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Abstract 

The main purpose of this paper is to study pseudosymmetric conditions on alpha-Kenmotsu manifolds with 

dimension 3. In particular, we obtain some results satisfying some certain curvature conditions on such 

manifolds depending on 𝛼.  
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Introduction  

Let (𝑀, 𝑔) be an 𝑛-dimensional (𝑛 ≥ 3) differentiable manifold of class 𝐶∞. Denote by 𝛻 its Levi-Civita 

connection. Also, we define endomorphisms 𝑅(𝑋, 𝑌) and (𝑋 ∧ 𝑌) by the following relations: 

𝑅(𝑋, 𝑌)𝑍 = 𝛻𝑋𝛻𝑌𝑍 − 𝛻𝑌𝛻𝑋𝑍 − 𝛻[𝑋,𝑌]𝑍 

and 

                                                      (𝑋 ∧ 𝑌)𝑍 = 𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑍, 𝑋)𝑌,                                    (1.1) 

respectively, [16]. Here 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀), 𝜒(𝑀) being the Lie algebra of vector fields on 𝑀. The Riemannian 

Christoffel curvature tensor 𝑅 is defined as 

                                      𝑔(𝑅(𝑋, 𝑌)𝑉, 𝑊) = 𝑔(𝑅(𝑋, 𝑌)𝑉, 𝑊)                                                    (1.2) 

where 𝑊 ∈ 𝜒(𝑀). We define the tensors 𝑅. 𝑅 and 𝑄(𝑔, 𝑅) by the following relations: 

(𝑅(𝑋, 𝑌) ⋅ 𝑅)(𝑈, 𝑊)𝑍  =  𝑅(𝑋, 𝑌)𝑅(𝑈, 𝑊)𝑍 − 𝑅(𝑅(𝑋, 𝑌)𝑈, 𝑊)𝑍 

                                                                       −𝑅(𝑈, 𝑅(𝑋, 𝑌)𝑊)𝑍 − 𝑅(𝑈, 𝑊)𝑅(𝑋, 𝑌)𝑍,                  (1.3) 

and 

             𝑄(𝑔, 𝑅)(𝑈, 𝑊, 𝑍; 𝑋, 𝑌)   =  (𝑋 ∧ 𝑌)𝑅(𝑈, 𝑊)𝑍 − 𝑅((𝑋 ∧ 𝑌)𝑈, 𝑊)𝑍               (1.4) 

  −𝑅(𝑈, (𝑋 ∧ 𝑌)𝑊)𝑍 − 𝑅(𝑈, 𝑊)(𝑋 ∧ 𝑌)𝑍,  

where  𝑋, 𝑌, 𝑍, 𝑈, 𝑊 ∈ 𝜒(𝑀), [3]. 

If the tensors 𝑅. 𝑅 and 𝑄(𝑔, 𝑅) are linearly dependent then the manifold 𝑀 is said to be pseudosymmetric. This 

condition is equivalent to 

                                                                     𝑅. 𝑅 = 𝐿𝑅𝑄(𝑔, 𝑅)                                                  (1.5) 
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 holding on the set  

𝑈𝑅 = {𝑥 ∈ 𝑀: 𝑄(𝑔, 𝑅) ≠ 0, 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑥}, 

where  𝐿𝑅 is some function on 𝑈𝑅 , [3]. 

If 𝑅. 𝑅 = 0 then the manifold 𝑀 is called semi symmetric. We know that every semi symmetric manifold is 

pseudosymmetric. But the converse is not true. Moreover, if 𝛻𝑅 = 0 then the manifold 𝑀 is said to be locally 

symmetric. Also, it is obvious that if the manifold 𝑀 is locally symmetric then it is semi symmetric [14]. 

The notion of a semi-symmetric manifold is defined by 𝑅(𝑋, 𝑌) ⋅ 𝑅 = 0, for all vector fields 𝑋, 𝑌 on 𝑀, where 

𝑅(𝑋, 𝑌) acts as a derivation on 𝑅, [9]. Such a space is called "semi-symmetric space" since the curvature tensor 

of (𝑀, 𝑔) at a point p∈M, 𝑅𝑝; is the same as the curvature tensor of a symmetric space (that can change with 

the point of p). Thus locally symmetric spaces are obviously semi-symmetric, but the converse is not true, [4]. 

Complete intrinsic classification of these spaces was given by Szabó, [14]. However, it is interesting to investigate 

the semi-symmetry of special Riemannian manifolds. Nomizu proved that if 𝑀ⁿ is a complete, connected semi-

symmetric hypersurfaces of a Euclidean space 𝑅ⁿ⁺¹, 𝑛 > 3, i.e., 𝑅 ⋅ 𝑅 = 0, then 𝑀ⁿ is locally symmetric, i.e., 𝛻𝑅 =

0. For the case of a compact Kaehlerian manifold, Ogawa proved that if it is semi-symmetric then it must be 

locally symmetric, [10]. 

Semisymmetric Kenmotsu and alpha-Kenmotsu manifolds are studied in [8,13]. Also, the other semi symmetric 

conditions are investigated in [11,15] on such manifolds. In this paper, we study pseudosymmetric conditions 

on alpha-Kenmotsu manifolds with dimension 3. In particular, we obtain some results satisfying some certain 

curvature conditions on such manifolds depending on 𝛼.  

Alpha-Kenmotsu Manifolds 

Let 𝑀²ⁿ⁺¹ almost contact manifold be an odd-dimensional manifold. The triple (𝜑, 𝜉, 𝜂) is defined as follow.  It 

transports a field 𝜑 of endomorphisms of the tangent spaces, 𝜉 is a vector field that is called characteristic or 

Reeb vector field and 𝜂 is a 1-form such that   𝜑² = −𝐼 + 𝜂 ⊗ 𝜉 and 𝜂(𝜉) = 1. The mapping defined by 

𝐼: 𝑇𝑀²ⁿ⁺¹ → 𝑇𝑀²ⁿ⁺¹  is called identity mapping. By using the definition of these it follows that 𝜑𝜉 = 0, 𝜂 ∘ 𝜑 = 0 

and that the (1,1)-tensor field 𝜑 has constant rank 2𝑛 [16]. An almost contact manifold (𝑀²ⁿ⁺¹, 𝜑, 𝜉, 𝜂) is said to 

be normal if the Nijenhuis torsion tensor of 𝜑; 𝑁 = [𝜑, 𝜑] + 2𝑑𝜂 ⊗ 𝜉 vanishes for any vector fields 𝑋, 𝑌 on 𝑀²ⁿ⁺¹. 

If 𝑀²ⁿ⁺¹ admits a Riemannian metric 𝑔, such that 

                      𝑔(𝜑𝑋, 𝜑𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌),                                                             (2.1) 

for any vector fields 𝑋, 𝑌 on 𝑀²ⁿ⁺¹, then this metric 𝑔 is said to be a compatible metric and the manifold 𝑀²ⁿ⁺¹ 

together with the structure (𝑀²ⁿ⁺¹, 𝜑, 𝜉, 𝜂, 𝑔) is called an almost contact metric manifold. Hence, (2.1) means that 

𝜂(𝑋) = 𝑔(𝑋, 𝜉) for any vector field 𝑋 on 𝑀²ⁿ⁺¹. On such a manifold, the fundamental 2-form 𝛷 of 𝑀²ⁿ⁺¹ is defined 

by 𝛷(𝑋, 𝑌) = 𝑔(𝜑𝑋, 𝑌). Almost contact metric manifolds such that both 𝜂 and 𝛷 are closed are called almost 

symplectic manifolds and almost contact metric manifolds such that 𝑑𝜂 = 0 and 𝑑𝛷 = 2𝜂 ∧ 𝛷 are almost 

Kenmotsu manifolds. It is noted that a normal almost symplectic manifold is called a symplectic manifold and a 

normal almost Kenmotsu manifolds is called Kenmotsu manifold [6]. 

An almost contact metric manifold 𝑀²ⁿ⁺¹ is said to be almost alpha-Kenmotsu if 𝑑𝜂 = 0 and 𝑑𝛷 = 2𝛼𝜂 ∧ 𝛷, α 

being a non-zero real constant [6]. 

Now, we set 𝐴 = −𝛻𝜉 and ℎ = (1/2)(𝐿𝜉𝜑). Obviously, 𝐴(𝜉) = 0 and ℎ(𝜉) = 0. Moreover, the tensor fields 𝐴 and 

ℎ are symmetric operators and satisfy the following relations 
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𝛻𝑋𝜉 = −𝛼𝜑²𝑋 − 𝜑ℎ𝑋,                                                                                       (2.2) 

(𝜑 ∘ ℎ)𝑋 + (ℎ ∘ 𝜑)𝑋 = 0,                                                                                  (2.3) 

(𝜑 ∘ 𝐴)𝑋 + (𝐴 ∘ 𝜑)𝑋 = −2𝛼𝜑,                                                                          (2.4) 

(𝛻𝑋𝜂)𝑌 =  𝛼[𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)] + 𝑔(𝜑𝑌, ℎ𝑋),                                               (2.5) 

𝛿𝜂 =  −2𝛼𝑛,   𝑡𝑟(ℎ) = 0,                                                                                   (2.6) 

for any vector fields 𝑋, 𝑌 on 𝑀²ⁿ⁺¹. We also remark that ℎ = 0 ⇔ 𝛻𝜉 = −𝛼𝜑2 [12,13]. 

For an almost alpha-Kenmotsu manifold, the following curvature properties are held: 

                         𝑅(𝑋, 𝑌)𝜉 = (𝛻𝑌𝜑ℎ)𝑋 − (𝛻𝑋𝜑ℎ)𝑌 − 𝛼[𝜂(𝑋)𝜑ℎ𝑌 − 𝜂(𝑌)𝜑ℎ𝑋](𝑌 

                    +[𝛼² + 𝜉(𝛼)][𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋],                                                          (2.7) 

𝑅(𝑋, 𝜉)𝜉 = [𝛼² + 𝜉(𝛼)]𝜑²𝑋 + 2𝛼𝜑ℎ𝑋 − ℎ²𝑋 + 𝜑(𝛻𝜉ℎ)𝑋,                                   (2.8) 

(𝛻𝜉ℎ)𝑋 = −𝜑𝑅(𝑋, 𝜉)𝜉 − [𝛼² + 𝜉(𝛼)]𝜑𝑋 − 2𝛼ℎ𝑋 − 𝜑ℎ²𝑋,                                  (2.9) 

𝑅(𝑋, 𝜉)𝜉 − 𝜑𝑅(𝜑𝑋, 𝜉)𝜉 = 2[(𝛼² + 𝜉(𝛼))𝜑²𝑋 − ℎ²𝑋],                                         (2.10) 

𝑆(𝑋, 𝜉) = −2𝑛[𝛼² + 𝜉(𝛼)]𝜂(𝑋) − (𝑑𝑖𝑣(𝜑ℎ))𝑋,                                                    (2.11) 

𝑆(𝜉, 𝜉) = −[2𝑛(𝛼² + 𝜉(𝛼)) + 𝑡𝑟(ℎ²)],                                                                  (2.12) 

for any vector fields 𝑋, 𝑌 on 𝑀²ⁿ⁺¹ where α is a smooth function such that 𝑑𝛼 ∧ 𝜂 = 0. In these formulas, 𝛻 is the 

Levi-Civita connection and 𝑅 the Riemannian curvature tensor of 𝑀²ⁿ⁺¹  [12,13,15]. 

Results and Discussion 

In this section, we consider pseudosymmetric alpha-Kenmotsu manifolds with dimension 3. Here, α is a smooth 

function such that 𝑑𝛼 ∧ 𝜂 = 0 or a real constant. 

Proposition 3.1 Let 𝑀𝑛 be an alpha-Kenmotsu manifold. Then the following equations are held: 

              (∇𝑋𝜑)𝑌 = −𝛼[𝑔(𝑋, 𝜑𝑌)𝜉 + 𝜂(𝑌)𝜑𝑋],                                                                    (3.1) 

       𝛻𝑋𝜉 = −𝛼(−𝑋 + 𝜂(𝑋)𝜉),  (𝛻𝑋𝜂)𝑌 = −𝛼[−𝑔(𝑋, 𝑌) + 𝜂(𝑋)𝜂(𝑌)],                                 (3.2) 

where 𝛼 is strictly positive function of class 𝐶∞ such that 𝑑𝛼 ∧ 𝜂 = 0. In special cases, if 𝛼 = 0, then the manifold 

is a symplectic one. Also, if 𝜉(𝛼) =   𝛻𝜉𝛼 such that (𝛼2 + 𝜉(𝛼)) ≠ 0, then the alpha-Kenmotsu manifold is regular 

[6]. It is important to say that the condition 𝑑𝛼 ∧ 𝜂 = 0 satisfies for dimension is greater and equal than 5. This 

condition does not hold for the three dimensional case [15]. Accordingly, since the conformal curvature tensor 

in the three dimensional space will be identical to zero, we can also make the Riemannian curvature tensor 

calculations on the conformal curvature tensor. In other words, we have 

                      𝑅(𝑋, 𝑌)𝑍  =  𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑍, 𝑋)𝑌 + 𝑔(𝑌, 𝑍)𝑄𝑋                                    (3.3) 

               −𝑔(𝑍, 𝑋)𝑄𝑌 − (𝑟/2)[(𝑋 ∧ 𝑌)𝑍]. 
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So we can give the following results for the three dimensional case: 

Proposition 3.2 In three dimensional alpha-Kenmotsu manifolds, we have the following relations: 

         𝑅(𝑋, 𝑌)𝑍  =  2(𝛼² + 𝜉(𝛼) + (𝑟/4))((𝑋 ∧ 𝑌)𝑍)                                               (3.4) 

−3(𝛼² + 𝜉(𝛼) + (𝑟/6))[𝜂(𝑋)(𝜉 ∧ 𝑌)𝑍 + 𝜂(𝑌)(𝑋 ∧ 𝜉)𝑍]  

𝑆(𝑋, 𝑌)𝑍 = (𝛼² + 𝜉(𝛼) + (𝑟/2))𝑔(𝑋, 𝑌) − 3(𝛼² + 𝜉(𝛼) + (𝑟/6))𝜂(𝑋)𝜂(𝑌),           (3.5) 

where 𝛼 is a strictly positive function such that 𝑑𝛼 ∧ 𝜂 = 0. Moreover, 𝑅, 𝑆, 𝑄 and 𝑟 are the Riemannian curvature 

tensor, the Ricci tensor, the Ricci operator and the scalar curvature, respectively [15]. 

Proposition 3.3 In three dimensional alpha-Kenmotsu manifolds, taking into account of (3.3), (3.4) and (3.5), 

the following curvature relations are held: 

𝑅(𝑋, 𝑌)𝜉 = (𝛼² + 𝜉(𝛼))[𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋],                                                                (3.6) 

𝑅(𝜉, 𝑋)𝑌 = (𝛼² + 𝜉(𝛼))[−𝑔(𝑋, 𝑌)𝜉 + 𝜂(𝑌)𝑋],                                                          (3.7) 

𝑔(𝑅(𝑋, 𝑌)𝑍, 𝜉) = (𝛼² + 𝜉(𝛼))[𝑔(𝑋, 𝑍)𝜂(𝑌) − 𝑔(𝑌, 𝑍)𝜂(𝑋)],                                     (3.8) 

𝑆(𝑌, 𝜉) = −2(𝛼² + 𝜉(𝛼))𝜂(𝑌),                                                                                  (3.9) 

  𝑄𝜉 = −2(𝛼2 + 𝜉(𝛼))𝜉 ,                                                                                           (3.10) 

[12,13]. 

Theorem 3.1 Let 𝑀3be an alpha-Kenmotsu manifold. If 𝑀3is pseudosymmetric then either it is locally isometric 

to the hyperbolic space 𝐻3(−𝛼2) or 𝐿𝑅 = −𝛼2 holds where 𝛼 is a real constant. 

Proof Suppose that 𝑀3is an alpha-Kenmotsu manifold and 𝛼 is a real constant. If 𝑀3is semi symmetric then it 

is clearly pseudosymmetric. Also, a semi symmetric alpha-Kenmotsu manifold is locally isometric to the 

hyperbolic space 𝐻3(−𝛼2) [8]. In this case, let us assume that 𝑀3 is not semi symmetric. In other words, let 𝑀3 

be a pseudosymmetric alpha-Kenmotsu manifold. In view of (1.1) and (3.7) we have 

                                               𝑅(𝜉, 𝑋)𝑌 = 𝛼²(𝑋 ∧ 𝜉)𝑍 .                                                     (3.11) 

Now, we consider the pseudosymmetry condition 

𝑅(𝑋, 𝑌) ⋅ 𝑅 = 𝐿𝑅[(𝑋 ∧ 𝑌) ⋅ 𝑅]. 

So we get 

                                    (𝑅(𝑋, 𝑌) ⋅ 𝑅)(𝑈, 𝑉)𝑍 = 𝐿𝑅𝑄(𝑔, 𝑅)(𝑈, 𝑉, 𝑍; 𝑋, 𝑌)                             (3.12) 

for arbitrary vector fields on 𝑀3. Here the tensor product is defined as 

𝑅(𝑋, 𝑌)𝑅(𝑈, 𝑉)𝑍 − 𝑅(𝑅(𝑋, 𝑌)𝑈, 𝑉)𝑍 − 𝑅(𝑈, 𝑅(𝑋, 𝑌)𝑉)𝑍 − 𝑅(𝑈, 𝑉)𝑅(𝑋, 𝑌)𝑍 
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= 𝐿𝑅[(𝑋 ∧ 𝑌)𝑅(𝑈, 𝑉)𝑍 − 𝑅((𝑋 ∧ 𝑌)𝑈, 𝑉)𝑍 − 𝑅(𝑈, (𝑋 ∧ 𝑌)𝑉)𝑍 − 𝑅(𝑈, 𝑉)(𝑋 ∧ 𝑌)𝑍].     (3.13) 

With the help of (3.7) taking 𝑋 = 𝜉 in (3.13), we have 

                                    𝑅(𝜉, 𝑋) ⋅ 𝑅 = 𝛼2[(𝑋 ∧ 𝜉) ⋅ 𝑅].                                                     (3.14) 

This implies that  𝐿𝑅 = −𝛼2. Thus the poof is completed. 

Theorem 3.2 Let 𝑀3 be an alpha-Kenmotsu manifold. If 𝑀3 is pseudosymmetric then either it is locally isometric 

to the hyperbolic space 𝐻3(−𝛼2) or 𝐿𝑅 = (−𝛼² + 𝜉(𝛼)) holds where 𝛼 is strictly positive function of class 𝐶∞ 

such that 𝑑𝛼 ∧ 𝜂 = 0. 

Proof Firstly we assume that 𝑀³ is semi-symmetric, then the manifold is also pseudosymmetric and in [8], it is 

clear that a semi symmetric alpha-Kenmotsu manifold is locally isometric to the hyperbolic space 𝐻3(−𝛼2).  

Conversely, we suppose that 𝑀3 is not a semi symmetric alpha-Kenmotsu manifold.  By using the methodology 

of the above theorem and considering (1.1), (3.7) and (3.13), we obtain 

0  =  [𝐿𝑅 + (𝛼² + 𝜉(𝛼))][𝑅(𝑈, 𝑉, 𝑍, 𝑌) − (𝛼² + 𝜉(𝛼))[−𝑔(𝑉, 𝑍)𝜂(𝑈)𝜂(𝑌) 

+𝑔(𝑈, 𝑍)𝜂(𝑉)𝜂(𝑌) − 𝑔(𝑈, 𝑌)𝑔(𝑉, 𝑍) + 𝑔(𝑈, 𝑌)𝜂(𝑉)𝜂(𝑍) + 𝑔(𝑉, 𝑍)𝜂(𝑌)𝜂(𝑈) 

−𝑔(𝑌, 𝑍)𝜂(𝑉)𝜂(𝑈) − 𝑔(𝑉, 𝑌)𝜂(𝑈)𝜂(𝑍) + 𝑔(𝑉, 𝑌)𝑔(𝑍, 𝑈) + 𝑔(𝑌, 𝑍)𝜂(𝑈)𝜂(𝑉) 

                                       −𝑔(𝑍, 𝑈)𝜂(𝑉)𝜂(𝑌) + 𝑔(𝑌, 𝑉)𝜂(𝑈)𝜂(𝑍) − 𝑔(𝑌, 𝑈)𝜂(𝑍)𝜂(𝑉)]].                           (3.15) 

Let {𝑒𝑖}, 𝑖 = 1,2,3 be an orthonormal basis of the tangent space at any point. Then the sum for 1 ≤ 𝑖 ≤ 3 of (3.15) 

for suitable contraction yields 

                         0 = [𝐿𝑅 + (𝛼² + 𝜉(𝛼))](𝑆(𝑉, 𝑍) + 2(𝛼² + 𝜉(𝛼))𝑔(𝑉, 𝑍))                                          (3.16) 

for 𝑈 = 𝑌 = 𝑒𝑖 , 𝑖 = 1,2,3. For 𝑍 = 𝜉, the last equation leads to 

                                                                 0 = [𝐿𝑅 + (𝛼2 + 𝜉(𝛼))].                                                                 (3.17) 

This proves the theorem. 

Corollary 3.1 Every alpha-Kenmotsu manifold 𝑀³ is a pseudosymmetric manifold of the form 

                                        𝑅 ⋅ 𝑅 = −(𝛼² + 𝜉(𝛼))𝑄(𝑔, 𝑅)                                                                             (3.18) 

where 𝛼 is strictly positive function of class 𝐶∞ such that 𝑑𝛼 ∧ 𝜂 = 0. For 𝜉(𝛼))=0, we have 

                                        𝑅 ⋅ 𝑅 = −𝛼2𝑄(𝑔, 𝑅).                                                                                            (3.19) 

Theorem 3.3 Let 𝑀3 be a pseudosymmetric alpha-Kenmotsu manifold. If the manifold 𝑀3 has a non-zero 

function such that −𝐿𝑅 = (𝛼² + 𝜉(𝛼)) then the manifold 𝑀3 is an Einstein manifold with 𝜆 = −2(𝛼² + 𝜉(𝛼)) 

where 𝛼 is strictly positive function of class 𝐶∞ such that 𝑑𝛼 ∧ 𝜂 = 0. 

Proof Assume that 𝑀3 is a pseudosymmetric alpha-Kenmotsu manifold. Thus we have 

𝑅 ⋅ 𝑅 = 𝐿𝑅𝑄(𝑔, 𝑅)(𝑈, 𝑉, 𝑍; 𝑋, 𝑌). 
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Next, taking into account of the last equation, (1.1), (3.13) and 𝑋 = 𝜉, we get 

0  =  [𝐿𝑅 + (𝛼² + 𝜉(𝛼))][𝑔(𝑅(𝑈, 𝑉)𝑍, 𝑌)𝜉 − 𝑔(𝑅(𝑈, 𝑉)𝑍), 𝜉𝑌 

−𝑔(𝑈, 𝑌)𝑅(𝜉, 𝑉)𝑍 + 𝜂(𝑈)𝑅(𝑌, 𝑉)𝑍 − 𝑔(𝑉, 𝑌)𝑅(𝑈, 𝜉)𝑍  

                                                         +𝜂(𝑉)𝑅(𝑈, 𝑌)𝑍 − 𝑔(𝑍, 𝑌)𝑅(𝑈, 𝑉)𝜉 + 𝜂(𝑍)𝑅(𝑈, 𝑉)𝑌].                    (3.20) 

Then taking inner product both two sides with respect to 𝜉, we obtain 

 0  =  [𝐿𝑅 + (𝛼² + 𝜉(𝛼))][𝑅(𝑈, 𝑉)𝑍, 𝑌 − 𝜂(𝑌)𝑔(𝑅(𝑈, 𝑉)𝑍, 𝜉) 

  −𝑔(𝑈, 𝑌)𝑔(𝑅(𝜉, 𝑉)𝑍, 𝜉) + 𝜂(𝑈)𝑔(𝑅(𝑌, 𝑉)𝑍, 𝜉)  

  −𝑔(𝑉, 𝑌)𝑔(𝑅(𝑈, 𝜉)𝑍, 𝜉) + 𝜂(𝑉)𝑔(𝑅(𝑈, 𝑌)𝑍, 𝜉) 

                                                               −𝑔(𝑍, 𝑌)𝑔(𝑅(𝑈, 𝑉)𝜉, 𝜉) + 𝜂(𝑍)𝑔(𝑅(𝑈, 𝑉)𝑌, 𝜉)].                    (3.21) 

By the help of (3.8), (3.21) can be written as 

 0  =  [𝐿𝑅 + (𝛼² + 𝜉(𝛼))][𝑅(𝑈, 𝑉, 𝑍, 𝑌) − (𝛼² + 𝜉(𝛼))[−𝑔(𝑍, 𝑉)𝜂(𝑈)𝜂(𝑌) 

  +𝑔(𝑍, 𝑈)𝜂(𝑉)𝜂(𝑌) − 𝑔(𝑌, 𝑈)𝑔(𝑍, 𝑉) + 𝑔(𝑈, 𝑌)𝜂(𝑉)𝜂(𝑍) 

      +𝑔(𝑉, 𝑍)𝜂(𝑌)𝜂(𝑈) − 𝑔(𝑌, 𝑍)𝜂(𝑉)𝜂(𝑈) − 𝑔(𝑉, 𝑌)𝜂(𝑈)𝜂(𝑍) 

  +𝑔(𝑉, 𝑌)𝑔(𝑍, 𝑈) + 𝑔(𝑌, 𝑍)𝜂(𝑈)𝜂(𝑉) − 𝑔(𝑍, 𝑈)𝜂(𝑉)𝜂(𝑌) 

                                                           +𝑔(𝑌, 𝑉)𝜂(𝑈)𝜂(𝑍) − 𝑔(𝑌, 𝑈)𝜂(𝑍)𝜂(𝑉)]].                                          (3.22) 

Then the sum for 1 ≤ 𝑖 ≤ 3 of (3.22) for suitable contraction yields 

                        0 = [𝐿𝑅 + (𝛼2 + 𝜉(𝛼))][𝑆(𝑉, 𝑍) + 2(𝛼2 + 𝜉(𝛼))𝑔(𝑉, 𝑍)].                                             (3.23) 

Thus there are two cases with the help of (3.23). (3.23) just satisfies if either −𝐿𝑅 = (𝛼² + 𝜉(𝛼)) or 

𝑆(𝑉, 𝑍) = 𝜆𝑔(𝑉, 𝑍) where 𝜆 = −2(𝛼2 + 𝜉(𝛼)). This completes the proof. 

Theorem 3.4 Let 𝑀3 be a pseudosymmetric alpha-Kenmotsu manifold. If the manifold 𝑀3 has a non-zero 

constant function such that 𝐿𝑅 ≠ −𝛼² then the manifold 𝑀3 is an Einstein manifold with 𝜆 = −2𝛼² where 𝛼 is a 

positive constant. 

Proof According to the hypothesis, taking into consideration the above theorem we have 

                                              0 = [𝐿𝑅 + 𝛼²][𝑆(𝑉, 𝑍) + 2𝛼²𝑔(𝑉, 𝑍)]                                                             (3.24) 

where 𝛼 is a positive constant. Here, if we put 𝐿𝑅 ≠ −𝛼²  then we obtain 

                                                 𝑆(𝑉, 𝑍) = −2𝛼2𝑔(𝑉, 𝑍).                                                                                (3.25) 

This completes the proof. 
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Conclusions 

In this paper,  we are especially interested in pseudosymmetric alpha-Kenmotsu manifolds. Some certain results 

are obtained related to curvature tensors on such manifolds. Our forthcoming paper is devoted to investigating 

alpha-Kenmotsu manifolds satisfying the other pseudosymmetry conditions. In particular, we study Ricci 

pseudosymmetry and generalized Ricci pseudosymmetry conditions. It is well known that open problems are so 

interesting in this area, especially for almost contact structures. 
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