observability [25-26].   

3. Sensors and 𝚪∗AGFO-Observer  

In this section we present the sufficient conditions which are guarantee the existence of regional boundary 

asymptotic gradient full order observer (Γ
∗
AGFO-Observer) on Γ

∗
 which allows to construct a Γ

∗
AGFO-estimator 

on Γ
∗
 of the state 𝜒Γ

∗𝛾𝛻𝑇𝑥(𝜉, 𝑡).  

3.2 Definitions and characterizations 

 Definition 3.1: Suppose there exists a dynamical system with state z(., t) ∈ 𝑍 given by 

              {

𝜕ẑ

𝜕𝑡
(𝜉, 𝑡) = 𝐴ẑ(𝜉, 𝑡) + 𝐵𝑢(𝑡) + 𝐻Γ

∗𝐴𝐺(𝐶𝑥(𝜉, 𝑡) − 𝐶ẑ(𝜉, 𝑡)) 𝑄

ẑ(𝜉, 0) = ẑₒ(𝜉)                                                                                 Ω̅

ẑ(𝜂, 𝑡) = 0                                                                                        Σ

                                      (18)  

In this case the operator 𝐹Γ
∗𝐴𝐺 in general case [13] is given by 𝐹Γ

∗𝐴𝐺 = 𝐴 − 𝐻Γ
∗𝐴𝐺𝐶 where 𝑇 = 𝐼 the identity 

operator. Thus the operator 𝐴 − 𝐻Γ
∗𝐴𝐺𝐶 generate a strongly continuous semi-group (𝑆𝐴−𝐻

Γ
∗𝐴𝐺𝐶

(𝑡))𝑡≥0 on 

separable Hilbert space  𝑍 which is Γ
∗
AG-stable. 

Thus, ∃ 𝑀𝐴−𝐻
Γ
∗𝐴𝐺𝐶

 ,𝛼𝐴−𝐻
Γ
∗𝐴𝐺𝐶

 > 0 such that  

          ‖𝑆𝐴−𝐻
Γ
∗𝐴𝐺𝐶

(. )‖ ≤ 𝑀𝐴−𝐻
Γ
∗𝐴𝐺𝐶

𝑒
−𝛼𝐴−𝐻

Γ
∗𝐴𝐺

𝐶
ᵗ , ∀𝑡 ≥ 0. 

and let 𝐺Γ
∗𝐴𝐺 ∈ 𝐿(𝑈, 𝑍), 𝐻Γ

∗𝐴𝐺 ∈ 𝐿(𝒪,Z) such that solution of (18) similar to (3) 

 𝑧(𝜉, 𝑡) = 𝑆𝐴−𝐻
Γ
∗𝐴𝐺𝐶

(𝑡)𝑧(𝜉) + [∫ 𝑆𝐴−𝐻
Γ
∗𝐴𝐺𝐶

(𝑡 − 𝜏)
𝑡

0
𝐵𝑢(𝜏) 𝐻Γ

∗𝐴𝐺𝑦(𝜏)] 𝑑𝜏. 

Definition 3.2: The system (18) defines Γ
∗
AGFO-estimator such that  

          𝑧(𝜉, 𝑡) = 𝜒Γ∇T𝑥(𝜉, 𝑡) = 𝐼𝑥(𝜉, 𝑡) ∈ (𝐻1 2⁄ (Γ∗))𝑛  

where 𝑥(𝜉, 𝑡) is the solution of the systems (1)-(2) if 

          lim
𝑡→∞

‖𝑧(. , 𝑡) − 𝑥(𝜉, 𝑡)‖(𝐻1 2⁄ (Γ∗))𝑛 = 0,  

and 𝜒Γ 𝛻I maps 𝐷(𝐴) into 𝐷(𝐴 − 𝐻Γ
∗𝐴𝐺𝐶) where 𝑧(𝜉, 𝑡) is the solution of system (18). 

Remark 3.3: The dynamic system (18) specifies Γ
∗
AGFO-observer of the systems given by (1)-(2) if the following 

holds: 
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1-There exists 𝑀Γ
∗
AGFO ∈ 𝐿 (𝑅, (𝐻

1 2⁄ (Γ∗)) ⁿ) and 𝑁Γ
∗
AGFO ∈ 𝐿((𝐻

1 2⁄ (Γ∗)) ⁿ) such that                                              

          i- 𝑀Γ
∗
AGFO𝐶 + 𝑁Γ

∗
AGFO = 𝐼Γ∗AGFO 

          ii- 𝐴 − 𝐹Γ
∗
AGFO = 𝐻Γ

∗
AGFO𝐶 and 𝐺Γ

∗
AGFO =𝐵. 

3- The system (18) defines Γ
∗
AGFO-estimator for 𝑥(𝜉, 𝑡). 

The object of  Γ
∗
AGFO-observer is to provide an approximation to the original system state gradient. This 

approximation is given by  

          �̂�(𝑡) =  𝑀Γ
∗
AGFO𝑦(𝑡)  + 𝑁Γ

∗
AGFO 𝑧(𝑡). 

Definition 3.4: The systems (1)-(2) are regionally boundary asymptotic gradient full order observable (Γ
∗
AGFO-

observable) on Γ
∗
, if there exists a dynamic system which is Γ

∗
AGFO-observer for the considered system. 

3.2 𝚪∗AGFO-Observer reconstruction method  

In this case, we need to consider 𝜒Γ
∗
AGFO𝛻T= 𝐼Γ∗AGFO and 𝑍 = 𝑋, then the operator observer equation becomes 

as 𝐹Γ
∗
AGFO  = 𝐴 − 𝐻Γ

∗
AGFO𝐶 where  𝐴 and 𝐶 are known. Thus, the operator 𝐻Γ

∗
AGFO must be determined such that 

the operator 𝐹Γ
∗
AGFOis Γ

∗
AG-stable. This observer is an extension of asymptotic observer as in [14-16, 24-31]. 

Now consider again system (1) together with output function (2) described by the following form 

         

{
 
 

 
 
𝜕𝑥

𝜕𝑡
= 𝐴𝑥(𝜉, 𝑡) + 𝐵𝑢(𝑡)      𝑄

𝑥(𝜉, 0) = 𝑥0(𝜉)                   Ω̅

𝑥(𝜂, 𝑡) = 0                            Σ 

𝑦(𝑡) = 𝐶𝑥(. , 𝑡)                   𝑄 

                                                                                           (19) Let Γ
∗  be a given 

sub-domain of  Ω̅ and suppose that 𝐼Γ∗AGFO ∈ ℒ(𝐻
1(Ω))𝑛),  and 𝜒Γ

∗
AGFO𝛻𝑇𝑥(𝜉, 𝑡) = 𝜒Γ

∗
AGFO𝛻𝑥(𝜉, 𝑡) there exists a 

system with state 𝑧(𝜉, 𝑡) such that 

         𝑧(𝜉, 𝑡) = 𝜒Γ
∗
AGFO∇𝑇𝑥(𝜉, 𝑡) = 𝑇Γ

∗
AGFO𝑥( 𝜉, 𝑡)                                                                    (20) 

(with 𝑇Γ
∗
AGFO = 𝐼Γ∗AGFO  where 𝐼Γ∗AG is the identity  operator  with  respect  to  Γ

∗
AGFO-estimator. Then 

          𝑧(𝜉, 𝑡) = 𝐼Γ∗AGFO 𝑥(𝜉, 𝑡) =  𝑥(𝜉, 𝑡)                                                                                    (21) 

 From equation (2) and (21) we have 

               [
𝑦
𝑧
] = [

𝐶
 𝐼Γ∗AGFO

] 𝑥  

If we assume that there exist two bounded linear operators 

          𝑀Γ
∗
AGFO: 𝜗 → ((𝐻1 2⁄ (Γ∗))𝑛  

and  

          𝑁Γ
∗
AGFO: ((𝐻

1 2⁄ (Γ∗))𝑛 → ((𝐻1 2⁄ (Γ∗))𝑛  

such that  

          𝑀Γ
∗
AGFO𝐶 + 𝑁Γ

∗
AGFO𝑇Γ

∗
AGFO = 𝐼Γ∗AGFO  

then by deriving 𝑧(𝜉, 𝑡) in (20) we have  
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𝜕𝑧

𝜕𝑡
(𝜉, 𝑡) = 𝐼Γ∗AGFO 

𝜕𝑥

𝜕𝑡
(𝜉, 𝑡) = 𝜒Γ

∗
AGFO∇𝑇𝐴𝑥(𝜉, 𝑡)  + 𝜒Γ

∗
AGFO∇𝑇𝐵𝑢(𝑡) 

              =𝜒Γ
∗∇𝐼Γ∗AGFO𝐴 𝑀Γ

∗
AGFO𝑦(𝜉, 𝑡) + 𝜒Γ

∗∇𝐼Γ∗AGFO𝐴𝑁Γ
∗
AGFO𝑧(𝜉, 𝑡)    

              +𝜒Γ
∗∇𝐼Γ∗AGFO𝐵𝑢(𝑡) 

Since the operator 𝑇Γ
∗
AGFO = 𝐼Γ∗AGFO ,then we have 

𝜕𝑧

𝜕𝑡
(𝜉, 𝑡) = 𝐴𝑁Γ

∗
AGFO 𝑧(𝜉, 𝑡) + 𝐵𝑢(𝑡) + 𝐴𝑀Γ

∗
AGFO𝑦(𝜉, 𝑡) 

Therefore  

𝜕�̂�

𝜕𝑡
(𝜉, 𝑡) = 𝐹𝛤∗𝐺 �̂�(𝜉, 𝑡) + 𝐺𝛤∗𝐺𝑢(𝑡) + 𝐻𝛤∗𝐺  𝑦(. , 𝑡) 

and since 𝐴 − 𝐹Γ
∗
AGFO = 𝐻Γ

∗
AGFO𝐶 and 𝐺Γ

∗
AGFO = 𝐵 then we have 

          {

𝜕�̂�

𝜕𝑡
(𝜉, 𝑡) = 𝐴�̂�(𝜉, 𝑡) + 𝐵𝑢(𝑡) + 𝐻Γ

∗
AGFO(𝐶𝑥(𝜉, 𝑡) − 𝑐𝐶(𝜉, 𝑡))   𝑄

�̂�(𝜉, 0) = �̂�0(𝜉)                                                                                    Ω̅

�̂�(𝜂, 𝑡) = 0                                                                                             Σ

                                      (22) 

Let us consider a complete sets of eigenfunctions 𝜑𝑛𝑗 in (𝐻1(Ω))ⁿ orthonormal to (𝐻1 2⁄ (Γ∗))ⁿ associated with 

the eigenvalue 𝜆𝑛 of multiplicity 𝑟𝑛 and suppose the system (1) has unstable mode. Then, the sufficient condition 

of an  Γ
∗
AGFO-observer is formulated in the following main result.  

Theorem 3.5: Suppose that there are 𝑞 zone sensors (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞 and the spectrum of 𝐴 contains 𝐽 eigenvalues 

with non-negative real parts. Then the dynamic system (22) is Γ
∗
AGFO-observer  on Γ

∗
 for the system (19), that 

is lim
𝑡→∞

[𝑧(𝜉, 𝑡) − �̂�(𝜉, 𝑡)] = 0, if : 

1-There exists 

𝑀Γ
∗
AGFO   ∈ 𝐿(𝑅

𝑞 , (𝐻1 2⁄ (Γ∗)) ⁿ) and  𝑁Γ
∗
AGFO ∈ 𝐿 ((𝐻

1 2⁄ (Γ∗)) ⁿ) such that 

           𝑀Γ
∗
AGFO𝐶 + 𝑁Γ

∗
AGFO = 𝐼Γ∗AGFO. 

2- 𝐴 − 𝐹Γ
∗
AGFO = 𝐻Γ

∗
AGFO𝐶 , 𝐺Γ

∗
AGFO = 𝐵. 

3- 𝑞 ≥ 𝑚 

4- rank  𝐺𝑚 = 𝑚𝑚 ,∀𝑚,𝑚 = 1, … , 𝐽 with  

        𝐺𝑚 = (𝐺𝑚)𝑖𝑗= {

𝜓𝑚𝑗(𝑏𝑖), 𝑓𝑖(. ) >𝐿2(𝐷𝑖)           

𝜓𝑚𝑗(𝑏𝑖)                                   

〈
𝜕𝜓𝑚𝑗

𝜕𝑣
, 𝑓𝑖(. ) > 𝐿2(Γ∗ᵢ〉           

 

where sup 𝑚𝑚 = 𝑚 < ∞ and 𝑗 = 1, … ,𝑚𝑚. 

Proof:  

First step: The proof is limited to the case of pointwise sensors. Under the assumptions of section 2, the system 

(1) can be decomposed by the projections  𝑃 and 𝐼 − 𝑃 on two parts, unstable and stable. The state vector may 



Journal of Advances in Mathematics Vol 18 (2020) ISSN: 2347-192                       https://rajpub.com/indx.php/jam 

36 

be given by  𝑥(𝜉, 𝑡) = [𝑥₁(𝜉, 𝑡), 𝑥₂(𝜉, 𝑡)] ͭr  where 𝑥₁(𝜉, 𝑡) is the state component  of  the  unstable  part  of  the  

system (1)  may  be  written  in the  form 

          {

𝜕𝑥1

𝜕𝑡
(𝜉, 𝑡) = 𝐴1𝑥1(𝜉, 𝑡) + 𝑃𝐵𝑢(𝑡)  𝑄

𝑥1(𝜉, 0) = 𝑥01(𝜉)                             Ω̅

𝑥₁(𝜂, 𝑡) = 0                                        Θ

                                                                                (23) 

and 𝑥₂(𝜉, 𝑡) is the  component state of the stable part of the system (1) given by 

          {

𝜕𝑥₂

𝜕𝑡
(𝜉, 𝑡) = 𝐴₂𝑥₂(𝜉, 𝑡) + (𝐼 − 𝑃)𝐵𝑢(𝑡) 𝑄

𝑥₂(𝜉, 0) = 𝑥₀₂(𝜉)                                        Ω̅

𝑥₂(𝜂, 𝑡) = 0                                                  Θ

                                                                        (24) 

The operator 𝐴₁is represented by a matrix of order (∑ 𝑚𝑚
𝐽
𝑚=1 , ∑ 𝑚𝑚

𝐽
𝑚=1 ) given by𝐴₁ = diag 

[𝜆1, … , 𝜆1, 𝜆2, … , 𝜆2, … , 𝜆𝐽, … , 𝜆𝐽]and 𝑃𝐵 = [𝐺₁ͭʳ, 𝐺₂ͭʳ, … , 𝐺𝐽ʳ].The condition (4) of this theorem, allows that the suit 

(𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞of sensors is Γ
∗
G-strategic for the unstable part of the system (1), the subsystem (23) is WΓ

∗
G -

observable [11] and since it is finite dimensional, then it is EΓ
∗
G observable [27]. Therefore it is asymptotically 

Γ
∗𝐴𝐺-detectable, and hence there exists an operator 𝐻Γ

∗𝐴𝐺
1  such that (𝐴₁ − 𝐻Γ

∗𝐴𝐺
1  𝐶)which is satisfied the 

following:  

∃,𝑀
𝐴1−𝐻

Γ
∗𝐴𝐺
1 𝐶

, 𝛼
𝐴1−𝐻

Γ
∗𝐴𝐺
1 𝐶

 >0 such that  

         ‖𝑒
(𝐴1−𝐻

Γ
∗𝐴𝐺
1 𝐶)𝑡‖

(𝐻1(Γ∗))ⁿ
≤ 𝑀

𝐴1−𝐻
Γ
∗𝐴𝐺
1 𝐶

𝑒
−𝛼

𝐴1−𝐻
Γ
∗𝐴𝐺
1 𝑐𝑡

  

and then we have 

‖𝑥1(. , 𝑡)‖(𝐻1(Γ∗))ⁿ ≤ 𝑀𝐴1−𝐻
Γ
∗𝐴𝐺
1 𝐶

𝑒
−𝛼

𝐴1−𝐻
Γ
∗
1 𝐶‖𝑃𝑥0(. )‖(𝐻1(Γ∗))ⁿ 

Since the semi-group generated by the operator 𝐴2 is stable on (𝐻1 2⁄ (Γ∗))ⁿ, then  there exist 

𝑀
𝐴2−𝐻

Γ
∗𝐴𝐺
2 𝐶

, 𝛼
𝐴2−𝐻

Γ
∗𝐴𝐺
2 𝐶

 > 0 [5] such that  

         ‖𝑥2(. , 𝑡)‖(𝐻1(Γ∗))ⁿ ≤ 𝑀
𝐴1−𝐻

Γ
∗𝐴𝐺
1 𝐶

𝑒
−𝛼

𝐴2−𝐻
Γ
∗𝐴𝐺
2 𝐶(𝑡)‖(𝐼 − 𝑃)‖(𝐻1 2⁄ (Γ∗))ⁿ 

                                     +∫ 𝑀𝑀
𝐴1−𝐻

Γ
∗𝐴𝐺
1 𝐶

𝑡

0
, 𝑒
−𝛼

𝐴2−𝐻
Γ
∗𝐴𝐺
2 𝐶(𝑡)

𝐻Γ
∗𝐴𝐺
2    ‖(𝐼 − 𝑃)𝑥0(. )‖(𝐻1 2⁄ (Γ∗))ⁿ

‖𝑢(𝜏)‖𝑑𝜏 

and therefor 𝑥(𝜉, 𝑡) → 0 when 𝑡 → ∞. Finally, the system (23) are asymptotically  Γ
∗𝐴𝐺 -detectable. 

  

Second step: From equation (21), we have 𝑧(𝜉, 𝑡) = 𝑥(𝜉, 𝑡)with the observer error is given by the following form 

𝑒(𝜉, 𝑡) = 𝑧(𝜉, 𝑡) − �̂�(𝜉, 𝑡) 

where �̂�(𝜉, 𝑡) is a solution of the dynamic system (22). Derive the above equation, and by using equation (19) 

and condition 2, we can get the following forms  

          
𝜕𝜀

𝜕𝑡
(𝜉, 𝑡) =

𝜕𝑧

𝜕𝑡
(𝜉, 𝑡) −

𝜕�̂�

𝜕𝑡
(𝜉, 𝑡) =

𝜕𝑥

𝜕𝑡
(𝜉, 𝑡) −

𝜕�̂�

𝜕𝑡
(𝜉, 𝑡)  

             = 𝐴𝑥(𝜉, 𝑡) + 𝐵𝑢(𝑡) − 𝐹Γ
∗
AGFO �̂�(𝜉, 𝑡) 
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             − 𝐺Γ
∗  𝑢(𝑡) − 𝐻Γ

∗
AGFO 𝐶𝑥(𝜉, 𝑡) 

             = 𝐴𝑥(𝜉, 𝑡) − (𝐴 − 𝐻Γ
∗
AGFO𝐺𝐶)�̂�(𝜉, 𝑡) − 𝐻Γ

∗
AGFO 𝐶𝑥(𝜉, 𝑡) 

             = (𝐴 − 𝐻Γ
∗
AGFO𝐶)(𝑧(𝜉, 𝑡) − �̂�(𝜉, 𝑡)) 

             = (𝐴 − 𝐻Γ
∗
AGFO 𝐶) 𝑒(𝜉, 𝑡) 

Thus, from the first part of this proof we obtain  

          𝑒(𝜉, 𝑡) = (𝐴 − 𝐻Γ
∗
AGFO 𝐶) 𝑒(0, 𝑡) 

is asymptotically Γ
∗𝐺-stable with 

          𝑒(0, 𝑡) = 𝑧0(𝜉) − �̂�0(𝜉) 

Then we have 

          ‖𝑒(𝜉, 𝑡)‖(𝐻1 2⁄ (Γ∗))ⁿ)≤ 𝑀𝐴−𝐻Γ
∗
AGFO

𝐶𝑒
−𝛼𝐴−𝐻

Γ
∗
AGFO

𝐶𝑡 .  

‖𝑧0(𝜉) − �̂�0(𝜉)‖(𝐻1 2⁄ (Γ∗))ⁿ) 

therefore lim
𝑡→∞

𝑒(𝜉, 𝑡). Now, let the approximate solution to the gradient state of the original system is 

         �̂�(𝜉, 𝑡) = 𝑀Γ
∗
AGFO 𝑦(. , 𝑡) + 𝑁Γ

∗
AGFO�̂�(𝜉, 𝑡)  

with 

         𝑀Γ
∗
AGFO = 0 and 𝑁Γ

∗
AGFO = 𝐼Γ∗AGFO ,  

then we have 

         �̂�(𝜉, 𝑡) = �̂�(𝜉, 𝑡)  

Now, we can calculate the error of gradient state estimator 

   �̂�Γ
∗
AGFO(𝜉, 𝑡) = 𝑥(𝜉, 𝑡) − �̂�(𝜉, 𝑡) = 𝑥(𝜉, 𝑡) − 𝑥(𝜉, 𝑡) + 𝑥(𝜉, 𝑡) − �̂�(𝜉, 𝑡) 

                         = �̂�(𝜉, 𝑡) − �̂�(𝜉, 𝑡) = 𝑒(𝜉, 𝑡) = (𝐴 − 𝐻Γ
∗
AGFO 𝐶) 𝑒(0, 𝑡) 

is asymptotically Γ
∗𝐺-stable with   

          𝑒(0, 𝑡) = 𝑧0(𝜉) − �̂�0(𝜉).  

Consequently, we get 

lim
𝑡→∞

‖𝑥(. , 𝑡) − �̂�(𝜉, 𝑡)‖(𝐻1 2⁄ (Γ∗))ⁿ = lim𝑡→∞
‖𝑥(. , 𝑡) − �̂�(𝜉, 𝑡)‖(𝐻1 2⁄ (Γ∗))ⁿ = 0 

Then, the dynamical system (22) is Γ
∗𝐴𝐺𝐹𝑂-0bserver to the system (19). 

Corollary 3.6 From the previous results, we can deduce that:  

1. Theorem 3.5 gives the sufficient conditions which guarantee the dynamic system (22) is a Γ
∗𝐺𝐹𝑂-observer for 

the system (19).  
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2. If a system which is an Ω𝐺𝐹𝑂-observer, then it is Γ
∗𝐴𝐺𝐹𝑂-observer for system (19).  

3. If a system is Γ
∗𝐺𝐹𝑂-observer, then it is Γ

1∗𝐺𝐹𝑂-observer for every subset Γ
1∗

 of  Γ∗, but the converse is not 

true [28]. This is an  important case because there are many problems in real world can reconstruction the current 

state gradient but is not in the usual sense which is presented in the following example. 

Example 3.7. Consider a two-dimensional system described by the diffusion equation  

          

{
 

 
𝜕𝑥

𝜕𝑡
(𝜉1, 𝜉2, 𝑡) = Δ𝑥(𝜉1, 𝜉2, 𝑡)                                 𝒬

𝑥(𝜉1, 𝜉2, 𝑡) = 𝑥0(𝜉1, 𝜉2)                                       Ω̅
𝜕𝑥

𝜕𝑣
(𝜂1, 𝜂1, 𝑡) = 0                                                    Θ

                                                               (25)  

where  Ω =]0,1[×]0,1[. The operator 𝐴 = ∆ generates a strongly continuous semi-group (𝑆𝐴(𝑡))𝑡≥0 on the Hilbert 

space 𝐻1(Ω) given by  

         𝑆𝐴(𝑡)𝑥 = ∑ 𝑒𝜆𝑛𝑚𝑡〈𝑥, 𝜑𝑛𝑚〉𝐻1(Ω)𝜑𝑛𝑚
∞
𝑛,𝑚=0   

With  

         𝜆𝑛𝑚 = −(𝑛2, 𝑚2)𝜋2, 𝜑𝑛𝑚(𝜉1, 𝜉2) = 2𝑎𝑛𝑚 cos(𝑛𝜋𝜉1) cos(𝑛𝜋𝜉2) and  

         2𝑎𝑛𝑚 = (1− 𝜆𝑛𝑚)
−1

2⁄ . 

Consider the dynamical system  

         

{
 

 
𝜕𝑥

𝜕𝑡
(𝜉1, 𝜉2, 𝑡) = Δ𝑥(𝜉1, 𝜉2, 𝑡) − 𝐻𝐴𝐺𝐹𝑂𝐶(𝑥(𝜉1, 𝜉2, 𝑡) − 𝑧(𝜉1, 𝜉2, 𝑡)) 𝒬

𝑥(𝜉1, 𝜉2, 0) = 𝑥0(𝜉1, 𝜉2)                                                                           Ω̅
𝜕𝑥

𝜕𝑣
(𝜂1, 𝜂1, 𝑡) = 0                                                                                        Θ

                                   (26)  

Where 𝐻 ∈ 𝐿(𝑅𝑞 , 𝑍), 𝑍 is a Hilbert space and 𝐶:𝐻1(Ω̅) → 𝑅𝑞 is a linear operator. Consider the boundary sensor 

(Γ0, 𝑓) defined by  

         Γ0 = {0} ×]0,1[ and 𝑓(𝜂1, 𝜂2) = cos 𝜋𝜂2 

Thus, the output function can be written by 

           𝑦(𝑡) = ∫ 𝑥(𝜂1, 𝜂2, 𝑡)𝑓(𝜂1, 𝜂2)𝑑𝜂1𝑑𝜂2  Γ0
                                                                           (27) 

If the state 𝑥0 is defined in  Ω by 

          𝑥0(𝜉1, 𝜉2) = cos(𝜋𝜉1) cos(2𝜋𝜉2), 

then the system (20)-(22) is not WΩG-observable, i.e. the sensor (Γ0, 𝑓) is not Ω-strategic and therefore the 

system (20)-(22) is not ΩAG-detectable [7]. Thus, the dynamical system (21) is not ΩAG-observer for the system 

(20)-(22) (see [29]). Here, we consider the region Γ =]0,1[× {0} ⊂ 𝜕Ω (figure 3) and the dynamical system  
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Fig. 3: Domain Ω, region Γ
∗
 and location Γ0 of zone sensor. 

            

{
 
 

 
 
𝜕𝑥

𝜕𝑡
(𝜉1, 𝜉2, 𝑡) = Δ𝑥(𝜉1, 𝜉2, 𝑡)                                                            

                     −𝐻Γ
∗
AGFOΓ𝐶(𝑥(𝜉1, 𝜉2, 𝑡) − 𝑧(𝜉1, 𝜉2, 𝑡))          𝒬

𝑥(𝜉1, 𝜉2, 0) = 𝑥0(𝜉1, 𝜉2)                                                           Ω̅
𝜕𝑥

𝜕𝑣
(𝜂1, 𝜂1, 𝑡) = 0                                                                        Θ

                                          (28)  

where 𝐻 ∈ 𝐿(𝑅𝑞 , 𝐻1 2⁄ (Γ∗)) . In this case, the system (20)-(22) is WΓ
∗
G-observable and the sensor (Γ0, 𝑓) is Γ

∗𝐺-

strategic [26]. Thus, the system (20)-(22) is Γ
∗𝐴𝐺-detectable [13]. Finally the dynamical system (20) is Γ

∗𝐴𝐺𝐹𝑂-

observer for the system (20)-(22) [30].   

  

4. Application to asymptotic 𝚪∗𝑨𝑮𝑭𝑶 -observer in diffusion system 

In this section we consider the distributed diffusion systems defined in the domain Ω. Various results related to 

different types of sensor have been extended. In the case of two-dimensional, we take where  Ω = ]0, 𝑎1[ × ]0, 𝑎2[ 

and Γ
∗ = ]0, 𝑎1[ × {𝑎2}  is a region of 𝜕Ω the boundary of Ω. The eigenfunctions of the dynamic system (16) for 

Dirichlet boundary conditions are given by 

          𝜑𝑛𝑚(𝜇1, 𝜇2) = (
4

𝑎1𝑎2
)
1 2⁄

 cos 𝑛𝜋 (
𝜇1

𝑎1
) cos 𝑚𝜋 (

𝜇2

𝑎2
)                                                            (29)  

associated with eigenvalues 

          𝜆𝑛𝑚 = − (
𝑛2

𝑎1
2 +

𝑚2

𝑎2
2) 𝜋

2 , 𝑛,𝑚 ≥ 1                                                                                    (30)  

If we suppose that 𝑎1
2 𝑎2

2 ∉ 𝑄⁄ , then the multiplicity of the eigenvalues  𝜆𝑛𝑚 is 𝑟𝑛𝑚 = 1 for every 𝑛,𝑚 = {1, … , 𝐽}, 

then one sensor (𝐷, 𝑓) may be sufficient for 𝛤∗𝐴𝐺𝐹𝑂-observer [24].  

4.1. Zone case in rectangular domain 

This subsection related to give sufficient conditions which is characterized some cases of the Γ
∗𝐴𝐺𝐹𝑂 -observer 

in the rectangular  domain of system (12)  with various sensor locations cases. 

4.1.1. Internal zone sensors case  

Consider two dimensional system defined in Ω̅ = [0, 𝑎1] × [0, 𝑎2] by parabolic equation 

         {

𝜕𝑥

𝜕𝑡
(𝜉1, 𝜉2, 𝑡) =

𝜕²𝑥

𝜕𝜉1
2 (𝜉1, 𝜉2, 𝑡) +

𝜕²𝑥

𝜕𝜉2
2 (𝜉1, 𝜉2, 𝑡)         𝑄

𝑥(𝜉1, 𝜉2, 0) = 𝑥0 (𝜉1, 𝜉2)                                            Ω̅

𝑥(𝜂1, 𝜂2, 𝑡) = 0                                                            Σ

                                                           (31)  

augmented with output function measured by internal or boundary zone sensors 
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         𝑦(. , 𝑡) = ∫ 𝑥(𝜉1, 𝜉2, 𝑡)𝑓(𝜉1, 𝜉2)𝑑𝜉1𝑑𝜉2𝐷
                                                                             (32) 

where the zone sensor is the located  inside the domain Ω, over the support   

          𝐷 = ]𝜉10 − 𝑙1, 𝜉10 + 𝑙1[ × ]𝜉20 − 𝑙2, 𝜉20 + 𝑙2[ ⊂ Ω,  and 𝑓 ∈ 𝐿2(𝐷)  

as in (figure 4). 

 

Fig. 4:  Rectangular domain Ω, region Γ
∗ and location 𝐷 of  internal zone sensor. 

In this case the system (31)-(32) have  an associated dynamical system is given by the following form 

         

{
 
 

 
 
𝜕𝑧

𝜕𝑡
(𝜉1, 𝜉2, 𝑡) =

𝜕2𝑧

𝜕𝜉1
2 (𝜉1, 𝜉2, 𝑡) +

𝜕2𝑧

𝜕𝜉2
2 (𝜉1, 𝜉2, 𝑡)               

                −𝐻𝛤∗𝐺(𝐶𝑧(𝜉1, 𝜉2, 𝑡) − 𝑦(𝑡))                      𝑄

𝑧(𝜉1, 𝜉2, 0) = 𝑧0(𝜉1, 𝜉2)                                              Ω̅

𝑧(𝜂1, 𝜂2, 𝑡) = 0                                                             𝛴

                                                         (33)  

Thus have the following important result. 

Proposition 4.1: Suppose that𝑓1 is symmetric about 𝜉 = 𝜉01and 𝑓2 is symmetric about 𝜉 = 𝜉02, then the 

dynamical system (33) is Γ
∗𝐴𝐺𝐹𝑂-observer for systems (31)-(32) if  𝑛 𝜇10 𝑎1⁄   and  𝑚𝜇20 𝑎2⁄ ∉ 𝑁, for every  𝑛,𝑚 =

{1, … , 𝐽}. 

4.1.2. One side boundary  zone sensor case 

Now, the measurements are given by the following output function 

          𝑦(𝑡) = ∫
𝜕𝑥

𝜕𝑣Г0
(𝜂1, 𝜂2, 𝑡)𝑓(𝜂1, 𝜂2)𝑑𝜂1𝜂2,                                                                    (34) 

Where  Г0 ⊂ 𝜕Ω is the boundary support of the sensor and 𝑓 ∈ 𝐿2(Γ0). In the case, where the support of the  

sensor (Г0, 𝑓) is one of side as in (figure 5) 

 

Fig. 5: Rectangular domain Ω, region Γ
∗ and location  Γ0 of  boundary zone sensor. 

Then, we have the following result. 
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Proposition 4.2: Suppose that Γ
∗ ⊂ 𝜕Ω and f is symmetric with respect to 𝜂1 = 𝜂01  , then the dynamic system 

(33) is𝛤∗𝐴𝐺𝐹𝑂 -observer for the systems (31)-(32) if   𝑛 𝜂10 𝑎1⁄ ∉ 𝑁 , for all 𝑛,  𝑛 = {1, … , 𝐽}.  

4.1.3. Two side boundary  zone sensor case 

In this case the output function (2) is given by 

          𝑦(𝑡) = ∫
𝜕𝑥

𝜕𝑣Γ̅
(𝜂1, 𝜂2, 𝑡)𝑓(𝜂1, 𝜂2)𝑑𝜂1𝜂2                                                                   (35) when the 

support of the sensor is on two sides boundary, i.e., 

          Г̅ = [0, �̅�10 + 𝑙1] × {0} ∪ {0} × [0, �̅�20 + 𝑙2] = Γ̅1 ∪ Γ̅2 ⊂ 𝜕Ω,  

as in (figure 6), 

 

Fig. 6: Rectangular domain Ω, region Γ
∗ and location  Γ

∗̅
 of  boundary zone sensor. 

then,  we obtain the following result.  

Proposition 4.3: Let Γ̅1 ∪ Γ̅2 ⊂ 𝜕Ω , the function  𝑓|Γ1    is symmetric with respect to 𝜂1 = 𝜂 ̅
01

, and the function 𝑓|Γ2 

is  symmetric with respect to 𝜂2 = 𝜂 ̅02, then the dynamic system (33) is Γ
∗𝐴𝐺𝐹𝑂 -observer for the systems (31)-

(32) if   𝑛 𝜂10 𝑎1⁄ ∉ 𝑁 , for all 𝑛,  𝑛 = {1, … , 𝐽}.   

4.2.1.  Pointwise sensors case   

Consider again the systems (31)-(2) augmented with output function measured by internal pointwise sensors. 

In this case, the output function is given by the following form 

         𝑦(𝑡) = 𝑥(𝜉1, 𝜉2, 𝑡) 𝛿(𝜉1 − 𝑏1, 𝜉2 − 𝑏2)𝑑𝜉1𝑑𝜉2                                                                      (36) 

where 𝑏 =(𝑏1, 𝑏2) is the location of pointwise sensor in  Ω  as defined in (figure 7).  

 

Fig. 7: Rectangular domain Ω, region Γ∗ and location 𝑏 of  internal pointwise sensors. 

Then  we obtain the following result.   

Proposition 4.4: Let the sensor is located in 𝑏 = (𝑏1, 𝑏2), then, the dynamic system (33) is Γ
∗𝐴𝐺𝐹𝑂 -observer for 

the systems (31)-(36), if 𝑛𝑏1 𝑎1   ⁄ and  𝑚𝑏2 𝑎2 ∉ 𝑁⁄ , for every 𝑛,𝑚 = {1, … , 𝐽}. 
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4.2.2. Filament pointwise case 

Suppose that the observation is given by the filament sensor where σ = 𝐼𝑚(𝛾 ) ⊂ Ω is symmetric with respect 

to the line 𝑏 =(𝑏1, 𝑏2) as in (figure 8). More precisely, the sensor is line of pointwises inside the domain Ω, then 

the output function still given by equation (31 

Fig. 8: Rectangular domain, region Γ
∗
 and locations σ of filament pointwise sensor. 

Proposition 4.5: Let the sensor is located in 𝑏 = (𝑏1, 𝑏2), then, the dynamic system (33) is Γ
∗𝐴𝐺𝐹𝑂 -observer for 

the systems (31)-(36), if 𝑛𝑏1 𝑎1   ⁄ and  𝑚𝑏2 𝑎2 ∉ 𝑁⁄ , for every 𝑛,𝑚 = {1, … , 𝐽}.          

4.2.3 Boundary pointwise case 

Suppose that the sensor (𝑏, 𝛿𝑏) is located on 𝑏, where 𝑏 = (𝑏1, 𝑏2) ∈ 𝜕Ω  with 𝑏 = (0, 𝑏2) as in (figure 9).  

 

Fig. 9: Rectangular domain, region Γ
∗
 and location 𝑏 of boundary pointwise sensor. 

In this case, the output function is given by 

         𝑦(. , 𝑡) = ∫ 𝑥(𝜂1, 𝜂2, 𝑡)𝛿𝑏(𝜂1, 𝜂2 − 𝑏2)𝑑𝜂1𝜂2(𝑦(. , 𝑡) 𝐷
      

                     = ∫
𝜕𝑥

𝜕𝑣
(𝜂1, 𝜂2, 𝑡)𝑓(𝜂1, 𝜂2)𝜕Ω

𝑑𝜂1𝑑𝜂2                                                                       (37) 

where  𝑏 = (0, 𝑏2). Thus, we obtain the following result. 

Proposition 4.6: Let the sensor is located in 𝑏 = (0, 𝑏2), then, the dynamic system (33) is Γ
∗𝐴𝐺𝐹𝑂-observer for 

the systems (31)-(37), if  𝑚𝑏2 𝑎2 ∉⁄ 𝑁 for all 𝑚 = {1, … , 𝐽}. 

Now, from the previous results in this paper, we can deduce the following results.                     

Remark 4.7: We can extend these results to the case of two dimensional systems with circular domain in 

different sensor structures as in [13, 16]. 

Remark 4.8: We can extend the above results of the two dimensional systems (31)-(2) to case of one dimensional 

systems case with Ω =]0, 𝑎[ as in ref.s  [8-17, 25]. 

Remark 4.9: We know that the previous results have been developed with Dirichlet boundary conditions, then 

we can extend with Neumann or mixed boundary conditions as in [10, 31]. 
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5. Conclusion 

The concept have been studied in this paper is related to the Γ
∗𝐴𝐺𝐹𝑂-observer in connection with sensors 

structure for a class of distributed parameter systems. More precisely, we have been given a sufficient condition 

for the existing an Γ
∗𝐴𝐺𝐹𝑂-observer which allows to estimate the gradient state in a subregion Γ∗. For future 

work, one can be extension these result to the problem of regional boundary asymptotic gradient reduced order 

observer in connection with the sensors structures. 

Acknowledgments. Our thanks in advance to the editors and experts for their efforts. 
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