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Abstract 

Given a graph G = (V,E), a subset M of V is a module [17] (or an interval [10] or an autonomous [11] or a clan [8] 

or a homogeneous set [7] ) of G provided that x ∼ M for each vertex x outside M.  So V,φ and {x}, where x ∈ V, 

are modules of G, called trivial modules. The graph G is indecomposable [16] if all the modules of G are trivial.  

Otherwise, we say that G is decomposable . The prime graph G is an indecomposable graph with at least four 

vertices. Let G and H be two graphs. Let If G has no induced subgraph isomorphic to H, then we say that G is H-

free. In this paper, we will prove the next theorem 

Theorem 2.1 If  G is a {P5,P5,bull}-free graph, then exactly one of the following assertions holds. 

(i) |V (G)| ≤ 2 

(ii) G is isomorphic to C5. 

(iii) There is n ≥ 2 such that G is isomorphic to G2n or G2n. 

(iv) G is decomposable. 
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1.Introduction 

In this paper, we will present some concepts and tools involved in combinations in the study of graphs, and 

more precisely, in the study of prime graphs. The quotient of a graph, one decomposes its vertex set into 

modules which are vertex subsets compatible with the graph. Note that the notion of modules is a generalization 

of the notion of interval of the usual total order on the set of real numbers. A graph with at least three vertices 

is decomposable if it has a quotient with fewer vertices which is not reduced to a singleton. Other wise, the graph 

is prime. The fundamental Theorem of decomposition (Gallia 1967[16]) says that any finite graph admits a 

canonical quotient which is a complete graph or an empty graph or a prime graph. It follows that the main 

difficulty in many problems lies in the study of prime graphs. A book and several papers on the prime graphs  

and their prime subgraphs have then appeared (1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 17,18). On the other hand, in 

many studies on the classes of graphs defined by some forbidden, the prime graphs play a major role (4,5,9) 

2. Some Notions on Graphs and Their Modules 

In this section, first we fix our conventions on graphs. Second, we present the notion and the basic properties of 

the modules of a given graph. Third, we recall the basic structural results on the prime subgraphs of a given 

prime graph. Finally, we use these results to obtain some examples of prime graphs that will be used in the 

following. 

• A graph G is a pair (V (G), E(G)) consisting of a finite vertex set V (G) and an edge set E(G) such that E(G) 

is a subset of the set of the 2-element subsets of V (G). We denote an edge {u,v} by uv. 

• Two distinct vertices u and v are adjacent if uv ∈ E(G); otherwise u and v are nonadjacent. 

https://doi.org/10.24297/jam.v17i0.8519
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• The set of neighbors of a vertex u, denoted by NG(u), is the set of vertices which are adjacent to u, and 

the degree of u, denoted by dG(u), equals |NG(u)|. 

• For a vertex subset X of a graph G, the subgraph of G induced by X is the graph G[X] whose vertex set is 

X such that two vertices are adjacent in G[X] if they are adjacent in G. For a vertex subset X of G, the 

subgraph of G induced by V (G)−X is denoted by G −X. For a vertex v of G, the subgraph G − {v} is 

denoted by G − v. 

• An isomorphism from a graph G onto a graph H is a bijection f from V (G) onto V (H) such that for any 

two vertices u and v of G, u and v are adjacent in G if and only if f (u) and f (v) are adjacent in H. Two 

graphs G and H are isomorphic if there is an isomorphism from G onto H, in which case we write G ≅ H. 

• For a positive integer n, the complete graph Kn is the graph defined on {1,...,n} in which any two distinct 

vertices are adjacent. 

• For a positive integer n, the path Pn is the graph whose vertex set is {1,...,n} such that two distinct vertices 

are adjacent if and only if they are consecutive. 

• For an integer n, with k ≥ 3, the cycle Cn is the graph whose vertex set is {1,...,n} and the edge set is {{i,i+ 

1} : 1 ≤ i≤ n − 1} ∪ {{1,n}}. 

• For each integer n, with n ≥ 4, the graph Qn is defined on {1,...,n} by: Qn[{1,...,n−2}] =Pn−2 and E(Qn) = 

E(Pn−2) ∪ {{n − 1,i} : 1 ≤ i≤ n − 3} ∪ {{n − 1,n}}. 

• For each integer n with n ≥ 2, the graph G2n is defined on V = {0,1,...,2n − 1} as follows. For x ≠ y ∈ V , ( 

{x,y} is an edge of G2n) if and only if ( ∃0 ≤ i≤ j ≤ n−1 : {x,y} = {2i,2j + 1}). 

• A graph G is bipartite if its vertex set V can be partitioned into two disjoint sets V1 and V2 such that every 

edge in the graph connects a vertex in V1 and a vertex in V2 (so that no edge in G connects either two 

vertices in V1 or two vertices in V2). When this condition holds, the pair {V1,V2} is called a bipartition of the 

vertex set V of G. For example, for each integer n with n ≥ 2, the graph G2n is bipartite by the partition          

{{2i : 0 ≤ i≤ n − 1},{2j + 1 : 0 ≤ j ≤ n − 1}}. 

• A complete bipartite graph is a graph that has its vertex set partitioned into two subsets with an edge 

between two vertices if and only if one vertex is in the first subset and the other vertex is in the second 

subset. 

• With each graph G = (V,E), associate its complement 𝐺= (V,𝐸) defined as follows: given x≠y ∈ V , {x,y} ∈ 

𝐸 if {x,y}  ∉ E. 

• Given a graph G = (V, E), we define an equivalence relation C on V in the following way. For each x ∈ V , 

xCx , and for any x ≠y ∈ V , xCy if there are vertices x = x0,...,xn= y such that {xi , xi+1} ∈ E for 0 ≤ i≤ n−1. 

The equivalence classes of C are called the connected components of G. A vertex x of G is isolated if {x} 

constitutes a connected component of G. The graph G is connected if V = φ or V is the unique connected 

component of G. 

• A tree is a connected acyclic (with no cycles) graph. 

• Let G and H be two graphs. 

• Let If G has no induced subgraph isomorphic to H, then we say that G is H-free. If G is not H-free, then 

G contains H, and a copy of H in G is an induced subgraph of G isomorphic to H. 
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• For a family F of graphs, we say that G is F-free if G is F-free for every F ∈ F. 

• If the graph G is K3-free, then G is called a triangle-free graph. 

• A vertex subset of a graph is a stable set if its elements are pairwise nonadjacent.  

• A vertex subset of a graph is a clique if its elements are pairwise adjacent.  

2.2  Modules and their basic properties. Prime graphs 

In this section, we review the well-known properties of the modules of a graph. Then we recall the Theorem of 

the partition induced by a prime proper subgraph. 

 2.2.1 Modules and their basic properties 

Definition 2.1 Given a graph G = (V, E), a subset M of V is a module [17] (or an interval [10] or an autonomous 

[11] or a clan [8] or a homogeneous set [7] ) of G provided that x ∼ M for each vertex x outside M. 

Proposition 2.1 Let G = (V, E) be a graph and let M be the set of modules of G. 

1. V,φ, and {x}, where x ∈ V , are modules of G, called trivial modules. 

2. If X, Y ∈ M, then X ∩ Y ∈ M. 

3. If X, Y ∈ M and if X ∩ Y ≠φ, then X ∪ Y ∈ M. 

4. If X, Y ∈ M and if the set X − Y is not empty, then Y − X ∈ M. 

5. If W ⊆ V and if X ∈ M, then X ∩ W is a module of the subgraph G [W]. 

Definition 2.2 A graph G is indecomposable [16] if all the modules of G are trivial. Otherwise we say that G is    

decomposable. 

Definition 2.3 A prime graph G is an indecomposable graph with at least four vertices. 

Remark 2.1 • A graph G is prime if and only if its complement is prime. The connected components of a graph 

G are modules of G. 

2.2.2    Existence of a small prime subgraph in a prime graph 

 By the following result, D. P. Sumner [18] shows that each prime graph has a small prime subgraph. 

Proposition 2.2 Given a prime graph G = (V, E), there is a 4-vertex subset X such that G[X] is prime. 

Thus any prime graph has an induced P4. To construct larger prime subgraphs, we 

consider the following definition. 

Definition 2.4 Given a graph G = (V, E) and a proper subset X of V such that G[X] is prime, we consider the 

following subsets of V − X. 

• Ext(X) is the family of the elements x of V − X such that G [X ∪ {x}] is prime; 

• 〈𝑋〉 is the family of the elements x of V − X such that X is a module of G [X ∪ {x}]; 
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• For each u ∈ X, X(u) is the family of the elements x of V − X such that {u,x} is a module of G[X ∪ {x}]. 

The family of the nonempty elements of the set {Ext(X),〈𝑋〉 } ∪ {X(u); u ∈ X} is denoted by pX. 

The following definition will be used only in our last chapter. 

Definition 2.5 Let G = (V, E) be a graph and X be a proper subset X of V such that G[X]  is prime. 

1. The set 〈𝑋〉 is divided into X− and X+ as follows. 

• X− is the set of the elements x of 〈𝑋〉such that x...X; 

• X+ is the set of the elements x of 〈𝑋〉such that x ↔ X ”. 

2. For each u ∈ X, X(u) is divided into X−(u) and X+(u) as follows. 

• X−(u) is the set of the elements x of X(u) such that {u,x}∉  E; 

• X+(u) is the set of the elements x of X(u) such that {u,x} ∈ E. 

3. The family of the nonempty elements of the set {Ext(X),X−,X+} ∪ {X−(u) : u ∈ X} ∪ {X+(u) : u ∈ X} is denoted by qX. 

In [8], A. Ehrenfeucht and G. Rozenberg obtained the following theorem. 

Theorem 1.1 Given a graph G = (V,E) and a proper subset X of V such that G[X] is 

 prime, the family pX realizes a partition of V − X. Moreover, the following assertions are satisfied. 

1. Given x ≠ y ∈ Ext(X), if G[X ∪ {x,y}] is decomposable, then {x,y} is a module of G[X ∪ {x,y}]. 

2. Given x ∈ X(u) and y ∈ V − (X ∪ X(u)), where u ∈ X, if G[X ∪ {x,y}] is decomposable, then {u,x} is a module 

of G[X ∪ {x,y}]. 

3. Given x ∈ 〈𝑋〉  and y ∈ V −(X ∪ 〈𝑋〉 ), if G[X ∪{x,y}] is decomposable, then X ∪{y} is a module of G [X ∪ {x,y}]. 

In [8], using Theorem 1.1, A. Ehrenfeucht and G. Rozenberg obtained the following upward hereditary 

property. 

Corollary 2.1 Let G = (V, E) be a graph and X be a subset of V such that G[X] is prime. If G is prime and |V − X| ≥ 

2, then there exist x ≠ y ∈ V − X such that G[X ∪ {x,y}] is prime. The following downward hereditary property is 

an immediate consequence of Proposition 1.2 and Corollary 1.1 

Corollary 2.2 Given an n-vertex prime graph G with n ≥ 5, there is a vertex subset Y such that    | Y |∈ {n − 1,n−  

2} and G[Y ] is prime. This corollary was improved by the following result of J.H. Schmerl and W.T. Trotter [16]. 

Theorem 2.2 Given an n-vertex prime graph G with n ≥ 7, there is an (n − 2)-vertex subset Y such that G[Y ]is 

prime. 

For the proof of Theorem 1.2, J.H. Schmerl and W.T. Trotter introduced and studied the following concept. 

Definition 2.6 Let G be a prime graph. A vertex v of G is critical if the subgraph G − v is decomposable. The graph 

G is critical prime if all its vertices are critical. The description obtained in [16] is the following. 

Theorem 2.3 Up to isomorphism, the prime critical graphs are G2n and G2n , where n ≥ 2. 
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2.2.3 Some examples of prime graphs 

In this subsection, using Theorem 1.1, we give some examples of prime graphs.  

Example 2.1 For each integer k with k ≥ 4, the path Pk is prime. We proceed by induction on k ≥ 4 . Since P4 is 

prime, consider an integer k ≥ 4 and assume that Pk is prime. So that the graph Pk+1[X] = Pk is prime by induction 

hypothesis, where X = {1,2,...,k}. In addition, in Pk+1 , k + 1 ↔ k and k + 1...k − 1. Therefore, k + 1 ∉ 〈𝑋〉 . On the 

other hand, in Pk+1 , we have i↔ (i− 1) and (k + 1)...(i− 1) for each  i ∈ {2,...,k}. It follows that (k + 1)∉ X(2) ∪ ... ∪ 

X(k) . Since 1 ↔ 2 and (k + 1)...2, (k + 1) ∉ X(1). Thus (k + 1) ∉ X(u) for each u ∈ X. Therefore, Theorem 1.1 implies 

that k + 1 ∈ Ext(X), and hence Pk+1 is prime because Pk+1 = Pk+1 [X ∪ {k + 1}].     

Example2.2 For each integer k with k ≥ 5, the cycle Ck is prime. 

Let X = {1,...,k}. Since Ck[X] = Pk−1, Example 1.1 implies that Ck[X] is prime. Moreover, since NCk{k} = {1,k − 1}, it is 

easy to verify that k ∉ 〈𝑋〉  and k ∉ X(u) for each u ∈ X . Thus Theorem 1.1 implies that k+1 ∈ Ext(X), and hence Ck 

is prime because Ck= Ck[X ∪ {k}]. 

Example 2.3 For each integer k with k ≥ 4, the graph Qk is prime. 

Let X = {2,3,4,5}. The subgraph  Q5[X] is prime because it is isomorphic to P4. 

Moreover, since 1 ↔ 2 and 1...3, 1 ∉ 〈𝑋〉 . Since 1 ↔ 4 and 3...4, 1 ∉ X(3). Furthermore, 

1 ∉ X(2) because 1...3 and 2 ↔ 3. By interchanging 3 (resp. 2) and 5 (resp. 4), we obtain 1 ∉ X(4) ∪ X(5). 

Consequently, 1 ∉ 〈𝑋〉  ∪ X(2) ∪ ... ∪ X(5). Thus Theorem 1.1 implies that 1 ∈ Ext(X), and hence Q5 is prime because 

Q5 = Q5[X ∪ {1}]. We may assume that k ≥ 6 in such a way that Qk[X] = Pk−2 is prime, where X = {1,...,k− 2}. Since 

i...k for i∈ X, k ∈ 〈𝑋〉 . On the other hand, since (k − 1) ↔ 1 and (k − 1)...(k − 2), (k− 1) ∉ 〈X〉. Since (k − 1) ↔ k and 

k…X, k≁ (𝑋 ∪ {𝑘 − 1}) , and hence X ∪ {k − 1} is not a module of Qk[X ∪ {k − 1,k}]. Thus Theorem 1.1 implies that 

Qk is prime because Qk= Qk[X ∪ {k − 1,k}]. 

3.{P5  ,𝑷𝟓̅̅ ̅̅   ,BULL}-FREE GRAPHS   

In this section, using the basic results on prime graphs, which are recalled in Chapter  

1, and Theorems 1.2 and 1.3, we give a new proof of the following result of J.L. Fouquet [9]. 

Theorem 2.1 If  G is a {P5,P5,bull}-free graph, then exactly one of the following assertions holds. 

(v) |V (G)| ≤ 2 

(vi) G is isomorphic to C5. 

(vii) There is n ≥ 2 such that G is isomorphic to G2n or G2n. 

(viii) G is decomposable. 

This result was obtained by J.L. Fouquet in the following paper: 

”J.L. Fouquet, A decomposition for a class of (P5,P5)- free graphs, Discrete Mathematics 121, (1993) 75-83 ” 

Notice that, in [5], using a recent result of M. Chudnovsky and P. Seymour [6], M.  

Chudnovsky and P. Maceli gave a shorter proof of this result. First, we obtain the following new Lemma. 
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Lemma 2.1 Let G = (V,E) be a {P5,P5}-free graph, and X be a vertex subset such that G[X] is isomorphic to C5. The 

following assertion holds 

(i) Ext(X) is empty. 

(ii) For any distinct vertices u and v outside X, the subgraph G[X ∪ {u,v}] is decom- posable. 

Proof. (i) Let X = {v1,v2,v3,v4,v5} such that (v1,v2,v3,v4,v5,v1) is an induced C5 of G. 

On the contrary, suppose that there is a vertex v6 in Ext(X), and hence, the subgraph H = G[X ∪ {v6}] is prime. 

Considering the complement of G, we may assume that dH(v6) ≤ 2. Since His prime, dH(v6) ≠ 0, and hence, dH(v6) 

∈ {1,2}. 

First, assume that dH(v6) = 1. We may assume that NH(v6) = {v1}, and hence, (v6,v1,v2,v3,v4) is an induced P5 of G; 

which contradicts the fact G is a P5−free graph. 

Second, assume that dH(v6) = 2. Since v6 ∉ ∪ 1≤i≤5 X(vi), NH(v6) is a pair of two consecutive vertices in the cycle 

(v1,v2,v3,v4,v5,v1). Thus, we may assume that NH(v6) = 

{v1,v2}, and hence (v6,v2,v3,v4,v5) is an induced P5 of G; which contradicts the fact that G is a P5-free graph. 

(ii) To the contrary, suppose that there are u ≠ v ∈ V \X such that G[X∪{u,v}] is prime. By the first assertion, Ext(X) 

is empty. If {u,v} ⊆ 〈𝑋〉 , then X is a non-trivial module of G[X ∪ {u,v}]; which contradicts the fact that G[X ∪ {u,v}] 

is prime. Moreover if there is x ∈ X such that {u,v} ⊆ ∪X(u), then {u,v,x} is a non-trivial module of G[X ∪ {u,v}]; 

which contradicts the fact that G[X ∪{u,v}] is prime. Therefore, by Theorem 1.1, we have to consider only the 

following three cases below. 

First, assume that there are vi ≠ vj ∈ X such that u ∈ X(vi) and v ∈ X(vj). We may assume that either (i,j) = (1,2) or 

(i,j) = (1,3). In the first case, Theorem 1.1 implies that uv ∉ E(G), and hence (v,v3,v4,v5,u) is an induced P5 of G; 

which contradicts the fact that G is a P5-free graph. In the second one, Theorem 1.1 implies that UV∈ E(G), and 

hence G[{u,v,v2,v4,v5}] is isomorphic to 𝑃5;̅̅ ̅̅̅   which contradicts our assumption. 

Second, assume that here is vi ∈ X such that u ∈ 〈𝑋〉  and v ∈ X(vi). We may assume that u ∈ 〈𝑋〉  and v ∈ X(v1). 

Thus Theorem 1.1 implies that uv∈ E(G), and hence (u,v,v2,v3,v4) is an induced P5 of G; which contradicts our 

assumption. 

Finally, assume that here is vi ∈ X such that u ∈ 〈𝑋〉+ and v ∈ X(vi). We may assume that u ∈ 〈𝑋〉 + and v ∈ X(v1). 

Thus Theorem 1.1 implies that uv ∉ E(G), and hence G[{u,v,v5,v4,v2}] is isomorphic to P5; which contradicts our 

assumption.  

Second, using Lemma 2.1, we deduce the following result of J.L. Fouquet [9].  

Corollary 2.1       If G is a prime {P5, 𝑃5̅̅ ̅̅ ̅}-free graph which contains C5, then G is isomorphic to C5. 

Proof. Let X be a vertex subset such that G[X] is isomorphic to C5. By the second assertion of Lemma 2.1, there 

is no 7-element vertex subset Y including X such that G[Y ] is prime. Therefore, Corollary 1.1 implies that |V (G)| 

≤ 6. Clearly, the first assertion of Lemma 2.1 implies that |V (G)| ≠ 6, and hence |V (G)| = 5, and G is isomorphic 

to C5. 

Lemma 2.2 If G is a 5-vertex prime graph, then G is isomorphic to one element of {P5,P5,C5,Q5} 

Proof. Let G be a 5-vertex prime graph. By Proposition 1.2, there is a vertex subset X such that G[X] is isomorphic 

to P4. Set V (G) = {v1,v2,v3,v4,v5}, where X = {v1,v2,v3,v4}, and (v1,v2,v3,v4) is an induced P4 of G. Considering the 
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complement of G, we may assume that dG(v5) ∈ {1,2}. Since v5 ∉ (X(v1) ∪ X(v2) ∪ X(v3) ∪ X(v4), we may assume 

that 

NG(v5) ∈ {{v1},{v1,v4},{v2,v3}} 

- If NG(v5) = {v1}, then (v5,v1,v2,v3,v45) is an included P5 of G, and hence G  ≅ P5. 

- If NG(v5) = {v1,v4}, then (v5,v1,v2,v3,v4,v5) is an included C5of G, and hence G ≅C5. 

- If NG(v5) = {v2,v3},then G ≅ Q5.  

- The following lemma is well known. 

Lemma 2.3 A prime graph G is a critical prime if and only if it has no prime 5-vertex subgraph. 

Proof. First, consider an n-vertex critical prime graph G = (V,E), and to the contrary, suppose that there is a 5-

element vertex subset X such that G[X] is prime. By Proposition 

1.2, there is a vertex subset Y such that G[Y ] is isomorphic to P4, and hence G[Y ] is prime. If n is even (resp. odd), 

then by applying several times Corollary 1.1, we obtain an (n−1) element vertex subset Z including X (resp. 

including Y ) such that the subgraph G[Z] is prime; which contradicts the fact that G is a critical prime graph. 

Second, consider an n-vertex prime graph G with no prime 5-vertex subgraph. 

If n = 4, then G is critical prime because all the 3-vertex graphs are decomposable. 

Thus in the sequel, we assume that n ≥ 5. Since G has no prime 5-vertex subgraph, n ≥ 6. 

If n = 6, then G−u is decomposable for each vertex u, and hence G is critical prime. Thus, we may assume that n 

≥ 7. By Theorem 1.2, there is a prime (n−2)-vertex subgraph, and hence n ≥ 8. 

If n is odd, then by applying several times Theorem 1.2, we obtain a prime 5-vertex subgraph of G; which 

contradicts our assumption. Therefore, n is even. To the contrary, suppose that G is not critical prime. Thus, there 

is a vertex v such that G − v is prime. Since | V − v |= n − 1 ≥ 7 and (n − 1) is odd, by applying several times 

Theorem 1.2, we obtain a prime 5-vertex subgraph of G−v; which contradicts the fact that G has no prime 5-

vertex subgraph.  The following corollary is an immediate consequence of Lemmas 2.2 and 2.3. 

Corollary 2.2    If G is a prime {P5, 𝑃5̅̅ ̅̅ , C5, bull}-free graph, then the graph G is prime critical. 

Remark 2.1 Theorem 2.1 is an easy consequence of Corollary 2.1, Corollary 2.2, and the description of the prime 

critical graphs given by Theorem 1.3. On the other hand, in [5], using a recent result of M. Chudnovsky and P. 

Seymour [6], which is not recalled in our document, M. Chudnovsky and P. Maceli gave another proof of Theorem 

2.1. 
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