
Journal of Advances in Mathematics Vol 17 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

DOI: https://doi.org/10.24297/jam.v17i0.8507

Almost Paracontact 3-Submersions

T.Tshikuna-Matamba

Département de Mathématiques, Université Pédagogique de Kananga B.P. 282-Kananga, République Démocratique
du Congo.

tshikmat@gmail.com

Abstract

In this paper, we discuss some geometric properties of Riemannian submersions whose total space is an almost
paracontact manifold with 3-structure. The study is focused on the transference of structures, the geometry of
the fibres and sectional curvature tensor.
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1 Introduction

Almost paracontact submersions are Riemannian submersions whose total space is endowed with almost paracontact
structure. These submersions have been introduced by Gündüzalp and Sahin [10] where the base space is also an
almost paracontact manifold. Transference of the structure from the total to the base space has been examined. The
structure of the fibres as that of the base space are studied in [19, 20, 21, 22].

In this paper, we consider the case where the total space is endowed with an almost paracontact 3−structure. This
class of submersions are closely related to almost contact 3−submersions, initiated by B. Watson [25, 26] and extended
in [18].

According to the structure of the base space, two types of submersions are studied. Considering that the base space
possesses three almost paracontact structures, the following is stated.

Let π : M4m+3 −→ M ′4m
′+3 be an almost paracontact 3-submersion of type II. If the total space is 3− para-

cosymplectic, then the fibres are hyper-para-Kähler.

This result, among others, is the way to claim that according to the theory of foliation, an almost paracontact manifold
with 3-structure possesses a hyper-para-Kähler manifold as submanifold. Indeed, Proposition 3.4, states that the fibres
of an almost paracontact 3-submersion of type II are almost hyper-para-Hermitian manifolds.

Concerning the ϕi-holomorphic sectional curvature tensor, it is shown that if the total space of an almost paracontact
3-submersion of type I is 3−para-cosymplectic, then the ϕi-holomorphic curvature tensor is preserved both on the
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horizontal and vertical distributions.

Using the product of an almost hyper-para-Hermitian manifold by an almost paracontact manifold with 3-structure,
we construct an example of almost paracontact 3-submersions of type I.

2 Preliminaries on Manifolds

An almost quaternionic-para-Hermitian manifold is a quintuple (M, g, J1, J2, J3) where J2
i = I,

(a) (M, g) is a Riemannian manifold;

(b) (g, Ji) is an almost para-Hermitian structure for i = 1, 2, 3;

(c) Ji ◦ Jj = −Jj ◦ Ji = Jk for i ≺ j, k 6= i and k 6= j.

Each almost para-Hermitian structure (g, Ji) defines a local para-Kähler 2-form, Ωi, via Ωi(D,E) = g(D,JiE). This
leads to define a global, non degenerate 4-form, Ω, which is the fundamental form by Ω =

∑3
i=1 Ωi ∧ Ωi.

Almost quaternionic-para-Hermitian manifolds are of dimension 4m.

Note that locally, {J1, J2, J3} constitutes an adaptated basis of a subbundle B of the endomorphism bundle End T (M),
where T (M) is the tangent bundle of M . By an almost hyper-Hermitian manifold, one understands a quaternionic-
Hermitian manifold with a global adaptated basis [2].

An almost paracontact structure on a differentiable manifold M is a triple (ϕ, ξ, η), where:

(i) ξ is a distinguished vector field,

(ii) η is a differential 1-form such that η (ξ) = 1,

(iii) ϕ is a tensor field of type (1, 1) satisfying

ϕ2D = D − η (D) ξ.

If in addition, M is furnished with a Riemannian metric g such that

g (ϕD,ϕE) = −g (D,E) + η (D) η (E) ,

then g is said to be a compatible metric and (M, g, ϕ, ξ, η) is called an almost paracontact metric manifold.

The study of almost paracontact manifolds can be found in [6, 7, 8, 12, 13, 14, 23, 24] and [28] among others.

Deshmukh and Khan [9, p.448] have constructed a properly almost paracontact 3−structure on R3 as follows

ϕ1 =


0 0 1

0 0 0

1 0 0

, ϕ2 =


0 0 0

0 0 1

0 1 0

, ϕ3 =


0 1 0

1 0 0

0 0 0

.
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ξ1 =


0

1

0

, ξ2 =


1

0

0

, ξ3 =


0

0

1

.

η1 = (0, 1, 0), η2 = (1, 0, 0), η3 = (0, 0, 1).

The associated Riemannian metric being g =


1 0 0

0 1 0

0 0 1

.

Note that, recently, other geometers have been interested by the problem of mixing paracontact and contact structures.
This is the case of Mixed 3-Sasakian structures studied by [4] and Bi-paracontact structures studied by [5] as the paper
of V. Martin-Molina [15].

For each i, the fundamental local 2-form, Φi, is defined by

Φi(D,E) = g(D,ϕiE).

An almost paracontact manifold with 3-structure is called:

(1) 3-almost para-cosymplectic if dΦi = 0 = dηi;

(2) 3-para-cosymplectic if ∇Φi = 0 and ∇ηi = 0;

(3) 3-para-Sasakian if Φi = dηi and N
(1)
i = 0,

where N (1)
i designates the Nijenhuis tensor.

3 Almost Paracontact 3-Submersions

3.1 The structure of the fibres

By a Riemannian submersion, one understands a submersion

π : M −→M ′

between Riemannian manifolds such that π∗|(Kerπ∗)⊥ is a linear isometry [16]. The tangent bundle T (M) of the total
space M admits an orthogonal decomposition

T (M) = V (M)⊕H(M)

where V (M) and H(M) denote , respectively, the vertical and the horizontal distribution. We denote by V and H the
vertical and the horizontal projections of T (M) onto V (M) and H(M) respectively. For all points x′ ∈M ′ , the closed
embedded submanifold Fx′ = π−1(x′) is called the fibre of π over x′. It is known that dimFx′ = dimM − dimM ′.

A vector field X of the horizontal distribution is called a basic vector field if it is π-related to a vector field X∗ of
the base space M ′. That is X∗ = π∗X. On the base space, tensors and other operators will be specified by a prime
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(′) while those of the fibres will be denoted by a caret (̂) . For instance, ∇,∇′, and ∇̂ will designate the Levi-Civita
connection of the total space, the base space and the fibres respectively.

Here, we put the definitions and some properties of the two types of submersions which will be considered.

Definition 3.1. Let (M4m+3, g, (ϕi, ξi, ηi)
3
i=1) be an almost paracontact manifold with 3-structure and (M4m′ , g′, (J ′i)

3
i=1)

be an almost hyper-para-Hermitian manifold. A Riemannian submersion

M4m+3 −→M ′4m
′

is called an almost paracontact 3-submersion of type I, if it satisfies

π∗ϕi = J
′

iπ∗, i = 1, 2, 3.

Proposition 3.2. Let π : M4m+3 −→ M ′4m
′
be an almost paracontact 3-submersion of type I. Then the fibre sub-

manifolds are invariant almost paracontact 3-manifolds.

Proof. Clearly the fibres are 4(m − m′) + 3-dimensional submanifolds. Let (g, ϕi, ξi, ηi) be the almost paracontact
metric 3−structure of the total space; note by (ĝ, ϕ̂i, ξ̂i, η̂i) its restriction on the fibres. The problem is to show that
(ĝ, ϕ̂i, ξ̂i, η̂i) is an almost paracontact metric 3−structure. Indeed, let U and V be two vertical vector fields tangent
to the fibres. We have

ϕ̂i
2U = U − η̂i(U)ξ̂i;

η̂i(ξ̂i) = ĝ(ξ̂i, ξ̂i) = g(ξi, ξi) = 1;

ĝ(ϕ̂iU, ϕ̂iV ) = −ĝ(U, V ) + η̂i(U)η̂i(V ).

Surely the fibres are ϕ̂i−invariant. By definition, it is known that
π∗ϕ̂iU = J

′

iπ∗U. Let us denote by kerπ∗ the fibres; taking U ∈ kerπ∗, then π∗U = 0 = π∗ϕ̂iU which means that
ϕ̂iU ∈ kerπ∗.

Now, we are going to introduce a new type of almost paracontact 3-submersions. This type is closely related to almost
contact 3-submersions of type II [18].

Definition 3.3. Let (M4m+3, g, (ϕi, ξi, ηi)
3
i=1) and

(M ′4m
′+3, g′, (ϕ′i, ξ

′
i, η
′
i)

3
i=1) two almost paracontact manifolds with

3-structure. A Riemannian submersion
π : M4m+3 −→M ′4m

′+3

is said to be an almost paracontact 3-submersion of type II if :

(a) π∗ϕi = ϕ
′

iπ∗,

(b) π∗ξi = ξ′i.

Proposition 3.4. Let π : M4m+3 −→M ′4m
′+3 be an almost paracontact 3-submersion of type II. Then the fibres are

almost hyper-para-Hermitian manifolds.
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Proof. Denoting by F the fibres, it is clear that dimF = 4(m −m′) = 4n where n = m −m′. On (F 4n, g), setting
Ji = ϕ̂i,we have to show that (g, Ji) is an almost para-Hermitian structure. Indeed,

J2
i U = ϕ2

iU = U − ηi(U)ξi;

since ηi(U) = 0 we have J2
i U = U . On the other hand,

g(JiU, JiV ) = −g(U, J2
i V ) = −g(U, V ).

which achieves the proof.

3.2 Transference of Structures

The aim of this subsection is to determine the structure of the fibres and the base space according to that of the total
space.

Proposition 3.5. Let π : M4m+3 −→ M ′4m
′
be an almost paracontact 3-submersion of type I. If the total space is

3-para-cosymplectic or 3-para-Sasakian , then

(a) the base space is hyper-para-Kähler;

(b) the fibres inherit the structure of the total space.

Proof. First, we note that the manifolds under consideration have in common the following defining relations

dΦi(D,E,G) = 0

and
N

(1)
i = 0.

(a) Let X, Y and Z be basic vector fields. It is not hard to see that π∗Ω
′

i = Φi from which we deduce π∗dΩ
′

i = dΦi.
One can also establish that π∗N

(1)
i = N

′

i ; since dΦi(X,Y, Z) = 0 and N (1)
i = 0 , we have π∗dΩ

′

i = 0 = N
′

i ; therefore
dΩ
′

i = 0 = N
′

i which define a 3-para-Kähler structure on the base space for i=1,2,3.

(b) It is well known that the vertical distribution is invariant by ϕi. Since ηi(U) = η̂i(U) and

N̂i
(1)

(U, V ) = N
(1)
i (U, V ),

we get
dΦ̂i(U, V,W ) = 0

and ˆ
N

(1)
i = 0 = dη̂i.

Proposition 3.6. Let π : M4m+3 −→ M ′4m
′
be an almost paracontact 3-submersion of type I. If the total space is

3-almost para-cosymplectic manifold, then

(a) the base space is hyper-para-almost Kähler,
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(b) the fibres inherit the structure of the total space.

Proof. As in the preceding Proposition 3.5, the manifold under consideration verifies the relation

dΦi(X,Y, Z) = 0.

One can easily show that dΩ
′

i = 0 which is the defining relation of a 3-para-almost Kähler structure on the base space
for i=1,2,3. Accordingly, the base space is hyper-para-almost Kähler.

The case of the structure of the fibres is treated as in the preceding Proposition 3.5.

Now, we want to examine the structure of the fibres of a type II almost paracontact 3-submersion.

Proposition 3.7. Let π : M4m+3 −→M ′4m
′+3 be an almost paracontact 3-submersion of type II. If the total space is

3-para-cosymplectic, then the fibres are hyper-para-Kähler.

Proof. The manifold under consideration verifies the following relations

dΦi(D,E,G) = 0

and
N

(1)
i = 0.

Thus dΦi(U, V,W ) = 0. On the other hand, N̂i(U, V ) = 0 = N
(1)
i (U, V ). Therefore, the fibres are defined by

dΦ̂i = 0 = N̂i which are the defining relations of the hyper-para-Kähler structure.

Proposition 3.8. Let π : M4m+3 −→M ′4m
′+3 be an almost paracontact submersion of type II. Then the total space

cannot be 3−para-Sasakian.

Proof. By absurd, suppose that the total space is a 3−para-Sasakian manifold and let us describe the structure of the
fibres.

Recall from Proposition 3.4 that the fibres are almost hyper-para-Hermitian. Consider U and V two vertical vector
fields tangent to the fibres. Since the total space is supposed to be 3−para-Sasakian, it is defined by Φi = dηi and
N

(1)
i = 0. Then Φi(U, V ) = dηi(U, V ). But it can be shown that dηi(U, V ) = 0 which implies that on the fibres, the

fundamental local 2− form Ωi(U, V ) = 0. This is to say that, the fibres have the fundamental local 2− form zero for
all i = 1, 2, 3. Which is surely a non sense. Thus, the total space cannot be a 3−para-Sasakian manifold.

.

3.3 The Geometry of the Fibres

We want to determine the classes of submersions with minimal or totally geodesic fibres. Let us recall that, on the
total space of a Riemnnian submersion, B. O’Neill [16] has defined two configuration tensors, T and A of type (1,2)
by setting

TDE = H∇VDVE + V∇VDHE,
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ADE = V∇HDHE + V∇HDVE.

We shall be interested with the tensor T which is a usefull tool in the study of the fibres. The tensor A is used to
measure the integrability of the horizontal distribution.

Note that the study of the ϕi-linearity of these tensors , in [17], is with helpfull. Recall that if TϕiUV = ϕiTUV ,
then the fibres are minimal and if T ≡ 0 they are totally geodesic.

Lemma 3.9. Let π : M4m+3 −→ M ′4m
′
be an almost paracontact 3-submersion of type I. If, for all U , V and all

i=1,2,3, TUV − TϕiUϕiV = 0, then T = 0.

Proof. It is an adaptation of [25, Lm3.4].

Corollary 3.10. Let π : M4m+3 −→M ′4m
′
be an almost paracontact 3-submersion of type I. If

TUϕiV = ϕiTUV

then T = 0.

Proof. If TUϕiV = ϕiTUV , then TϕiUϕiV = ϕiTϕiUV . Since ϕiU is vertical and from the symmetric property of T
on vertical vector fields, we deduce

TϕiUV = TV ϕiU = ϕiTV U = ϕiTUV.

It is clear that
TϕiUϕiV = ϕ2

iTUV = TUV − ηi(TUV )ξi.

On the other hand, it can be shown that TUξi = 0 and then
ηi(TUV ) = 0 which gives TϕiUϕiV = TUV from which TUV − TϕiUϕiV = 0 follows. Applying Lemma 3.9, we get
T = 0.

Proposition 3.11. Let π : M4m+3 −→ M ′4m
′
be an almost paracontact 3-submersion of type I. If the total space is

3-almost para-cosymplectic, then the fibres are totally geodesic.

Proof. It can be shown that the manifold under consideration satisfies the preceding Corrollary 3.10. The vanishing
of T is the condition for the fibres to be totally geodesic.

3.4 Sectional Curvature Tensor

Here, we want to determine the classes of almost paracontact 3-submersions which preserve the ϕi-holomorphic
sectional curvature tensor on horizontal or vertical distribution.

Proposition 3.12. Let π : M4m+3 −→ M ′4m
′
be an almost paracontact 3-submersion of type I. Then the ϕi-

holomorphic sectional curvature tensor is defined by

(a) Hϕi(U) = Hϕ̂i(U) + ‖U‖−4
{
‖TUϕiU‖2 − g(TUU, TϕiUϕiU)

}
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(b) Hϕi(X) = HJ′i
(X∗)− 3 ‖X‖−4 ‖AXϕiX‖2.

Proof. Similar to that in [26, Thm.5.1(iv) and (v)].

Proposition 3.13. Let π : M4m+3 −→ M ′4m
′
be an almost paracontact 3-submersion of type I. If the total space is

3-almost para-cosymplectic, then Hϕi
(U) = Hϕ̂i(U) and Hϕi

(X) = HJ′i
(X∗).

Proof. From Proposition 3.11, we have T = 0 which implies that
Hϕi

(U) = Hϕ̂i
(U) . Obviously, this manifold satisfies AϕiXY = ϕiAXY which gives rise to AXϕiX = 0 and leads to

Hϕi(X) = HJ′i
(X∗).

3.5 Some Examples

In order to construct an example of a type I submersion, we will consider a manifold product as follows.

Let (M ′4m
′
, g′, (J ′i)

3
i=1) be an almost hyper-para-Hermitian manifold and

(M4m+3, g, (ϕi, ξi, ηi)
3
i=1) an almost paracontact manifold

with 3-structure. It is clear that the manifold product M̄ = M ′×M is of dimension 4(m′+m)+3 which will be taken
4p+ 3 where p = m′ +m. We can define a 3-structure on M̄ by setting

ϕ̄i =

(
Ji 0

0 ϕi

)
, ξ̄i = p

m

(
0

ξi

)
and η̄i = m

p (0, ηi).

It is not hard to show that (M̄, ḡ, (ϕ̄i, ξ̄i, η̄i)
3
i=1) is an almost paracontact manifold with 3-structure where ḡ is

defined by

ḡ((D′, D), (E′, E)) = g′(D′, E′) +
p2

m2
g(D,E)

We can refer to [23], where the product of paracontact manifolds is treated.

Proposition 3.14. Let (M ′4m
′
, g′, (J ′i)

3
i=1) be an almost hyper-para-Hermitian manifold and (M4m+3, g, (ϕi, ξi, ηi)

3
i=1)

an almost paracontact manifold with 3-structure. If (M ′ ×M, ḡ, (ϕ̄i, ξ̄i, η̄i)
3
i=1) is an almost paracontact manifold with

3-structure, constructed as above, then it is 3-para-cosymplectic if, and only if, M is 3-para-cosymplectic and M ′ is
hyper-para-Kähler;

Proof. Let us note that, in this product, the calculation gives the following relation(
∇̄(D,r1 d

dt )
J̄i

)(
E, r2

d

dt

)
=

(
(∇Dϕi)E − r2∇Dϕi, (∇Dηi)E

d

dt

)
; (3.1)

Suppose that (g, (ϕi, ξi, ηi)
3
i=1) is a 3−para-cosymplectic structure. It is known that in this case (∇Dηi) = 0 from

which (3.1) gives (
∇̄(D,r1 d

dt )
J̄i

)(
E, r2

d

dt

)
= 0
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which is the defining relation of a hyper-para-Kähler structure.

Conversely, if (M̄4m, ḡ, (J ′i)
3
i=1) is hyper-para-Kählerian manifold, then in (3.1) we have

(∇Dϕi)E − r2∇Dϕi = 0

or
(∇Dηi)E = 0.

But each of these two properties characterizes the 3−para-cosymplectic structure.

Now, we have

Proposition 3.15. Let M̄ = M ′ ×M be the manifold product constructed as above, then the projection

π : M ′ ×M −→M ′

is an almost paracontact 3-submersion of type I.

Proof. The problem is to show that π∗ϕ̄i = J ′iπ∗. Indeed,
ϕ̄i(D

′, D) = (J ′iD
′, ϕiD) implies that

π∗ϕ̄i(D
′, D) = π∗(J

′
iD
′, ϕiD) = J ′iD

′.

On the other hand, π∗(D′, D) = D′ and so, J ′iπ∗(D′, D) = J ′iD
′ which gives rise to

π∗ϕ̄i(D
′, D) = J ′iD

′ = J ′iπ∗(D
′, D)

from which π∗ϕ̄i = J ′iπ∗ follows.

Since ϕ̄i(D, 0) = (J ′iD
′, 0) and ϕ̄i(0, D) = (0, ϕiD), then M is an invariant submanifold of M ′ ×M by ϕi.

References

[1] Alekseevsky, D.V. and Kamishima, Y.: Quaternionic and para-quaternionic CR structures on (4n+3) dimen-
sional manifolds, Central European J. Math. 2 (5) (2004),732-753.

[2] Cabrera, F.M. Almost hyper-Hermitian structures in bundles spaces over manifolds with almost contact
3−structure, Czech. Math. J. 48 (3) (1998),545-563.

[3] Caldarella, A.V., On paraquaternionic submersions between paraquaternionic Kähler manifolds, Acta Math.,
112 (2010),1-14.

[4] Caldarella, A.V., and Pastore, A.M.,Mixed 3-Sasakian structures and curvature, Ann. Polon. Math., 96(2)
(2009),107-125.

[5] Cappelletti-Montano, B., Bi-paracontact structures and Legendre foliations, Kodai Math. J., 33(2010),473-
512.

398

https://rajpub.com/index.php/jam


Journal of Advances in Mathematics Vol 17 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

[6] Cappelletti-Montano, B., Carriazo, A. and Martin-Molina, V., Sasaki-Einstein and paraSasaki-Einstein
metrics from (k, µ)-structures, J. Geom. Phys., 73 (2013),20-36.

[7] Dacko, P., On almost para-cosymplectic manifolds, Tsukuba J. Math. 28 (2004),193-213.

[8] Dacko, P. and Olszak, Z. On weakly para-cosymplectic manifolds of dimension 3, J. Geom. Physics, 57
(2007),561-570.

[9] Deshmukh, S. and Khan, A.G., Almost paracontact 3-structure on a differentiable manifold, Indian J. pure
appl. Math., 10 (4)(1979), 442-448.

[10] Gunduzalp, Y. and Sahin, B., Paracontact semi-Riemannian submersions, Turkish J. Math., 37 (2013), 114-128.

[11] Ivanov, S. and Zamkovoy, S. Para-Hermitian and para-quaternionic manifolds, Differential Geom. Appl., 23
(2005),205-234.

[12] Kaneyuki, S. and Williams, F.L., Almost paracontact and paraHodge structures on manifolds, Nagoya Math.
J., 99 (1985),173-187.

[13] Kupeli Erken, I., On normal almost paracontact metric manifolds of dimension 3, Facta Universitatis (Nis)
Ser. Math. Inform. 30 (5) (2015), 777-788.

[14] Kupeli Erken, I., Some clases of 3-dimensional normal almost paracontact metric manifolds, Honam Mathe-
matical J. 37 (4) (2015) 457-468.

[15] Martin-Molina, V., Paracontact metric manifolds without a contact metric counterpart, Taiwanese J. Math.,
19 (2015),175-191.

[16] O’neill, B., The fundamental equations of a submersion, Michigan Math.J., 13 (1966), 459-469.

[17] Tshikuna-Matamba, T.: On the ϕ-linearity of the configuration tensors of an almost contact metric submersion,
Bull. Math. Soc. Sci. Math. de Roumanie,37 (1993),165-174.

[18] Tshikuna-Matamba, T.: Geometric properties of almost contact metric 3−submersions, Periodica Math. Hun-
gar, 52(1) (2006),101-119.

[19] Tshikuna-Matamba, T., On the fibres of an almost paracontact metric submersion, J. Math. Univ. Tokushima,
50 (2016),1-13.

[20] Tshikuna-Matamba, T., On the base space of an almost paracontact submersion, Facta Universitatis (Nis),
Ser. Math. Inform.,31 (5) (2016), 1041-1049.

[21] Tshikuna-Matamba, T., Some properties of G1-paracontact submersions, Global Journal of Mathematics, 9 (2)
(2017),585-594.

[22] Tshikuna-Matamba, T., On G2-paracontact submersions, Journal of Advance in Mathematical Science, 3 (2)
(2017),224-237.

[23] Tshikuna-Matamba, T., Produit de variétés en géométrie paracontacte, Ann.Sc. Unikin, 2 (2017),1-8.

[24] Tshikuna-Matamba, T., Induced Structures on the Product of Manifolds in Paracontact Geometry, Global J.
Math, 14(1) (2019),922-930.

399

https://rajpub.com/index.php/jam


Journal of Advances in Mathematics Vol 17 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam

[25] Watson, B.: G,G’-Riemannian submersions and non linear gauge field equations of general relativity, Global
Analysis-Analysis on manifolds, Ed.T.M. Rassias, Teubner Press, Leipzig ,1983,pp.324-349.

[26] Watson, B.: Almost contact metric 3-submersions, Int.J.Math.Math. Sci.,7 (1984),667-688.

[27] Watson, B.: The differential geometry of two types of almost contact metric submersions, The Math. Heritage
of C.F. Gauss, Ed. G.M. Rassias, World Sci. Pub.Co., Singapore,1991,pp.827-861.

[28] Zamkovoy, S., Cannonical connections on paracontact manifolds, Ann. Global Anal. Geometry, 36 (2009),37-60.

Département de Mathématiques
Université Pédagogique de Kananga

B.P. 282-Kananga
République Démocratique du Congo
e-mail address: tshikmat@gmail.com

400

https://rajpub.com/index.php/jam

	Introduction
	Preliminaries on Manifolds
	Almost Paracontact 3-Submersions
	 The structure of the fibres
	Transference of Structures
	The Geometry of the Fibres
	Sectional Curvature Tensor
	Some Examples


